
Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

 

1131 

YOLO-TRS: AN IMPROVED YOLO11 FOR TOMATO FRUIT RIPENESS AND STEM 
DETECTION 

/ 
YOLO-TRS：一种用于番茄果实成熟度与果梗检测的改进 YOLO11算法 

 
Fuming MA1), Shaonian LI*1), Jing TAN1), Yue LI2) 

1) College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu/ China 
2) College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, Gansu/ China 

Tel: 0931-2973750; E-mail: Lsn19@163.com 

Corresponding author: Shaonian Li 

DOI: https://doi.org/10.35633/inmateh-77-91 

 

Keywords: tomato ripeness; YOLO11; dynamic snake convolution; CAA attention mechanism 
 

ABSTRACT 

During field tomato harvesting, challenges such as stem-leaf occlusion, fruit overlap, and difficulties in stem 

localization significantly hinder the performance of harvesting robots. To address these issues, a joint detection 

model for fruits and fruit stems, termed YOLO-TRS, is proposed based on the YOLO11n network. First, a novel 

C3k2-DS module is designed and integrated into the backbone network, enhancing the model’s ability to 

represent complex structural features of fruit stems. In addition, a CAA module is incorporated into the 

backbone to improve long-range feature modeling, thereby effectively reducing missed detections of fruits and 

fruit stems under occlusion conditions. The proposed model is evaluated using a self-constructed dataset. 

Experimental results show that YOLO-TRS achieves precision, recall, and mAP values of 89.9%, 91.5%, and 

94.8%, respectively, outperforming the baseline YOLO11n model by 2.3%, 1.0%, and 2.4%. Compared with 

other classical object detection algorithms, YOLO-TRS demonstrates clear advantages in both detection 

accuracy and computational efficiency. These results confirm that the proposed model can effectively support 

fruit ripeness-related detection and accurately localize stem positions in complex field environments, providing 

a theoretical basis for intelligent agricultural harvesting. 

 

摘要 

田间番茄采收过程中，茎叶遮挡、果实重叠及果柄定位困难等问题严重影响采收机器人的作业性能。为解决上

述挑战，本文基于 YOLO11n 网络提出一种果实与果柄联合检测模型 YOLO-TRS。首先，提出并将 C3k2-DS

模块集成于骨干网络中，增强模型对果柄复杂结构特征的建模能力；此外，在骨干网络中集成 CAA 模块，提

升模型的长距离特征建模能力，进而有效降低遮挡场景下果实与果柄的漏检率；最后，基于自建田间番茄数据

集对所提模型进行验证。实验结果表明，改进后的模型精度（Precision）、召回率（Recall）和平均精度均值

（mAP）分别达到 89.9%、91.5%和 94.8%，较 YOLO11n模型分别提升 2.3%、1.0%和 2.4%；与其他经典目

标检测算法相比，该模型在检测精度与计算效率方面均展现出显著优势。这些实验结果验证了，YOLO-TRS

模型能够在复杂田间环境下有效检测果实成熟度并精准定位果柄位置，为农业智能采摘提供理论支撑。 

 

INTRODUCTION 

 Tomato is one of the most economically significant crops in the world. China is a major producer of 

both fresh and processed tomatoes. (Li et al., 2021). In contemporary agricultural production, precise detection 

of fruit ripeness and stem position are key to realizing intelligent harvesting. The accurate differentiation of 

ripeness stages is critical for maintaining fruit quality, minimizing storage costs, and optimizing harvesting 

efficiency. Additionally, the accurate detection of the stem position provides precise guidance for the robotic 

arms of harvesting machines, effectively avoiding fruit damage during the harvest. (Zhou et al., 2022). 

 In the field of tomato phenotyping detection, early research primarily relied on traditional computer 

vision techniques (Hou et al., 2015). Feng et al., 2015, developed a vision system based on line-structured 

light, using color feature extraction in a specific chromatic aberration model to identify red ripe tomatoes. Li et 

al., 2021 utilized RGB-D images and improved clustering algorithms to enhance the accuracy and robustness 

of overlapping fruit recognition. Goel et al., 2015, developed a vision-based system that achieved fine 

classification of tomatoes into six maturity stages using a fuzzy rule-based classification method, with an 
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accuracy of up to 94.29%. However, these methods generally depended on handcrafted features, making 

them susceptible to background interference in complex natural environments and limiting their generalization 

capability. With advancements in technology, deep-learning-based convolutional neural networks (CNNs) 

have demonstrated powerful automatic feature-learning capabilities and have gradually become the 

mainstream approach (Kamalesh et al., 2024). Among these, the YOLO series models have been widely 

applied in tomato detection tasks due to their excellent balance between speed and accuracy. Within the 

YOLOv3 framework, Liu et al., 2020, proposed a multi-scale feature fusion algorithm termed IMS-YOLO, 

increasing the detection accuracy to 97.13%. Liu et al. designed the YOLO-Tomato model to cope with 

complex environmental conditions (Liu et al., 2020). Subsequently, YOLOv4 was adopted for its stronger 

feature extraction capability. Li et al., 2021, combined the HSV color space to improve the correct recognition 

rate to 94.77%. Yang et al., 2022, incorporated the CBAM module into backbone network of the YOLOv4-tiny, 

enabling accurate tomato ripeness classification with an average precision of 97.9%. Liu et al., 2023, proposed 

a tomato ripeness detection method that combines YOLOv4 with ICNet, achieving an average detection 

accuracy of 99.31%. YOLOv5 further optimized both accuracy and speed. Gao et al., 2024, introduced the 

CBAM attention module and Soft-NMS, effectively enhancing recognition robustness in complex environments. 

He et al., 2022, addressed the challenge of nighttime tomato recognition by improving the loss function. 

Recently, research has increasingly focused on model lightweighting and accuracy improvement. For instance, 

Ge et al., 2022 incorporated ShuffleNetV2 and BiFPN to compress the model while maintaining performance. 

Zhang et al. and Wang et al. utilized attention mechanisms and optimized loss functions, respectively, both 

achieving high-precision tomato detection (Zhang et al., 2023; Wang et al., 2023). The research frontier has 

now expanded to newer frameworks such as YOLOv8 and YOLO11. Tian et al., 2024, added detection layers 

and designed novel modules, constructing a TCAttn-YOLOv8 model that achieved 96.31% mAP. Wu et al. and 

Sun et al. innovated on the Neck layer, obtaining excellent comprehensive performance (Wu et al., 2024; Sun 

et al., 2024). The latest YOLO11 model is also being explored. Wei et al., 2024, successfully constructed a 

lightweight and efficient detection model by introducing Ghost modules and feature refinement modules. 

 Despite these significant advances, current visual recognition systems for intelligent tomato harvesting 

face two prominent issues: First, most existing studies focus solely on fruit ripeness detection, lacking joint 

detection of both fruit ripeness and stem positions—the latter being critical for achieving efficient automated 

harvesting. Second, in complex natural environments, background interference and severe occlusion between 

leaves and fruits pose serious challenges to the detection accuracy of small targets like stems and fruits of 

specific maturity stages. To address these challenges, this study proposes an innovative lightweight model, 

YOLO-TRS, aimed at achieving accurate and robust joint detection of fruit ripeness and stems. The main 

contributions of this paper are as follows: 

 (1) A novel feature extraction module, C3k2-DS, is proposed, in which the standard convolution in the 

C3k2 module is replaced with dynamic snake convolution (Qi et al., 2024). Using this module as a core 

component, the backbone network of YOLO11n is redesigned, significantly enhancing the model’s ability to 

extract complex structural features such as fruit stems. 

 (2) Building upon the introduction of the C3k2-DS module, the CAA module (Cai et al., 2024) is 

integrated into the backbone network, resulting in the development of the novel YOLO-TRS algorithm. The 

incorporation of the CAA module further enhances the model’s ability to capture contextual information and 

salient features, thereby improving its robustness to complex background interference and its capability to 

recognize occluded targets. 

 
MATERIALS AND METHODS 

Dataset and preprocessing 

Data acquisition 

 The image dataset employed in the study was collected from the cultivation of a specific university. 

The tomato variety used is Provence, and the images were captured using an iPhone smartphone with a 

resolution of 4624×4624 pixels. To enhance the diversity of the tomato images, images were captured at 

various time intervals between 7:00 AM and 10:00 PM, employing different shooting angles (horizontal and 

top-down) and distances (with a direct camera-to-tomato distance varying from 300 to 550 mm). Additionally, 

variables such as lighting conditions, shading levels, and fruit quantities were systematically considered. A 

total of 1,000 tomato images were acquired. Representative tomato samples from different conditions are 

illustrated in Figure 1. 
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(b) insufficient 

lighting 
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(e) dense 
distribution 

(f) sparse 
distribution 

Fig. 1 - Examples of tomato images under different collection conditions 

 

Data annotation and partitioning  
 The current national standard GH/T1193-2021 categorizes tomato ripeness into six stages based 

on color and size: unripe, green-ripe, breaker, pre-red ripe, mid-red ripe, and post-red ripe. The 

characteristics of tomatoes at different stages of ripeness are presented in Table 1. To simplify the 

classification process and improve training efficiency, tomato ripeness stages were redefined based on 

current national standards. Specifically, the unripe and green-ripe stages were merged into a green stage, 

the breaker and pre-red ripe stages were combined into a half-ripe stage, and the mid-red ripe and post-

red ripe stages were merged into a red-ripe stage. This resulted in a three-stage ripeness classification 

scheme. All experimental data annotations strictly followed this redefined classification standard. 

Table 1  
Morphological characteristics of tomato fruits with different ripeness 

Ripeness level Morphological characteristics 

unripe 
Fruit and seeds have not yet fully developed and shaped, green pericarp, no luster, ripening 

difficulties 

green-ripe 
Fruit stereotypes, fruit surface has a glossy, from green to white green, the seed has grown, 

around the gelatinous, at this time can be artificially ripened, picking and storage 

breaker 
From green ripe to red ripe transition period, the umbilicus around the beginning of yellow or 

light red halo spot, fruit with red surface less than 10% 

pre-red ripe One to thirty percent red ripe, fruit with red surface 10%-30% 

mid-red ripe Forty to sixty percent red ripe, the fruit with red surface 40%-60% 

post-red ripe Seventy to ten percent red ripe, fruit with red surface 70%-100% 

 

 The dataset was randomly divided into training, validation, and tests set in a ratio of 8:1:1 for 

model training. Detailed information of the tomato dataset is provided in Table 2.  

Table 2  
Experimental dataset and data distribution 

Set 
Target Box 

Number of Images 
green half red stem 

Train 335 631 673 1282 800 

Validation 45 74 85 168 100 

Test 41 80 84 152 100 

Total 421 785 842 1602 1000 

 

Model Introduction 

Network Architecture of YOLO11 

 YOLO11 marks a notable progression in object detection architectures. It introduces the C3k2 module, 

which integrates variable kernel convolution and channel separation to capture richer contextual information, 

thereby enhancing multi-scale feature extraction. The model also incorporates the C2PSA module to 

strengthen spatial correlations in feature maps, improving attention to key regions such as small or occluded 

objects. With a reduced parameter size and strong compatibility with edge devices, YOLO11 is well-suited for 

deployment on harvesting robots. Among its variants, the lightweight YOLO11n is selected as the baseline in 

this study. As illustrated in Figure 2, its architecture mainly comprises three parts: the Backbone, Neck, and 

Head. 
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Fig. 2 - Model structure diagram of YOLO11 

 
Network Architecture of YOLO-TRS 

 Figure 3 presents the architecture of the YOLO-TRS. The model enhances detection accuracy and 

feature representation through the synergistic integration of DS-Conv and the CAA module. Specifically, DS-

Conv module can dynamically adjust the shape and parameters of convolutional kernels based on the specific 

input data, allowing it to better adapt to the complex edges and textures within the image. This capability 

significantly enhances its performance in detecting tomato stems in complex backgrounds. The CAA module, 

as a lightweight attention mechanism, effectively addresses background interference and occlusion issues, 

enhancing the model's performance in detecting tomato fruit ripeness and stems. The synergistic interaction 

between these components substantially improves the accuracy and robustness of YOLO-TRS in tomato fruit 

ripeness and stem detection, while preserving a relatively low computational overhead.  
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Fig. 3 - Model structure diagram of YOLO-TRS 

 

C3k2-DS 

 The C3k2-DS module is designed by replacing the standard convolution in the C3k2 module with DS-

Conv. Compared to standard convolution, the use of DS-Conv facilitates more effective extraction of features 
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with varying geometric shapes. Due to its dynamic mechanism, the convolution kernel could adjust its shape 

dynamically to accommodate features from different regions. Consequently, the network can more effectively 

extract intricate features, capture irregularly shaped features with greater precision, adapt to input variations, 

expand the receptive field, and obtain a broader context. Figure 4 illustrates the difference between DS-Conv 

and standard convolution. 

  
(a) Standard convolution (b) DS-Conv 

Fig. 4 - Standard convolution and DS-Conv diagram 

 
 The proposed C3k2-DS module, integrated with DS-Conv, possesses a robust capability for extracting 

complex features. This enhanced capability provides a solid technical foundation for the accurate detection of 

fruit ripeness and stems in complex harvesting environments. The detailed structure of the C3k2-DS module 

is presented in Figure 5. 

CBS DS-Conv Concat CBS

CBS

BottleNeck-DS × n

C3k-DS

DS-Conv Add

 
(a) 

CBS BottleNeck-DS BottleNeck-DS Concat CBS...

n
C3k2-DS  C3k-DS=False

split

 
(b) 

CBS C3k-DS Concat CBS...

n
C3k2-DS  C3k-DS=True

C3k-DSsplit

 
(c) 

(a) the structure of C3k-DS. (b) the structure of C3k2-DS when C3k-DS is set to True. (c) the structure of C3k2-DS when C3k-DS is set 

to False. 

Fig. 5 - The Structure of C3k2-DS 

 

Context Anchor Attention (CAA) 

 To address the challenges of occlusion and background interference in complex orchard 

environments, the CAA attention mechanism was introduced, effectively mitigating these issues without 

significantly increasing the model’s computational cost. The CAA mechanism employs global average pooling 

and one-dimensional strip convolutions to capture long-range pixel dependencies while simultaneously 

enhancing features in the central region. This design enables the CAA module to more effectively extract 

features of slender targets, such as fruit stems, and to reduce feature confusion caused by leaf occlusion or 

fruit overlap. The structure of the CAA module is illustrated in Fig. 6. 
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Fig. 6 - CAA module 

 

 First, local features are extracted through average pooling and 1×1 convolution, as illustrated in 

Equation 1. 

 pool
avg1 1Conv (Pool ( ))F X=  (1) 

 Next, vertical and horizontal strip depth convolutions are employed to approximate the conventional 

large-kernel depth convolution, as illustrated in Equations (2) and (3). 

 pool
1DWConv ( )

b

w
kF F=  (2) 

 1DWConv ( )
b

h w
kF F=  (3) 

 The kb parameter is configured as 11 + 2×1, which allows the strip convolution to acquire a sufficiently 

large receptive field for capturing strip-like structures, thus enhancing the feature extraction capability for 

elongated objects. This approach effectively reduces computational complexity while yielding performance 

comparable to that of standard large-kernel depth convolutions. 

 Ultimately, attention weights are computed via a 1×1 convolutional, followed by a Sigmoid activation 

function. The CAA operation is then executed by element-wise multiplication of the attention weights with the 

input features, as formalized in Equation (4) 

 1 1Sigmoid(Conv ( ))hY X F=   (4) 

 
Model training 

Experimental Environment and Parameter Settings 

 The performance and training efficiency of deep learning models are significantly influenced by 

configurations of hardware and the selection of hyperparameters. The appropriate choice of GPUs and CPUs 

plays a critical role in enhancing training efficiency. Regarding hyperparameters, settings including batch size, 

learning rate, epochs, and optimizer choice exert a considerable influence on model performance and 

generalization capability. This study was performed on a Windows 11 operating system with the PyTorch 2.0 

development environment. Error! Reference source not found. and Table 4 provide a detailed overview of 

the model training environment and key parameter configurations. 

Table 3 
Model training environment 

Environment Details 

GPU NVIDIA GeForce RTX 4060Ti 

CPU Inter(R) Core i5-10200H@2.4GHz 

Python Python 3.8 

CUDA 11.8 

CuDNN 8.9.7 

 

Table 4 
Model training hyperparameters 

Hyperparameters Details 

Epochs 350 

Image Size 640×640 

Batch Size 32 

Optimizer SGD 

Initial learning rate 0.01 

 

Model Evaluation Metrics 
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 To evaluate the model’s performance comprehensively, this study adopts a set of widely recognized 

metrics, including Precision (P), Recall (R), F1 score, mean Average Precision (mAP), gigaflops per second 

(GFLOPs), and the number of Parameters (Params). 

 

 
TP

P =
TP+ FP

 (5) 

 
TP

R =
TP+ FN

 (6) 

where: 

 TP refers to the number of actual targets correctly identified and detected by the model. FP denotes 

the number of instances where the model incorrectly classifies a background or non-target region as a target. 

FN indicates the number of actual targets that the model fails to detect. 

 
P×

F1
R

= 2
R

P+
  (7) 

where: 

 F1 is calculated as the harmonic mean of precision and recall, offering a comprehensive evaluation of 

the model’s overall performance. 

 
1

0
( )AP P r dr=   (8) 

where: 

 P-R curve visually illustrates the trade-off between precision and recall at different decision thresholds. 

Typically, R is plotted on the x-axis and P on the y-axis. The closer the P-R curve is to the top-right corner, the 

better the model's performance in balancing precision and recall. The AP is determined by calculating the area 

under the curve for a given class, reflecting the model's ability to correctly identify the class across different 

confidence thresholds. 

 
1

1 N

i
i

mAP AP
N =

=   (9) 

where: 

 APi is the average precision for the i-th class, and N denotes the total number of classes. The mAP is 

obtained by calculating the arithmetic mean of the AP values across all categories, reflecting the overall 

performance of the model. 

 
9

2

10

out out h w in outH W K K C C
GFLOPs

     
=  (10) 

 ( 1)w in outhParams K K C C=   +   (11) 

where: 

 Hin and Hout are the output feature map sizes. Kh, Kw are the convolution kernel sizes. Cin, Cout are the 

number of input and output channels. 

 

Experimental results and discussion 

Design of the backbone network based on C3k2-DS 

 In this study, the C3k2 module in the original backbone network was replaced with the proposed 

C3k2-DS module. To explore the impact of its placement and quantity, comparative experiments were 

conducted with different configurations (as shown in Figure 7).  As summarized in Table 5, the YOLO11-

DS1 model—incorporating a single C3k2-DS module—achieved the highest detection accuracy. 

Compared to the baseline YOLO11, it improved the F1 score and mAP by 0.9% and 2.6%, respectively. 

This gain can be attributed to the dynamic snake convolution (DS-Conv), which adaptively adjusts the 

convolutional kernel shape based on input features, thereby enhancing the model's capacity to capture 

complex morphological traits of stems as well as texture and color characteristics o f half-ripe fruits. 

 As the number of C3k2-DS modules increased, model accuracy began to fluctuate. For instance, 

when all four C3k2 modules were replaced (YOLO11-DS4), performance dropped relative to YOLO11-

DS1. This decline is likely due to the increased model complexity and longer information pathways, where 

the structural nature of DS-Conv may impede efficient learning and retention of deep features. 
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Nevertheless, even YOLO11-DS4 still outperformed the baseline, with F1 and mAP rising by 0.8% and 

0.6%, respectively, confirming the consistent benefit of integrating DS-Conv into the YOLO11 framework 

for tomato fruit and stem detection. Ultimately, this study selected YOLO11-DS1 as the new backbone 

network. 

Table 5 
Comparative results for different configurations of the backbone network 

Model F1/% P/% R/% mAP/% GFLOPs Param/M 

YOLO11 89.0 87.6 90.5 92.4 6.3 2.58 

YOLO11-DS1 89.9 87.3 92.7 94.0 6.4 2.72 

YOLO11-DS2 89.6 88.9 90.3 93.0 6.5 2.75 

YOLO11-DS3 89.9 90.1 89.7 92.6 6.6 2.77 

YOLO11-DS4 89.8 90.5 89.1 93.0 6.7 2.77 

 

 

C3k2-DS

C3k2-DS

C3k2-DS

C3k2-DS

C3k2

C3k2-DS

C3k2-DS

C3k2-DS

C3k2
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C3k2-DS

C3k2-DS
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C3k2
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(d)(c)(b)(a)  
(a) One C3k2-DS structure, i.e., YOLO11-DS1, (b) Two C3k2-DS structure, i.e., YOLO11-DS2, (c) Three C3k2-DS structure, i.e., 

YOLO11-DS3, (d) Four C3k2-DS structure, i.e., YOLO11-DS4. 

Fig. 7 - Different replacements of C3k2 in the backbone network 

 

Experimental analysis of optimal placement of the CAA attention mechanism 

 The application of the CAA module can further enhance the performance of the YOLO11-DS1 

algorithm, but its specific effect depends on the position of application and the specific requirements of the 

task. Therefore, this study conducted experiments by sequentially adding the CAA module to each layer of the 

backbone in the YOLO11-DS1 model. Table 6 presents the experimental results, where the numbers at the 

end of the model names indicate the layer number of the CAA module (with numbering starting from 0). It could 

be observed that the model’s overall performance shows notable sensitivity to the variation in the position of 

the CAA. As the placement of the CAA module shifts from shallow to deep layers, the model's performance 

exhibits certain fluctuations. Specifically, the AP for the red and green categories shows a relatively low 

sensitivity to changes in the CAA position. In contrast, the AP for the half and stem categories demonstrates 

higher sensitivity to changes in the CAA position. This is likely due to the relatively stable appearance of the 

red and green fruits, whose features are simple and exhibit minimal shape variation across different layers. As 

a result, the change in CAA position has a limited impact on their detection precision. In contrast, the 

appearance features of semi-ripe fruits and stems are more complex and ambiguous, making them more 

susceptible to positional changes, leading to more significant fluctuations in AP values. 

 Furthermore, when the CAA module is applied to the 7th layer, the model's detection performance 

reaches its optimal level, with a mAP of 94.8% and an F1 score of 90.7%. The AP for the half and stem 

categories reaches 95.8% and 88.2%, respectively. The incorporation of the CAA module significantly 

improves the model's robustness in handling object detection tasks in complex backgrounds, making it more 

suitable for fruit ripeness and stem detection tasks in intricate environments. Based on the above analysis, the 

seventh layer of the backbone network was selected as the insertion point for incorporating the CAA module. 

Table 6 
Comparative results for different configurations of the CAA positions 

Model 
F1/
% 

P/% R/% 
mAP 

/% 
GFLOPs Param/M 

AP/% 

Red Half 
Gree

n 
Ste
m 

YOLO11-DS1 89.9 87.3 92.7 94.0 6.4 2.72 97.0 93.5 98.7 86.9 
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YOLO11-DS1-CAA-4 87.8 90.6 85.1 93.6 6.5 2.73 97.2 96.3 98.5 82.3 

YOLO11-DS1-CAA-5 89.9 89.4 90.4 92.9 6.5 2.76 96.5 93.3 98.6 83.3 

YOLO11-DS1-CAA-6 89.9 88.7 91.2 93.0 6.5 2.76 97.0 93.1 98.4 83.6 

YOLO11-DS1-CAA-7 90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2 

YOLO11-DS1-CAA-8 86.3 89.6 89.0 92.2 6.5 2.86 96.7 90.6 97.9 83.4 

YOLO11-DS1-CAA-9 90.2 88.4 92.1 94.0 6.5 2.86 96.6 93.8 98.4 87.4 

YOLO11-DS1-CAA-10 89.7 88.8 90.7 92.5 6.5 2.86 96.6 92.0 97.8 83.6 

YOLO11-DS1-CAA-11 88.9 87.1 90.8 92.7 6.5 2.86 96.8 91.9 98.3 83.6 

 

Ablation experiments 
Ablation experiments between different improvement methods 

 In this study, ablation experiments were conducted to evaluate the effectiveness of each improvement 

method. Specifically, the C3k2 module in the 9th layer was substituted with the C3k2-DS module, and the CAA 

module was added to the 7th layer of the backbone network. These two modifications were integrated into the 

original network model separately or in combination. The experimental results are presented in Error! 

Reference source not found.. 

 The introduction of the C3k2-DS module results in notable improvements in both the F1 score and 

mAP with only a slight increase in parameters and GFLOPs. In terms of individual categories, the C3k2-DS 

module significantly improves the model’s detection performance for the stem and half-ripe tomatoes, with the 

AP value for stem increasing from 84.8% to 86.9%, and the AP value for half-ripe tomatoes increasing from 

90.8% to 93.5%. The recognition accuracy of these two categories is particularly critical, as they are key 

bottlenecks that significantly limit the model's performance in practical applications. Furthermore, the 

incorporation of the CAA results in 1.1%, 0.4%, and 0.7% improvement in P, R, and mAP, respectively. While 

the inclusion of the CAA slightly increases the model's complexity, it significantly enhances its detection 

performance. Finally, when the C3k2-DS is combined with the CAA, the model's P, R, and mAP improve by 

2.3%, 1.0%, and 2.4%, respectively. The AP of the half-ripe tomatoes and the stems, which were difficult to 

detect by the original YOLO11 model, increased by 5% and 3.4%, reaching 95.8% and 88.2%, respectively. 

Table 7 
Results of ablation experiments. 

C3k2-
DS 

CAA 
F1/
% 

P/% R/% 
mAP/

% 
GFLOPs Param/M 

AP/% 

Red Half Green Stem 

× × 89.0 87.6 90.5 92.4 6.3 2.58 95.5 90.8 98.4 84.8 

√ × 89.9 87.3 92.7 94.0 6.4 2.72 97.0 93.5 98.7 86.9 

× √ 89.8 88.7 90.9 93.1 6.4 2.62 96.2 92.1 98.2 85.7 

√ √ 90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2 

 

 To further analyze the impact of the CAA module, heatmaps at the CAA feature layer were generated. 

These heatmaps were then compared with those produced by the baseline model at the same feature layer. 

The results are presented in Figure 8. Each pixel in the heatmap corresponds to the activation level at the 

respective spatial location. Brighter regions, reflecting higher activation values, indicate a higher probability of 

the target’s presence at those locations. It could be observed that after incorporating the CAA module, the 

heatmap shows a notable concentration in areas associated with tomatoes. This highlights the CAA module’s 

effectiveness in refining the model’s feature representation of tomatoes, enabling a more precise focus on the 

tomato fruit region, thereby enhancing detection accuracy. 
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(a) (b) (c) 
(a) Original images. (b) Results without the incorporation of the CAA module. (c) Results with the incorporation of the CAA module. 

Fig. 8 - Heatmaps of the CAA module ablation experiment 

 

Ablation experiments of different attention methods 

 To identify the most effective attention mechanism for the proposed model, three attention modules—

Coordinate Attention (CA) (Hou et al., 2021), Efficient Multi-Scale Attention (EMA) (Ouyang et al., 2023), and 

the proposed CAA—were comparatively evaluated in combination with both the standard C3k2 module and 

the enhanced C3k2-DS module. The experimental results are summarized in Table 8. When integrated with 

the standard C3k2 module, all three attention mechanisms improved model performance, though to varying 

degrees. The CAA module achieved the most balanced and significant gains in precision (P) and recall (R), 

along with a moderate improvement in mAP. In contrast, the CA module yielded the highest mAP among 

attention-enhanced variants but the lowest gains in P and R. After incorporating the C3k2-DS module, the 

model equipped with CAA achieved the best overall performance, attaining the highest F1-score and mAP 

among all configurations. These results validate that the CAA module provides more consistent and effective 

enhancement compared to CA and EMA, particularly when combined with structural feature extraction 

improvements. 

Table 8 
Results of ablation experiments with different attention methods. 

Model F1% P/% R/% mAP/% GFLOPs Param/M 
AP/% 

Red Half Green Stem 

C3k2 89.0 87.6 90.5 92.4 6.3 2.58 95.5 90.8 98.4 84.8 

C3k2-DS 89.9 87.3 92.7 94.0 6.4 2.72 97.0 93.5 98.7 86.9 

C3k2+CA 89.1 87.9 90.4 93.5 6.3 2.59 98.0 94.3 97.6 84.3 

C3k2+EMA 89.4 88.5 90.4 93.0 6.4 2.59 97.0 93.9 98.5 82.5 

C3k2+CAA 89.8 88.7 90.9 93.1 6.4 2.62 96.2 92.1 98.2 85.7 

C3k2-DS+CA 90.1 90.3 89.8 93.8 6.4 2.72 96.6 93.2 98.1 87.2 

C3k2-DS+EMA 88.7 88.6 88.8 92.5 6.4 2.72 96.1 93.8 97.3 83.0 

C3k2-DS+CAA 90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2 

 

 To identify the optimal convolutional enhancement strategy, the standard convolution in the bottleneck 

of the C3k2 module was replaced with three alternatives: DS-Conv, Dynamic Convolution (DNC) (Chen et al., 

2020), and Deformable Convolutional Networks v2 (DCNV2). Each variant was evaluated both with and without 

integration of the CAA module. The results are presented in Table 9. In the absence of the CAA module, the 

model equipped with DS-Conv achieved superior performance in both F1-score and mAP compared to those 

using DNC or DCNV2. After incorporating the CAA attention mechanism, the DS-Conv-based model continued 

to outperform all other configurations, attaining the highest F1-score (90.7%) and mAP (94.8%). These results 

demonstrate that DS-Conv provides more effective feature representation enhancement compared to current 

mainstream convolutional methods, making it the most suitable choice for improving detection performance in 

our task. 

Table 9 

Results of ablation experiments with different convolution methods 

Model F1/% P/% R/% mAP/% GFLOPs Param/M 
AP/% 

Red Half Green Stem 

DS 89.9 87.3 92.7 94.0 6.4 2.72 97 93.5 98.7 86.9 

DNC 88.1 86.2 90.1 92.3 6.3 2.81 96.0 90.6 98.0 84.7 
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DCNV2 88.9 89.4 88.4 92.3 6.3 2.63 95.2 89.8 98.1 85.9 

DS+CAA 90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2 

DNC+CAA 89.7 89.7 89.7 93.6 6.4 2.84 96.7 93.9 98.5 85.3 

DCNV2+CAA 89.2 89.1 89.3 92.6 6.4 2.67 97.3 89.7 97.7 85.9 

 

Comparative experiments with current mainstream models. 

 To evaluate the performance of the proposed YOLO-TRS model, comparative experiments were 

conducted against several current mainstream detection models under identical datasets and parameter 

settings. As summarized in Table 10, YOLO-TRS achieves the highest scores in mAP, precision, recall, and 

F1-score among all compared methods. This performance gain can be attributed to the enhanced capability 

of DS-Conv in extracting complex structural features, along with the CAA module’s effectiveness in capturing 

rich contextual information. Together, these components enable the model to effectively handle challenges 

such as severe occlusion and background interference. Despite the performance improvements, YOLO-TRS 

maintains a moderate increase in parameter count, preserving real-time inference capability while achieving 

high detection accuracy. As illustrated in the P-R and mAP curves in Figure 9, YOLO-TRS consistently 

occupies the top position across evaluation metrics, further validating its overall superiority. 

Table 10 

Results of comparative experiments with current mainstream models. 

Model F1/% P/% R/% mAP/% GFLOPs Param/M 
AP/% 

Red Half Green Stem 

YOLOv5n 89.3 88.4 90.3 93.7 7.1 2.50 96.4 93.8 97.6 86.8 

YOLOv8n 88.5 87.3 89.8 92.1 8.1 3.01 95.7 91.0 98.4 83.3 

YOLOv10n 87.9 86.8 89.1 91.5 8.2 2.70 94.6 92.0 97.6 82.0 

YOLO11n 89.0 87.6 90.5 92.4 6.3 2.58 95.5 90.8 98.4 84.8 

YOLOv12n 88.8 88.1 89.6 93.0 5.8 2.51 97.1 91.0 98.3 85.6 

YOLO-TRS (ours) 90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2 

 

  
(a) P-R curves (b) mAP curves 
Fig. 9 - P-R curves and mAP curves for different models 

 

Analysis of Visual Results 

 To intuitively evaluate the detection performance of YOLO-TRS, experiments were conducted on the 

test sets, and the visual results were compared with those of several mainstream models. Figure 10 shows 

the comparative results in typical ripe tomato scenes during harvesting robot operation. The results indicate 

that, except for YOLO-TRS, all other models exhibit issues such as missed detections or inaccurate localization 

of tomato stems under occlusion and blur. Specifically, both YOLOv8n and YOLOv10n failed to detect all 

tomato stems, while YOLOv5n and YOLO11n detected all stems but with relatively low confidence. In contrast, 

our proposed YOLO-TRS not only accurately detects all tomato stems but also maintains higher confidence 

levels, demonstrating superior performance in stem detection among popular lightweight models. 

 



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

 

1142 

 
(a) Original image 

 
(b) YOLO-TRS 

 
(c) YOLOv5n 

 
(d) YOLOv8n 

 
(e) YOLOv10n 

 
(f)YOLO11n 

Fig. 10 - Detection results of different models in ripe tomato fruit and stems scenes 
 

 Figure 11 presents a detection scenario containing half-ripe, green, and red tomatoes. In the 

challenging task of identifying half-ripe tomatoes, YOLOv8n, YOLOv10n, and YOLO11n all produced false 

detections by misclassifying half-ripe tomatoes as red. Such errors could lead to the premature harvesting of 

half-ripe fruit, resulting in potential waste. Although YOLOv5n correctly recognized half-ripe tomatoes, its 

confidence was lower than that of YOLO-TRS. These results confirm the superior performance of YOLO-TRS 

in tomato ripeness detection. It is also noted that in this set of results, none of the models successfully detected 

stems on green tomatoes, which may be attributed to their smaller size and color similarity to the fruit. Overall, 

the above analysis validates that YOLO-TRS achieves accurate detection in both ripeness classification and 

stem localization. 

 
(a) Original images 

 
(b) YOLO-TRS 

 
(c) YOLOv5n 

 
(d) YOLOv8n 

 
(e) YOLOv10n 

 
(f) YOLO11n 

Fig. 11 - Detection results of different models in various ripe tomato fruit and stems scenes. 

 

Conclusions 

 This study proposes YOLO-TRS, an enhanced model based on YOLO11n, specifically designed for 

joint detection of tomato ripeness and stem position. With its compact architecture, the model is well-suited for 

deployment on resource-constrained harvesting robots, achieving short inference times while improving 

detection accuracy, thereby contributing to higher harvesting efficiency. The proposed improvements include 

a novel backbone architecture built around the C3k2-DS module, which significantly enhances the model's 

ability to capture complex structural features with only a minimal increase in parameters. Furthermore, the 

integration of the CAA module strengthens the model's focus on foreground objects and its contextual 
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understanding, enabling more reliable identification of tomatoes at different maturity stages and stems in 

complex field environments. 

 Experimental results demonstrate that YOLO-TRS outperforms several current mainstream lightweight 

models, achieving an F1-score of 90.7% and a mAP of 94.8%, while maintaining a compact model size (2.76 

M parameters) and low computational cost (6.5 GFLOPs). Compared to YOLOv5n, YOLOv8n, YOLOv10n, 

YOLO11n, and YOLOv12n, YOLO-TRS improves F1-score by 1.4%, 2.2%, 2.8%, 1.7%, and 1.9%, and 

increases mAP by 1.1%, 2.7%, 3.3%, 2.4%, and 1.8%, respectively. Visualization results further validate the 

model's superior accuracy in detecting both tomato ripeness and stem positions under real-world conditions. 

 In conclusion, YOLO-TRS exhibits outstanding performance in the joint detection of tomato ripeness 

and stem location, offering an effective technical solution for intelligent fruit harvesting in agricultural 

applications. 
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