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ABSTRACT

During field tomato harvesting, challenges such as stem-leaf occlusion, fruit overlap, and difficulties in stem
localization significantly hinder the performance of harvesting robots. To address these issues, a joint detection
model for fruits and fruit stems, termed YOLO-TRS, is proposed based on the YOLO11n network. First, a novel
C3k2-DS module is designed and integrated into the backbone network, enhancing the model’s ability to
represent complex structural features of fruit stems. In addition, a CAA module is incorporated into the
backbone to improve long-range feature modeling, thereby effectively reducing missed detections of fruits and
fruit stems under occlusion conditions. The proposed model is evaluated using a self-constructed dataset.
Experimental results show that YOLO-TRS achieves precision, recall, and mAP values of 89.9%, 91.5%, and
94.8%, respectively, outperforming the baseline YOLO11n model by 2.3%, 1.0%, and 2.4%. Compared with
other classical object detection algorithms, YOLO-TRS demonstrates clear advantages in both detection
accuracy and computational efficiency. These results confirm that the proposed model can effectively support
fruit ripeness-related detection and accurately localize stem positions in complex field environments, providing
a theoretical basis for intelligent agricultural harvesting.
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INTRODUCTION

Tomato is one of the most economically significant crops in the world. China is a major producer of
both fresh and processed tomatoes. (Li et al., 2021). In contemporary agricultural production, precise detection
of fruit ripeness and stem position are key to realizing intelligent harvesting. The accurate differentiation of
ripeness stages is critical for maintaining fruit quality, minimizing storage costs, and optimizing harvesting
efficiency. Additionally, the accurate detection of the stem position provides precise guidance for the robotic
arms of harvesting machines, effectively avoiding fruit damage during the harvest. (Zhou et al., 2022).

In the field of tomato phenotyping detection, early research primarily relied on traditional computer
vision techniques (Hou et al., 2015). Feng et al., 2015, developed a vision system based on line-structured
light, using color feature extraction in a specific chromatic aberration model to identify red ripe tomatoes. Li et
al., 2021 utilized RGB-D images and improved clustering algorithms to enhance the accuracy and robustness
of overlapping fruit recognition. Goel et al., 2015, developed a vision-based system that achieved fine
classification of tomatoes into six maturity stages using a fuzzy rule-based classification method, with an
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accuracy of up to 94.29%. However, these methods generally depended on handcrafted features, making
them susceptible to background interference in complex natural environments and limiting their generalization
capability. With advancements in technology, deep-learning-based convolutional neural networks (CNNs)
have demonstrated powerful automatic feature-learning capabiliies and have gradually become the
mainstream approach (Kamalesh et al., 2024). Among these, the YOLO series models have been widely
applied in tomato detection tasks due to their excellent balance between speed and accuracy. Within the
YOLOv3 framework, Liu et al., 2020, proposed a multi-scale feature fusion algorithm termed IMS-YOLO,
increasing the detection accuracy to 97.13%. Liu et al. designed the YOLO-Tomato model to cope with
complex environmental conditions (Liu et al., 2020). Subsequently, YOLOv4 was adopted for its stronger
feature extraction capability. Li et al., 2021, combined the HSV color space to improve the correct recognition
rate to 94.77%. Yang et al., 2022, incorporated the CBAM module into backbone network of the YOLOv4-tiny,
enabling accurate tomato ripeness classification with an average precision of 97.9%. Liu et al., 2023, proposed
a tomato ripeness detection method that combines YOLOv4 with ICNet, achieving an average detection
accuracy of 99.31%. YOLOvS5 further optimized both accuracy and speed. Gao et al., 2024, introduced the
CBAM attention module and Soft-NMS, effectively enhancing recognition robustness in complex environments.
He et al., 2022, addressed the challenge of nighttime tomato recognition by improving the loss function.
Recently, research has increasingly focused on model lightweighting and accuracy improvement. For instance,
Ge et al., 2022 incorporated ShuffleNetV2 and BiFPN to compress the model while maintaining performance.
Zhang et al. and Wang et al. utilized attention mechanisms and optimized loss functions, respectively, both
achieving high-precision tomato detection (Zhang et al., 2023; Wang et al., 2023). The research frontier has
now expanded to newer frameworks such as YOLOv8 and YOLO11. Tian et al., 2024, added detection layers
and designed novel modules, constructing a TCAttn-YOLOv8 model that achieved 96.31% mAP. Wu et al. and
Sun et al. innovated on the Neck layer, obtaining excellent comprehensive performance (Wu et al., 2024, Sun
et al.,, 2024). The latest YOLO11 model is also being explored. Wei et al., 2024, successfully constructed a
lightweight and efficient detection model by introducing Ghost modules and feature refinement modules.

Despite these significant advances, current visual recognition systems for intelligent tomato harvesting
face two prominent issues: First, most existing studies focus solely on fruit ripeness detection, lacking joint
detection of both fruit ripeness and stem positions—the latter being critical for achieving efficient automated
harvesting. Second, in complex natural environments, background interference and severe occlusion between
leaves and fruits pose serious challenges to the detection accuracy of small targets like stems and fruits of
specific maturity stages. To address these challenges, this study proposes an innovative lightweight model,
YOLO-TRS, aimed at achieving accurate and robust joint detection of fruit ripeness and stems. The main
contributions of this paper are as follows:

(1) A novel feature extraction module, C3k2-DS, is proposed, in which the standard convolution in the
C3k2 module is replaced with dynamic snake convolution (Qi et al., 2024). Using this module as a core
component, the backbone network of YOLO11n is redesigned, significantly enhancing the model’s ability to
extract complex structural features such as fruit stems.

(2) Building upon the introduction of the C3k2-DS module, the CAA module (Cai et al., 2024) is
integrated into the backbone network, resulting in the development of the novel YOLO-TRS algorithm. The
incorporation of the CAA module further enhances the model’s ability to capture contextual information and
salient features, thereby improving its robustness to complex background interference and its capability to
recognize occluded targets.

MATERIALS AND METHODS
Dataset and preprocessing
Data acquisition

The image dataset employed in the study was collected from the cultivation of a specific university.
The tomato variety used is Provence, and the images were captured using an iPhone smartphone with a
resolution of 4624x4624 pixels. To enhance the diversity of the tomato images, images were captured at
various time intervals between 7:00 AM and 10:00 PM, employing different shooting angles (horizontal and
top-down) and distances (with a direct camera-to-tomato distance varying from 300 to 550 mm). Additionally,
variables such as lighting conditions, shading levels, and fruit quantities were systematically considered. A
total of 1,000 tomato images were acquired. Representative tomato samples from different conditions are
illustrated in Figure 1.
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(b) insufficient (e) dense (f) sparse
lighting distribution distribution
Fig. 1 - Examples of tomato images under different collection conditions

(a) backlight (c) direct sunlight  (d) occlusion

Data annotation and partitioning

The current national standard GH/T1193-2021 categorizes tomato ripeness into six stages based
on color and size: unripe, green-ripe, breaker, pre-red ripe, mid-red ripe, and post-red ripe. The
characteristics of tomatoes at different stages of ripeness are presented in Table 1. To simplify the
classification process and improve training efficiency, tomato ripeness stages were redefined based on
current national standards. Specifically, the unripe and green-ripe stages were merged into a green stage,
the breaker and pre-red ripe stages were combined into a half-ripe stage, and the mid-red ripe and post-
red ripe stages were merged into a red-ripe stage. This resulted in a three-stage ripeness classification
scheme. All experimental data annotations strictly followed this redefined classification standard.

Table 1
Morphological characteristics of tomato fruits with different ripeness
Ripeness level Morphological characteristics
unrioe Fruit and seeds have not yet fully developed and shaped, green pericarp, no luster, ripening
p difficulties

reen-rine Fruit stereotypes, fruit surface has a glossy, from green to white green, the seed has grown,

9 P around the gelatinous, at this time can be artificially ripened, picking and storage
breaker From green ripe to red ripe transition period, the umbilicus around the beginning of yellow or

light red halo spot, fruit with red surface less than 10%

pre-red ripe One to thirty percent red ripe, fruit with red surface 10%-30%

mid-red ripe Forty to sixty percent red ripe, the fruit with red surface 40%-60%

post-red ripe Seventy to ten percent red ripe, fruit with red surface 70%-100%

The dataset was randomly divided into training, validation, and tests set in a ratio of 8:1:1 for
model training. Detailed information of the tomato dataset is provided in Table 2.

Table 2
Experimental dataset and data distribution
Target Box
Set Number of Images
green half red stem

Train 335 631 673 1282 800
Validation 45 74 85 168 100

Test 41 80 84 152 100

Total 421 785 842 1602 1000

Model Introduction
Network Architecture of YOLO11

YOLO11 marks a notable progression in object detection architectures. It introduces the C3k2 module,
which integrates variable kernel convolution and channel separation to capture richer contextual information,
thereby enhancing multi-scale feature extraction. The model also incorporates the C2PSA module to
strengthen spatial correlations in feature maps, improving attention to key regions such as small or occluded
objects. With a reduced parameter size and strong compatibility with edge devices, YOLO11 is well-suited for
deployment on harvesting robots. Among its variants, the lightweight YOLO11n is selected as the baseline in
this study. As illustrated in Figure 2, its architecture mainly comprises three parts: the Backbone, Neck, and
Head.
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Fig. 2 - Model structure diagram of YOLO11

Network Architecture of YOLO-TRS

Figure 3 presents the architecture of the YOLO-TRS. The model enhances detection accuracy and
feature representation through the synergistic integration of DS-Conv and the CAA module. Specifically, DS-
Conv module can dynamically adjust the shape and parameters of convolutional kernels based on the specific
input data, allowing it to better adapt to the complex edges and textures within the image. This capability
significantly enhances its performance in detecting tomato stems in complex backgrounds. The CAA module,
as a lightweight attention mechanism, effectively addresses background interference and occlusion issues,
enhancing the model's performance in detecting tomato fruit ripeness and stems. The synergistic interaction
between these components substantially improves the accuracy and robustness of YOLO-TRS in tomato fruit
ripeness and stem detection, while preserving a relatively low computational overhead.
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Fig. 3 - Model structure diagram of YOLO-TRS

C3k2-DS
The C3k2-DS module is designed by replacing the standard convolution in the C3k2 module with DS-
Conv. Compared to standard convolution, the use of DS-Conv facilitates more effective extraction of features
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with varying geometric shapes. Due to its dynamic mechanism, the convolution kernel could adjust its shape
dynamically to accommodate features from different regions. Consequently, the network can more effectively
extract intricate features, capture irregularly shaped features with greater precision, adapt to input variations,
expand the receptive field, and obtain a broader context. Figure 4 illustrates the difference between DS-Conv
and standard convolution.
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(a) Standard convolution (b) DS-Conv

Fig. 4 - Standard convolution and DS-Conv diagram

The proposed C3k2-DS module, integrated with DS-Conv, possesses a robust capability for extracting
complex features. This enhanced capability provides a solid technical foundation for the accurate detection of
fruit ripeness and stems in complex harvesting environments. The detailed structure of the C3k2-DS module
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(a) the structure of C3k-DS. (b) the structure of C3k2-DS when C3k-DS is set to True. (c) the structure of C3k2-DS when C3k-DS is set
to False.

Fig. 5 - The Structure of C3k2-DS

Context Anchor Attention (CAA)

To address the challenges of occlusion and background interference in complex orchard
environments, the CAA attention mechanism was introduced, effectively mitigating these issues without
significantly increasing the model’s computational cost. The CAA mechanism employs global average pooling
and one-dimensional strip convolutions to capture long-range pixel dependencies while simultaneously
enhancing features in the central region. This design enables the CAA module to more effectively extract
features of slender targets, such as fruit stems, and to reduce feature confusion caused by leaf occlusion or
fruit overlap. The structure of the CAA module is illustrated in Fig. 6.
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Fig. 6 - CAA module

First, local features are extracted through average pooling and 1x1 convolution, as illustrated in
Equation 1.

F pool = COl’lVle (POOlavg (X)) (1 )

Next, vertical and horizontal strip depth convolutions are employed to approximate the conventional
large-kernel depth convolution, as illustrated in Equations (2) and (3).

F" =DWConv,, (FP') (2)
F" =DWConv, ,(F") (3)

The kp parameter is configured as 11 + 2x1, which allows the strip convolution to acquire a sufficiently
large receptive field for capturing strip-like structures, thus enhancing the feature extraction capability for
elongated objects. This approach effectively reduces computational complexity while yielding performance
comparable to that of standard large-kernel depth convolutions.

Ultimately, attention weights are computed via a 1x1 convolutional, followed by a Sigmoid activation
function. The CAA operation is then executed by element-wise multiplication of the attention weights with the
input features, as formalized in Equation (4)

Y = X xSigmoid(Conv,,, (F")) (4)

Model training
Experimental Environment and Parameter Settings

The performance and training efficiency of deep learning models are significantly influenced by
configurations of hardware and the selection of hyperparameters. The appropriate choice of GPUs and CPUs
plays a critical role in enhancing training efficiency. Regarding hyperparameters, settings including batch size,
learning rate, epochs, and optimizer choice exert a considerable influence on model performance and
generalization capability. This study was performed on a Windows 11 operating system with the PyTorch 2.0
development environment. Error! Reference source not found. and Table 4 provide a detailed overview of
the model training environment and key parameter configurations.

Table 3
Model training environment
Environment Details
GPU NVIDIA GeForce RTX 4060Ti
CPU Inter(R) Core i5-10200H@2.4GHz
Python Python 3.8
CUDA 11.8
CuDNN 8.9.7
Table 4
Model training hyperparameters
Hyperparameters Details
Epochs 350
Image Size 640%640
Batch Size 32
Optimizer SGD
Initial learning rate 0.01

Model Evaluation Metrics

1136



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

To evaluate the model's performance comprehensively, this study adopts a set of widely recognized
metrics, including Precision (P), Recall (R), F1 score, mean Average Precision (mAP), gigaflops per second
(GFLOPs), and the number of Parameters (Params).

p_ TP 5)
TP+FP
TP
R=— (6)
TP+FN

where:

TP refers to the number of actual targets correctly identified and detected by the model. FP denotes
the number of instances where the model incorrectly classifies a background or non-target region as a target.
FN indicates the number of actual targets that the model fails to detect.

F1=2x PR
Pt

(7)
where:

F1 is calculated as the harmonic mean of precision and recall, offering a comprehensive evaluation of
the model’s overall performance.

1
AP = j Prdr (8)

where:

P-R curve visually illustrates the trade-off between precision and recall at different decision thresholds.
Typically, R is plotted on the x-axis and P on the y-axis. The closer the P-R curve is to the top-right corner, the
better the model's performance in balancing precision and recall. The AP is determined by calculating the area
under the curve for a given class, reflecting the model's ability to correctly identify the class across different
confidence thresholds.

mAP = iAB (9)

=1

1
N

where:

AP; is the average precision for the i-th class, and N denotes the total number of classes. The mAP is
obtained by calculating the arithmetic mean of the AP values across all categories, reflecting the overall
performance of the model.
2><Houl XVVout Xf(OhQXKwXCM Xcout (10)

Params = (K, xK ,xC,, +1)xC,, (1)

GFLOPs =

where:
H,, and H,,, are the output feature map sizes. K, K,, are the convolution kernel sizes. Ci,, C, are the
number of input and output channels.

Experimental results and discussion
Design of the backbone network based on C3k2-DS

In this study, the C3k2 module in the original backbone network was replaced with the proposed
C3k2-DS module. To explore the impact of its placement and quantity, comparative experiments were
conducted with different configurations (as shown in Figure 7). As summarized in Table 5, the YOLO11-
DS1 model—incorporating a single C3k2-DS module—achieved the highest detection accuracy.
Compared to the baseline YOLO11, it improved the F1 score and mAP by 0.9% and 2.6%, respectively.
This gain can be attributed to the dynamic snake convolution (DS-Conv), which adaptively adjusts the
convolutional kernel shape based on input features, thereby enhancing the model's capacity to capture
complex morphological traits of stems as well as texture and color characteristics of half-ripe fruits.

As the number of C3k2-DS modules increased, model accuracy began to fluctuate. For instance,
when all four C3k2 modules were replaced (YOLO11-DS4), performance dropped relative to YOLO11-
DS1. This decline is likely due to the increased model complexity and longer information pathways, where
the structural nature of DS-Conv may impede efficient learning and retention of deep features.
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Nevertheless, even YOLO11-DS4 still outperformed the baseline, with F1 and mAP rising by 0.8% and
0.6%, respectively, confirming the consistent benefit of integrating DS-Conv into the YOLO11 framework
for tomato fruit and stem detection. Ultimately, this study selected YOLO11-DS1 as the new backbone
network.

Table 5
Comparative results for different configurations of the backbone network
Model F1/% P/% R/% mAP/% GFLOPs Param/M

YOLO11 89.0 87.6 90.5 92.4 6.3 2.58
YOLO11-DSA1 89.9 87.3 92.7 94.0 6.4 272
YOLO11-DS2 89.6 88.9 90.3 93.0 6.5 2.75
YOLO11-DS3 89.9 90.1 89.7 92.6 6.6 2,77
YOLO11-DS4 89.8 90.5 89.1 93.0 6.7 2,77

C3k2 C3k2 C3k2 C3k2-DS

C3k2 C3k2 C3k2-DS C3k2-DS

C3k2 C3k2-DS C3k2-DS C3k2-DS

C3k2-DS C3k2-DS C3k2-DS C3k2-DS

(a) (b) (©) (d)

(a) One C3k2-DS structure, i.e., YOLO11-DS1, (b) Two C3k2-DS structure, i.e., YOLO11-DS2, (c) Three C3k2-DS structure, i.e.,
YOLO11-DS3, (d) Four C3k2-DS structure, i.e., YOLO11-DS4.
Fig. 7 - Different replacements of C3k2 in the backbone network

Experimental analysis of optimal placement of the CAA attention mechanism

The application of the CAA module can further enhance the performance of the YOLO11-DS1
algorithm, but its specific effect depends on the position of application and the specific requirements of the
task. Therefore, this study conducted experiments by sequentially adding the CAA module to each layer of the
backbone in the YOLO11-DS1 model. Table 6 presents the experimental results, where the numbers at the
end of the model names indicate the layer number of the CAA module (with numbering starting from 0). It could
be observed that the model’'s overall performance shows notable sensitivity to the variation in the position of
the CAA. As the placement of the CAA module shifts from shallow to deep layers, the model's performance
exhibits certain fluctuations. Specifically, the AP for the red and green categories shows a relatively low
sensitivity to changes in the CAA position. In contrast, the AP for the half and stem categories demonstrates
higher sensitivity to changes in the CAA position. This is likely due to the relatively stable appearance of the
red and green fruits, whose features are simple and exhibit minimal shape variation across different layers. As
a result, the change in CAA position has a limited impact on their detection precision. In contrast, the
appearance features of semi-ripe fruits and stems are more complex and ambiguous, making them more
susceptible to positional changes, leading to more significant fluctuations in AP values.

Furthermore, when the CAA module is applied to the 7th layer, the model's detection performance
reaches its optimal level, with a mAP of 94.8% and an F1 score of 90.7%. The AP for the half and stem
categories reaches 95.8% and 88.2%, respectively. The incorporation of the CAA module significantly
improves the model's robustness in handling object detection tasks in complex backgrounds, making it more
suitable for fruit ripeness and stem detection tasks in intricate environments. Based on the above analysis, the
seventh layer of the backbone network was selected as the insertion point for incorporating the CAA module.

Table 6
Comparative results for different configurations of the CAA positions
AP/%
F1/ o o mAP
Model % PI% RI% 1% GFLOPs Param/M Red Half Gree Ste
n m
YOLO11-DS1 89.9 873 927 94.0 6.4 272 97.0 93.5 98.7 86.9
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YOLO11-DS1-CAA-4  87.8 90.6 85.1 93.6 6.5 2.73 97.2 96.3 98.5 823
YOLO11-DS1-CAA-5 89.9 894 904 92.9 6.5 2.76 96.5 93.3 98.6 83.3
YOLO11-DS1-CAA-6  89.9 88.7 91.2 93.0 6.5 2.76 97.0 93.1 984 83.6
YOLO11-DS1-CAA-7  90.7 89.9 915 94.8 6.5 2.76 96.3 95.8 98.9 88.2
YOLO11-DS1-CAA-8 86.3 89.6 89.0 92.2 6.5 2.86 96.7 90.6 97.9 834
YOLO11-DS1-CAA-9  90.2 884 921 94.0 6.5 2.86 96.6 93.8 984 874
YOLO11-DS1-CAA-10 89.7 88.8 90.7 92.5 6.5 2.86 96.6 92.0 97.8 83.6
YOLO11-DS1-CAA-11 889 87.1 90.8 92.7 6.5 2.86 96.8 91.9 98.3 83.6

Ablation experiments
Ablation experiments between different improvement methods

In this study, ablation experiments were conducted to evaluate the effectiveness of each improvement
method. Specifically, the C3k2 module in the 9th layer was substituted with the C3k2-DS module, and the CAA
module was added to the 7th layer of the backbone network. These two modifications were integrated into the
original network model separately or in combination. The experimental results are presented in Error!
Reference source not found..

The introduction of the C3k2-DS module results in notable improvements in both the F1 score and
mAP with only a slight increase in parameters and GFLOPs. In terms of individual categories, the C3k2-DS
module significantly improves the model’'s detection performance for the stem and half-ripe tomatoes, with the
AP value for stem increasing from 84.8% to 86.9%, and the AP value for half-ripe tomatoes increasing from
90.8% to 93.5%. The recognition accuracy of these two categories is particularly critical, as they are key
bottlenecks that significantly limit the model's performance in practical applications. Furthermore, the
incorporation of the CAA results in 1.1%, 0.4%, and 0.7% improvement in P, R, and mAP, respectively. While
the inclusion of the CAA slightly increases the model's complexity, it significantly enhances its detection
performance. Finally, when the C3k2-DS is combined with the CAA, the model's P, R, and mAP improve by
2.3%, 1.0%, and 2.4%, respectively. The AP of the half-ripe tomatoes and the stems, which were difficult to
detect by the original YOLO11 model, increased by 5% and 3.4%, reaching 95.8% and 88.2%, respectively.

Table 7
Results of ablation experiments.
2 can BV P ree MOP' GFLOPs  Paramm ——— T T
x x 89.0 876 905 924 6.3 2.58 95.5 90.8 98.4 84.8
\/ x 89.9 873 927 940 6.4 272 97.0 93.5 98.7 86.9
x V 89.8 88.7 90.9 931 6.4 2.62 96.2 92.1 98.2 85.7
\ V 90.7 899 915 9438 6.5 2.76 96.3 95.8 98.9 88.2

To further analyze the impact of the CAA module, heatmaps at the CAA feature layer were generated.
These heatmaps were then compared with those produced by the baseline model at the same feature layer.
The results are presented in Figure 8. Each pixel in the heatmap corresponds to the activation level at the
respective spatial location. Brighter regions, reflecting higher activation values, indicate a higher probability of
the target’s presence at those locations. It could be observed that after incorporating the CAA module, the
heatmap shows a notable concentration in areas associated with tomatoes. This highlights the CAA module’s
effectiveness in refining the model’s feature representation of tomatoes, enabling a more precise focus on the
tomato fruit region, thereby enhancing detection accuracy.

16 -
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(b) (©)

(a) Original images. (b) Results without the incorporation of the CAA module. (c) Results with the incorporation of the CAA module.
Fig. 8 - Heatmaps of the CAA module ablation experiment

Ablation experiments of different attention methods

To identify the most effective attention mechanism for the proposed model, three attention modules—
Coordinate Attention (CA) (Hou et al., 2021), Efficient Multi-Scale Attention (EMA) (Ouyang et al., 2023), and
the proposed CAA—were comparatively evaluated in combination with both the standard C3k2 module and
the enhanced C3k2-DS module. The experimental results are summarized in Table 8. When integrated with
the standard C3k2 module, all three attention mechanisms improved model performance, though to varying
degrees. The CAA module achieved the most balanced and significant gains in precision (P) and recall (R),
along with a moderate improvement in mAP. In contrast, the CA module yielded the highest mAP among
attention-enhanced variants but the lowest gains in P and R. After incorporating the C3k2-DS module, the
model equipped with CAA achieved the best overall performance, attaining the highest F1-score and mAP
among all configurations. These results validate that the CAA module provides more consistent and effective
enhancement compared to CA and EMA, particularly when combined with structural feature extraction
improvements.

Table 8
Results of ablation experiments with different attention methods.

Model F1% Pl% R% mAPI% GFLOPs ParamM —————“P% —
C3k2 89.0 876 90.5 92.4 6.3 2.58 95.5 90.8 98.4 84.8
C3k2-DS 899 873 927 94.0 6.4 2.72 97.0 93.5 98.7 86.9
C3k2+CA 891 879 904 93.5 6.3 2.59 98.0 94.3 97.6 84.3
C3k2+EMA 894 885 904 93.0 6.4 2.59 97.0 93.9 98.5 82.5
C3k2+CAA 89.8 88.7 90.9 93.1 6.4 2.62 96.2 92.1 98.2 85.7
C3k2-DS+CA 90.1 90.3 89.8 93.8 6.4 272 96.6 93.2 98.1 87.2
C3k2-DS+EMA 88.7 886 8838 92.5 6.4 272 96.1 93.8 97.3 83.0
C3k2-DS+CAA 90.7 899 915 94.8 6.5 2.76 96.3 95.8 98.9 88.2

To identify the optimal convolutional enhancement strategy, the standard convolution in the bottleneck
of the C3k2 module was replaced with three alternatives: DS-Conv, Dynamic Convolution (DNC) (Chen et al.,
2020), and Deformable Convolutional Networks v2 (DCNV2). Each variant was evaluated both with and without
integration of the CAA module. The results are presented in Table 9. In the absence of the CAA module, the
model equipped with DS-Conv achieved superior performance in both F1-score and mAP compared to those
using DNC or DCNV2. After incorporating the CAA attention mechanism, the DS-Conv-based model continued
to outperform all other configurations, attaining the highest F1-score (90.7%) and mAP (94.8%). These results
demonstrate that DS-Conv provides more effective feature representation enhancement compared to current
mainstream convolutional methods, making it the most suitable choice for improving detection performance in
our task.

Table 9
Results of ablation experiments with different convolution methods
AP/%
0, 0, 0, 0,
Model F1/% Pl% R/% mAP/% GFLOPs Param/M Red Half Green Stemn
DS 89.9 87.3 927 94.0 6.4 2.72 97 93.5 98.7 86.9
DNC 88.1 86.2 90.1 92.3 6.3 2.81 96.0 90.6 98.0 84.7
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DCNV2 88.9 894 884 92.3 6.3 2.63 95.2 89.8 98.1 85.9
DS+CAA 90.7 899 915 94.8 6.5 2.76 96.3 95.8 98.9 88.2
DNC+CAA 89.7 89.7 89.7 93.6 6.4 2.84 96.7 93.9 98.5 85.3
DCNV2+CAA  89.2 89.1 893 92.6 6.4 2.67 97.3 89.7 97.7 85.9

Comparative experiments with current mainstream models.

To evaluate the performance of the proposed YOLO-TRS model, comparative experiments were
conducted against several current mainstream detection models under identical datasets and parameter
settings. As summarized in Table 10, YOLO-TRS achieves the highest scores in mAP, precision, recall, and
F1-score among all compared methods. This performance gain can be attributed to the enhanced capability
of DS-Conv in extracting complex structural features, along with the CAA module’s effectiveness in capturing
rich contextual information. Together, these components enable the model to effectively handle challenges
such as severe occlusion and background interference. Despite the performance improvements, YOLO-TRS
maintains a moderate increase in parameter count, preserving real-time inference capability while achieving
high detection accuracy. As illustrated in the P-R and mAP curves in Figure 9, YOLO-TRS consistently
occupies the top position across evaluation metrics, further validating its overall superiority.

Table 10
Results of comparative experiments with current mainstream models.

Model F1/% Pl% R/% mAP/% GFLOPs Param/M Red Half AP/B/Goreen Stem
YOLOv5n 89.3 88.4 90.3 93.7 71 2.50 96.4 93.8 97.6 86.8
YOLOv8n 88.5 87.3 89.8 92.1 8.1 3.01 95.7 91.0 98.4 83.3
YOLOv10n 87.9 86.8 89.1 91.5 8.2 2.70 94.6 92.0 97.6 82.0
YOLO11n 89.0 87.6 90.5 92.4 6.3 2.58 95.5 90.8 98.4 84.8
YOLOv12n 88.8 88.1 89.6 93.0 5.8 2.51 97.1 91.0 98.3 85.6

YOLO-TRS (ours)  90.7 89.9 91.5 94.8 6.5 2.76 96.3 95.8 98.9 88.2
Precision-Recall Curve MAP@0.5
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Fig. 9 - P-R curves and mAP curves for different models

Analysis of Visual Results

To intuitively evaluate the detection performance of YOLO-TRS, experiments were conducted on the
test sets, and the visual results were compared with those of several mainstream models. Figure 10 shows
the comparative results in typical ripe tomato scenes during harvesting robot operation. The results indicate
that, except for YOLO-TRS, all other models exhibit issues such as missed detections or inaccurate localization
of tomato stems under occlusion and blur. Specifically, both YOLOv8n and YOLOv10n failed to detect all
tomato stems, while YOLOv5n and YOLO11n detected all stems but with relatively low confidence. In contrast,
our proposed YOLO-TRS not only accurately detects all tomato stems but also maintains higher confidence
levels, demonstrating superior performance in stem detection among popular lightweight models.
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(d) YOLOv8n (e) YOLOv10n (HlYOLO11n
Fig. 10 - Detection results of different models in ripe tomato fruit and stems scenes

Figure 11 presents a detection scenario containing half-ripe, green, and red tomatoes. In the
challenging task of identifying half-ripe tomatoes, YOLOv8n, YOLOv10n, and YOLO11n all produced false
detections by misclassifying half-ripe tomatoes as red. Such errors could lead to the premature harvesting of
half-ripe fruit, resulting in potential waste. Although YOLOv5n correctly recognized half-ripe tomatoes, its
confidence was lower than that of YOLO-TRS. These results confirm the superior performance of YOLO-TRS
in tomato ripeness detection. It is also noted that in this set of results, none of the models successfully detected
stems on green tomatoes, which may be attributed to their smaller size and color similarity to the fruit. Overall,
the above analysis validates that YOLO-TRS achieves accurate detection in both ripeness classification and
stem localization.

(d) YOLOV8n (€) YOLOV10n (f) YOLO11n
Fig. 11 - Detection results of different models in various ripe tomato fruit and stems scenes.

Conclusions

This study proposes YOLO-TRS, an enhanced model based on YOLO11n, specifically designed for
joint detection of tomato ripeness and stem position. With its compact architecture, the model is well-suited for
deployment on resource-constrained harvesting robots, achieving short inference times while improving
detection accuracy, thereby contributing to higher harvesting efficiency. The proposed improvements include
a novel backbone architecture built around the C3k2-DS module, which significantly enhances the model's
ability to capture complex structural features with only a minimal increase in parameters. Furthermore, the
integration of the CAA module strengthens the model's focus on foreground objects and its contextual
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understanding, enabling more reliable identification of tomatoes at different maturity stages and stems in
complex field environments.

Experimental results demonstrate that YOLO-TRS outperforms several current mainstream lightweight
models, achieving an F1-score of 90.7% and a mAP of 94.8%, while maintaining a compact model size (2.76
M parameters) and low computational cost (6.5 GFLOPs). Compared to YOLOv5n, YOLOv8n, YOLOv10n,
YOLO11n, and YOLOv12n, YOLO-TRS improves F1-score by 1.4%, 2.2%, 2.8%, 1.7%, and 1.9%, and
increases mAP by 1.1%, 2.7%, 3.3%, 2.4%, and 1.8%, respectively. Visualization results further validate the
model's superior accuracy in detecting both tomato ripeness and stem positions under real-world conditions.

In conclusion, YOLO-TRS exhibits outstanding performance in the joint detection of tomato ripeness
and stem location, offering an effective technical solution for intelligent fruit harvesting in agricultural
applications.
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