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ABSTRACT

With the acceleration of high-performance, green, and intelligent agricultural equipment, premature wear and
failure of agricultural machinery tools became a key bottleneck that restricted the high-quality development of
agricultural machinery and equipment. Digital twin technology provided innovative theoretical and technical
support, which enabled the accurate prediction and evaluation of the wear performance of agricultural
machinery tools under dynamic and complex working conditions. This paper explained the key elements of
digital twin technology and summarized the development history of tool wear research, categorizing it into
three stages: physical experiment-driven, numerical simulation, and digital twin integration. Additionally, it
highlighted the progress made in agricultural machinery tools based on digital twin technology, particularly in
data acquisition, modeling, and data-driven approaches. The paper also introduced a case study of a self-
developed agricultural machinery tool wear performance test machine. However, it addressed the key
challenges faced in the application of digital twin technology for monitoring agricultural machinery tool wear,
including difficulties in data perception and fusion, insufficient accuracy in multi-physical field modeling, and
inadequate real-time performance. Future research focused on developing accurate multi-physics field
coupling models, optimizing data processing mechanisms, and creating intelligent analysis frameworks.
Additionally, it aimed to promote low-cost and efficient digital twin solutions to enhance the intelligence level
and feasibility of agricultural machinery tool wear monitoring.
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INTRODUCTION

As the core guarantee for sustainable social development, agricultural production faced the dual
pressures of population growth and resource constraints. It urgently needed to achieve a coordinated
improvement in efficiency and ecological benefits through technological innovation. The fourth industrial
revolution, characterized by the deep integration of multi-source information technology, gave rise to the third
agricultural green revolution—the agricultural digital revolution (Alcacer and Cruz-Machado, 2019; Wagner et
al., 2017). This transformation promoted the evolution of agricultural production systems towards networking,
digitization, and intelligence (He et al., 2021; Upadhyay et al., 2025). As the core component of agricultural
machinery equipment, the performance of agricultural machinery tools directly affects agricultural production
efficiency and cost.
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Increased energy consumption and downtime losses due to tool wear accounted for over 40% of the
total costs associated with the operation and maintenance of agricultural machinery. This significantly
restricted the sustainable development of agriculture. At that time, tool wear management still relied on manual
experience and judgment or regular mandatory replacement strategies. This approach led to issues such as
conservative tool change cycles, which resulted in insufficient utilization of the tool's residual value, and a lack
of system-level correlation analysis between operating environment parameters, tool conditions, and wear
mechanisms (Mohanraj et al., 2020). Through the dynamic interaction between physical entities and virtual
models, digital twins provided a full life cycle solution of "real-time perception, mechanism modeling, prediction
optimization" for tool wear monitoring (Singh et al., 2021). Successful applications in aerospace, water
conservancy, hydropower, and other industrial fields demonstrated that digital twin technology provided
innovative solutions for tool wear monitoring under complex agricultural working conditions (Madhni et al., 2019;
Pylianidis et al., 2021; Soori et al., 2023a; Tao et al., 2022).

This paper discussed the current status and challenges of digital twin technology in the research of
agricultural machinery tool wear. It introduced the key technologies of digital twin and its development history
in the field of tool wear. The development covered three stages: physical experiment drive, numerical
simulation, and digital twin integration. This paper summarized the progress of agricultural machinery tool wear
data collection, modeling, and data-driven approaches based on digital twins. It also introduced the case of
the self-developed agricultural machinery tool wear performance test machine. The challenges faced by digital
twins in the application of agricultural machinery tool wear monitoring were discussed. Additionally, future
research directions were proposed to provide a reference for the intelligent and practical application of
agricultural machinery tool wear monitoring.

KEY TECHNOLOGIES OF DIGITAL TWIN

Digital twin technology achieved the digital reconstruction of the entire life cycle of the manufacturing
system (Tao et al., 2022). It did this by constructing a dynamic interactive closed loop between physical entities
and virtual space. The core technology revolved around a three-stage system of “Perception-Modeling-
Decision”. The bottom layer relied on a multimodal sensor network (such as vibration, temperature, and
acoustic emission sensors) to capture the operating status of physical equipment in real time and built a
millisecond-level data channel. The middle platform transformed discrete monitoring data into high-fidelity
virtual images based on the fusion modeling technology of deep neural networks and physical mechanisms
(Lietal., 2025b). The upper layer realized bidirectional synchronous optimization of virtual models and physical
devices through adaptive evolutionary algorithms, forming an intelligent decision-making chain based on data-
driven prediction and dynamic feedback control (Liu et al., 2023b; Su et al., 2024, Wu et al., 2021). The
technical framework broke through the limitations of traditional static simulation and single-threaded analysis
(Petri et al., 2025). The framework provided collaborative solutions for real-time state mapping, anomaly
tracing, and life prediction in industrial scenarios such as tool wear monitoring (Li et al., 2025a). The framework
became the core technical foundation for the transformation of intelligent manufacturing from experience-
driven to data-driven (Leng et al., 2024, Tao et al., 2020).

1. Multi- domain and multi-scale fusion modeling

Multi-domain and multi-scale fusion modeling served as the core underlying technology of the digital
twin system. By integrating materials, machinery, algorithms, and other multi-domain disciplines while coupling
with multi-dimensional parameters, researchers constructed a high-fidelity, full life cycle virtual mapping model.
This model provided theoretical support for the dynamic prediction and optimization of agricultural machinery
tool wear (Lin et al., 2026; Liu et al., 2025, Peng et al., 2025). Multi-domain fusion modeling emphasized the
deep integration of interdisciplinary mechanisms during the conceptual design stage. Researchers built an
integrated mathematical model that covered both normal working conditions and extreme loads by combining
multi-disciplinary theories such as mechanical dynamics, material science, and tribology (Jia et al., 2022). This
approach facilitated a more comprehensive understanding of the system's behavior under various conditions.
Current research mostly adopted the method of independent modeling in different fields along with data
splicing (Liu et al., 2023a). However, researchers encountered difficulties in eliminating the systematic errors
caused by the mismatch of boundary conditions between models, especially when addressing high-
dimensional nonlinear differential equations, which faced the dual constraints of computational efficiency and
accuracy (Vered and Elliott, 2023). Multi-scale modeling broke through the limitations of traditional one-
dimensional simulation.
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By utilizing the micro-macro cross-scale parameter transfer mechanism, researchers coupled and
analyzed processes such as microscopic material phase changes, tool surface friction and wear, and overall
machine operating efficiency (Kumar et al., 2024).

2. Data driven and physical model integration

In the digital representation of agricultural machinery tool wear, the dynamic characteristics of the
complex system made it difficult for traditional analytical models to independently achieve high-precision state
assessment. Therefore, the deep integration of data-driven models and physical models became a key
technical direction in the field of digital twins. In the field of tool wear monitoring, traditional physical models
were constrained by the complexity of nonlinear mechanisms such as cutting thermal-mechanical coupling
and material phase change (Ko et al., 2015; Nouri et al., 2015). These constraints made it difficult to achieve
accurate state inversion. Current integration strategies primarily presented two methods. A parameter adaptive
correction method based on the physical equation framework (Hao et al., 2017) was used to achieve dynamic
calibration of the cutting force model through algorithms such as Kalman filtering (Dashan et al., 2024, Totis
et al., 2020). Based on the hybrid decision-making architecture of Dempster-Shafer evidence theory (Fan et
al., 2025), the frequency domain characteristics of the vibration signal and the output of the tool wear
mechanism model were fused with confidence (Kang et al., 2020). The above methods improved the reliability
of evaluation under normal working conditions, but there was still a problem of low accuracy between data and
wear mechanism when dealing with sudden failures such as tool coating peeling.

The difficulty of the data stemmed from challenges in establishing the multi-scale relationship between
multi-source heterogeneous data and the mechanism model. Additionally, there was a low dynamic correlation
between wear data and process parameters throughout the life cycle. Furthermore, pure data-driven methods
lacked the ability to characterize the tool microstructure evolution mechanism. Sun et al. ( 2018) adopted the
approach of monitoring first and then predicting. They used a backpropagation neural network to monitor tool
wear values, taking cutting parameters such as spindle speed, feed speed, and cutting depth as inputs to the
monitoring model. This approach enabled the real-time acquisition of tool wear values under complex working
conditions and facilitated the prediction of remaining tool life (Soori and Arezoo, 2022). The development in
this direction urgently required the establishment of a dual-wheel drive system that combined mechanism
verification and data iteration. This system aimed to ultimately form an intelligent evaluation paradigm with
physical interpretability. The construction of a distributed wear knowledge graph under the federated learning
framework supported this goal.

3. Data collection and transmission

Data collection and transmission served as the core link in the construction of the digital twin system,
performing the fundamental function of mapping the state of the physical world to the virtual space (Tao et al.,
2022). In the field of agricultural machinery tool wear monitoring, a multi-dimensional data perception network
was established to capture dynamic physical field information during the tool-crop (soil) interaction process.
This was achieved through the distributed deployment of multimodal sensors, including temperature, pressure,
and vibration sensors (Qu et al., 2024, Soori et al., 2023b). Sensor selection needed to meet three-dimensional
requirements for accurately reconstructing the contact stress field in the spatial dimension. It also aimed to
ensure the continuity of capturing the dynamic evolution characteristics of the agricultural machinery tool's
working process in the temporal dimension. Furthermore, it was essential to guarantee the measurement
accuracy of the wear characterization parameters in the quantitative dimension. The data collection and
transmission system constituted the perceptual neural network of the digital twin system, and its performance
directly determined the fidelity of the virtual mirror and the update time (Vianello et al., 2023). In the tool wear
monitoring scenario, a multimodal heterogeneous sensing network needed to be constructed. The network
was designed to work with microelectromechanical system (MEMS) vibration sensors to capture cutting chatter
signals, infrared thermography to track the temperature field evolution of the tool tip with resolution, and
acoustic emission devices to resolve stress waves and reveal the microscopic wear state. The sensing network
topology adopted a star-tree composite architecture, and time synchronization was achieved through the Time
Sensitive Network (TSN) protocol to ensure the temporal and spatial alignment of multi-source data. Arshad
used temperature and humidity sensors to measure environmental data and utilized the Thing Speak cloud
platform for data transfer. The sensors in the greenhouse uploaded the collected data to the Thing Speak
cloud. The system obtained the required temperature and humidity data from the Thing Speak API via HTTP
GET requests, and the data was returned in JSON format for feedback and visualization.
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At present, there were still difficulties in data collection and transmission, including distortion of feature
extraction caused by signal aliasing under high-speed cutting conditions. Additionally, data loss occurred due
to interference from electromagnetic and other environmental factors at industrial sites.

4. Full lifecycle data management

Full lifecycle data management was the key foundation of the digital twin, with the goal of realizing
efficient data governance and value transformation (Cooper et al., 2013; Jang et al., 2023; Sun et al., 2025).
In whole lifecycle data management for tool wear monitoring in agricultural machinery, data collection and
analysis were critical for improving tool performance and extending service life. It mainly included data from
several stages. Design stage data encompassed base material and coating composition, hardness, thickness,
and design parameters of the tool. Production stage data included process flow, process parameters, and
quality inspection data related to tool production. Wear stage data involved environmental data such as soil
type, humidity, and temperature; work parameters such as operation time, operation speed, and depth; and
wear monitoring data including wear amount and wear location. Maintenance and replacement data recorded
maintenance activities and tool replacements. Failure and fault analysis data encompassed analyses of
failures and faults. Economic cost analysis data detailed the costs associated with tool use and maintenance.
Finally, multi-source data fusion and visualization data integrated and visualized information from various
sources. For the whole lifecycle data of complex systems like agricultural machinery tool wear, a distributed
management architecture based on cloud servers was commonly adopted. This architecture ensured high-
speed read/write capability of the data through a multi-node cooperative mechanism and provided data security
by combining incremental backup with an off-site disaster recovery strategy. This architecture not only provided
a highly reliable data source for intelligent parsing algorithms, but also supported key functions such as
historical state tracing and the reconstruction of tool wear degradation trajectories.

5. Virtual Systems

The virtual system construction technology served as the cognitive interface of the digital twin system,
focusing on the establishment of a hyper-reality mapping mechanism for the multidimensional data-physical-
cognitive space (Bevilacqua et al., 2020; Zheng et al., 2024). In the tool wear scenario, multi-physics field
coupling modeling technology was utilized to achieve the visualization of the tool wear process. At the overall
level, the dynamic process of tool wear during cutting was simulated through granular digital simulation. Using
material deformation microscopic modeling, the reasons for the subtle wear of the cutting edge were analyzed.
Additionally, down to the atomic level, the entire process of gradual atom exfoliation from the raw material
surface was examined. The real-time rendering engine integrated ray tracing and a physics rule engine to
visualize the prediction of the tool's remaining life in the virtual scene constructed on the platform (Scheifele et
al., 2019).

EVOLUTION OF TOOL WEAR RESEARCH TECHNOLOGY

Tool status was a key factor affecting processing quality and production efficiency. Wear and damage
were the primary failure modes of tools. Tool wear or damage not only affected the surface quality and
machining accuracy of the workpiece but also led to serious consequences, such as workpiece scrapping and
machine downtime, posing a threat to the safe operation of the entire machining system. Research by
KENNAMETAL (Shahabi and Ratnam, 2009), an American company, showed that tool monitoring systems
improved the utilization of the tools. Additionally, they prevented workpiece scrapping and machine tool failures
caused by tool failure, leading to cost savings of up to 30%. Therefore, monitoring tool wear status was of
great significance for improving product quality, reducing production costs, and enhancing production
efficiency.

Traditional tool wear monitoring mainly relied on manual observation by experienced technicians or on
regular tool replacement to ensure the normal operation of machine tool cutting processes. Its method required
a high level of experience from personnel and demonstrated low efficiency. Additionally, replacing the tool too
early or too late resulted in resource waste and reduced processing quality. With the development of intelligent
manufacturing, the requirements for tool remaining life prediction technology became increasingly stringent to
ensure processing quality and production safety, thereby improving production efficiency and reducing overall
production costs (Sayyad et al., 2021). Digital twin technology, as an advanced tool, monitored and diagnosed
tool wear and breakage in real time, accurately predicting the remaining life of the tool (Wong et al., 2020;
Zhou and Xue, 2018). Digital twin technology dynamically managed tool status information, ensured trouble-
free operation of machine tools, and promoted the advancement of intelligent manufacturing to a higher level.
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1. Early stages: wear modeling based on physical experiments

The remaining life prediction method based on the wear degradation model established a functional
relationship between tool wear and cutting time, cutting length, or cumulative material removal (Wang et al.,
2016). On this basis, the remaining life of the tool was predicted based on the tool blunting threshold and the
current tool wear. Deng et al. (2020) proposed an analytical model of tool wear from the perspective of
adhesive wear. They established the physical relationship between tool volume wear and the normal pressure
in the cutting area, cutting length, and tool material hardness. This model primarily focused on a single wear
mechanism and did not account for the combined effects of different wear mechanisms. This limitation resulted
in insufficient universality of the model when adapting to complex cutting conditions, making it challenging to
apply to all machining scenarios. Rabinowicz et al. (1961) established an expression for the tool wear volume
rate in relation to cutting parameters from the perspective of abrasive wear. Tool wear degradation was not
caused by a single wear mechanism, but resulted from the interaction of multiple wear mechanisms. Paimai
et al. (2013) comprehensively considered the mechanisms of abrasive wear, adhesive wear, and frictional heat
generation. By analyzing the geometric characteristics of the tool and the physical wear mechanisms, they
established a prediction model for the change in the wear band width of the tool flank as a function of cutting
time. As the model became more complex, obtaining and calibrating parameters became increasingly difficult,
which might have led to a decline in the model's predictive capability. In addition, the model may have faced
issues of insufficient data and uncertainty in practical applications. Zhang et al. (2021) proposed a general tool
wear model containing four parameters, as in (1). The model combined the logarithmic function and the power
function, considering the characteristics of tool wear at different stages. It enhanced adaptability to various
milling conditions and introduced a variable index x to better reflect the changing trend of tool wear over time.
Although the model enhanced adaptability to different milling conditions, it still might not have fully captured
the individual differences under various wear environments, particularly in terms of wear behavior with special
materials or complex machining conditions.

w(t)=AIn(Bt+1)+Ct* (x>1) (1)
Where:
w(t): the functional relationship between tool wear and time #, 4 (um): the fitting coefficient; B (min~"):

the fitting coefficient; C (um/minX): the fitting coefficient; x (x > 1) : the variable indexMulti-domain.

2. Middle stage: numerical simulation and sensor technology

With the rapid development of finite element simulation technology, tool wear prediction based on
numerical simulation became an important means of optimizing process parameters and extending tool life
(Wang et al., 2021). Additionally, simulation technology addressed the issues of individual differences and
randomness present in physical experimental wear modeling. Researchers explored the complex mechanisms
of tool wear using various modeling methods. Yen et al. (2004) utilized the commercial software DEFORM in
conjunction with Usui's adhesive wear model to predict the wear on the front and rear cutting edges of the tool
during orthogonal cutting. The model performs well under specific conditions; however, its focus on a single
wear mechanism limits the universality of its predictions. Xie et al. (2005) established a tool wear prediction
system using ABAQUS software, focusing on the wear of carbide tools. Although they achieved relatively good
results, the prediction values still showed a significant discrepancy from the experimental values due to the
overly simplified friction mechanism in the model. This indicates that relying solely on a single model may not
accurately reflect the actual wear situation under complex cutting conditions. Cappellini et al. (2022)
established a wear model for PCBN tools during the turning of AISI 52100 steel. The model dynamically
updated the tool geometry based on the wear rate function, and the simulation results aligned well with the
experimental findings. Liu et al. (2020) developed a new tool wear model for titanium alloy end milling, which
allowed for the integration of various wear models into the finite element framework to predict tool wear state
and morphology. Additionally, they established an empirical formula for the rapid estimation of tool life.
However, this integrated approach may lead to increased complexity of the model, and its adaptability and
generalization ability under certain specific conditions still need to be validated. This complexity could make
the adjustment and optimization of the model parameters more challenging. Wang et al. (2019) established a
new wear rate model and conducted finite element simulations using a specific custom subroutine to
investigate the influence of machining parameters on tool wear. The results indicated that cutting speed
significantly affected the life of cemented carbide tools. In terms of tool wear status monitoring, sensors played
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a key role in data collection and status perception. The sensors primarily used for tool wear monitoring included
mechanical characteristic detection, energy parameter analysis, and acoustic signal acquisition. In actual
production, the process of obtaining parameters was very complex, and there were significant differences in
parameters under different materials or processing conditions, which affected the predictive accuracy of the
model. Although tool wear prediction models achieved certain results in research and application, they still had
many limitations. Future research focused on the integration of various wear mechanisms, the application of
complex friction models, the enhancement of dynamic updating capabilities, and the fusion strategies of
multiple models, in order to improve the accuracy and practicality of predictions.

The mechanical monitoring system based on cutting force and vibration signals formed a relatively
complete theoretical framework. The cutting force directly reflected the edge wear state through changes in
the cutting force coefficient. In contrast, vibration signals utilized the process damping effect to reveal the
dynamic contact characteristics between the tool and the workpiece. Altintas (1992) and Lee et al. (1995)
established a control model for the feed system. The scholars constructed the cutting force-current mapping
relationship through this control model, however, they were limited by the distortion of dynamic characteristics
in the signal transmission chain. Aslan et al (2018) used a Kalman filter to improve signal bandwidth; however,
they did not consider the phase deviation caused by electromagnetic dynamic effects. Altintas et al. (2008)
combined the workpiece surface vibration characteristics with the process damping effect and confirmed the
linear correlation between the process damping coefficient and flank wear, thereby providing a new physical
basis for vibration signal monitoring. The above findings revealed the time-varying influence mechanism of
tool wear on the dynamic characteristics of the cutting system and achieved complementary monitoring of
cutting force and vibration signals. Overall, the limitations of mechanical characteristic detection lie in its
insufficient adaptability to complex dynamic environments and the issue of noise interference in signal
processing.

The monitoring technology based on cutting energy consumption made significant breakthroughs. Shi
et al. (2018) established a three-axis milling energy consumption model that integrated tool wear status,
process parameters, and tool-workpiece coupling characteristics. They revealed a deterministic mapping
relationship between net cutting energy consumption (total energy consumption minus idling energy
consumption) and wear amount. This model improved the accuracy of energy consumption monitoring to a
practical engineering level by eliminating the inherent energy consumption interference of the machine tool. It
provided a new method for wear assessment under complex working conditions. However, the limitation of
this model lay in its requirement for a large amount of data to support the establishment of mapping
relationships. Additionally, the variation in energy consumption under different materials and cutting conditions
might have been influenced by multiple factors, leading to a decrease in predictive accuracy.

Acoustic monitoring included two types of high-frequency and low-frequency signals: acoustic
emission and cutting sound. Acoustic emission performed exceptionally well in micro-machining due to its high
sensitivity and anti-interference ability in the frequency band above 350 kHz, while cutting sound provided an
economical solution for conventional machining by extracting energy characteristics in the time-frequency
domain. Hung et al. (2013) investigated the effects of tool wear on the frequency and amplitude of acoustic
emission signals and proposed a relationship model between the acoustic emission signals during the micro-
milling process and the wear of the milling cutter. Rafezi et al. (2012) conducted time-domain, frequency-
domain, and time-frequency domain analyses of cutting sound signals and proposed a method for monitoring
drill tool wear based on cutting sound. Although acoustic monitoring provided effective wear prediction data,
its limitations lay in its sensitivity to external noise and the variations in signal characteristics in different
processing environments, which might have affected the accuracy of the monitoring results.

With the breakthrough advancements in multi-physics field coupling modeling and dynamic signal
decoupling technology, tool wear monitoring techniques underwent a transition from one-dimensional sensing
to the fusion of multi-source heterogeneous data. In the future, it will be possible to achieve collaborative
sensing of multi-modal signals in mechanics, electronics, and acoustics. The analysis methods will evolve from
traditional time-frequency domain processing to deep learning-driven intelligent diagnosis. Moreover,
engineering applications will extend beyond the ideal conditions of the laboratory to the complex working
environments of industrial sites.

3. Current stage: integration of digital twin technology

Digital twin technology accurately established a tool wear model through the virtual-real interaction,
mutual feedback, and iterative optimization of multi-sensor data related to the tool wear process, enabling real-
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time monitoring of the tool's wear condition. Through the virtual-real interaction of force-electric-acoustic multi-
modal signals, a real-time comparison was made between the multi-physics coupling model of the tool-
crop/soil-agricultural machine system and the measured data. By utilizing data algorithms to adjust key
variables such as model parameters and boundary conditions, a digital twin of tool wear was established. Zhao
et al. (2020) addressed the issue of multi-signal data fusion between real and virtual scenarios by proposing a
hierarchical model and mapping strategy for multi-source heterogeneous data during the processing stage.
This approach aimed to generate a digital twin data model that could guide real-world manufacturing
processes. However, this method was potentially affected by the complexity of data acquisition and fusion in
practical applications, which led to a decrease in the model's real-time performance. Xie et al. (2021) proposed
a dual-driven data flow framework for the digital representation of various states throughout the tool lifecycle.
They constructed a tool wear model that integrates physical tool wear data and virtual tool wear data, and
visualized tool wear on the PC side, providing users with dynamic monitoring and recommendations for tool
replacement or sharpening. Although this framework provided a good user interaction experience, its
adaptability and scalability under different working conditions still needed further validation. Zhang et al. (2023)
proposed a tool condition monitoring and comprehensive integration system model, referred to as the TCM-
IPSS model, which consists of a configuration layer, equipment layer, data acquisition layer, information
processing layer, and service layer. They developed a digital twin model to demonstrate the tool usage
scenarios. Supported by real-time monitoring data, this model enabled the assessment of the current tool wear
amount and the fitting of a wear curve to estimate the remaining tool life. However, the implementation of the
model might have been affected by the data acquisition frequency and processing delays, which limited the
accuracy of real-time monitoring. Qiao et al. (2019) proposed a data-driven digital twin model and a hybrid
prediction method based on deep learning. Through the study of vibration data from milling machines, they
demonstrated the accuracy of this method in predicting tool wear. However, the model's training required a
large amount of high-quality data, and its predictive performance might have declined in situations where data
was scarce. Zhang et al. (2018) proposed a model update framework based on digital twin technology, which
facilitated the development of an accurate tool wear model. This framework provided valuable references for
the prediction and health management of the machining process.

The above digital twin tool monitoring system made significant progress in real-time monitoring and
precise modeling capabilities, improved monitoring accuracy and reliability, as well as diverse research
pathways and application scenarios. However, its limitations could not be overlooked, such as the complexity
of data fusion, which might have affected the model's real-time performance and accuracy; the adaptability
and scalability under different operating conditions still required validation; and the demand for high-quality
data restricted the model's widespread application, especially in situations where data was scarce.

In summary, the digital twin tool monitoring system mentioned above has gradually matured in terms
of tool condition perception accuracy and lifespan prediction capabilities through multi-source data fusion,
virtual-real closed-loop optimization, and intelligent predictive algorithms. This progress has laid a systematic
technological foundation for the promotion of digital twin technology in the field of agricultural machinery tools.

RESEARCH PROGRESS AND TYPICAL APPLICATIONS IN AGRICULTURAL MACHINERY TOOL WEAR
1. Research progress

In recent years, digital twin technology, as an advanced information-physical fusion technology, has
gradually been applied to the field of agricultural production due to its capabilities in real-time mapping,
predictive analysis, and decision optimization. The wear scenarios of agricultural machinery (such as
plowshares, harrow teeth, and bucket teeth) differ fundamentally from their industrial counterparts (like
machine tool cutting tools and aircraft engine blades) in terms of operational objects, environments, and
mechanisms of action. This necessitates significant domain adaptation for the application of digital twin
technology (Pimenov et al., 2025; Wang et al., 2024). Researchers in the agricultural field are exploring three
technical pathways: experimental validation, numerical modeling, and data-driven approaches. They are
gradually breaking through bottlenecks by leveraging multidisciplinary crossover technologies.

At the experimental validation and data acquisition level, Mattetti et al. (2017) deployed mechanical
sensors (FlexiForce A201 and HT201) on a plow to conduct field trials. They utilized the NI CDAQ data
acquisition system along with LabVIEW software to record sensor signals, tractor speed (using VBOX GPS),
and load at the suspension points in real time, with a sampling frequency of 10 Hz. Their research revealed
the secondary variation relationship between tillage speed and the pressure distribution on the plow wall and
plow share. Cucinotta et al. (2019) further employed structured blue light 3D scanning technology to create
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three-dimensional models of the plow share after tillage. They utilized the Hausdorff method and deviation
analysis to quantitatively assess the wear patterns, achieving a measurement accuracy of 0.02 millimeters for
the plow share wear. This capability allows for the evaluation of the actual wear on the cutting edge. The
combination of these two approaches indicates that the integration of field measurement data with high-
precision scanning technology serves as a fundamental support for constructing the geometric features of the
tool's digital twin. It is worth noting that, compared to the relatively controllable arrangement of measurement
points in industrial environments, field environments (such as intense vibrations, dust, and uneven terrain)
pose greater challenges to the stability of sensors and the quality of data collection.

In the area of numerical modeling and mechanism revelation, Bedolla et al. (2018) proposed a wear
prediction method that combines experiments and simulations. They determined key parameters based on the
spatiotemporally resolved Archard equation using ASTM G65 testing, and utilized a CFD-FEM model to
simulate the interaction between circular tines and soil. Their results indicated that the relative error between
the simulated wear profile and the actual measurements from 3D scanning was only 3%, confirming the
numerical model's ability to capture the microscopic wear behavior of the tool's surface. However, the Archard
equation and its parameter calibration methods used in this research are derived from materials tribology.
When faced with the complex viscoelastic-plastic behavior of agricultural soils (such as those rich in moisture,
organic matter, and clay minerals), their universality and accuracy are challenged. Katinas et al. (2019)
addressed the wear issue of tillage tool tines by employing the Discrete Element Method (DEM) in conjunction
with cone penetration resistance measurements. They discovered that the traction force in sandy clay
increased by 3.9 times compared to a pure sand environment. Furthermore, the maximum difference between
the simulated and actual wear loss at depths of 0-150 mm was no greater than 2.7%. This research provides
a quantitative basis for wear-resistant design from the perspective of soil-tool interaction mechanisms.
Listauskas et al (2024) utilized EDEM-Ansys simulations combined with 3D scanning comparisons to reveal
the logarithmic curve pattern of wear thickness variation at the plow tip, as well as the differences from the
experimental results of quadratic equations. This difference further confirmed the limitations of commonly
used industrial models (such as Archard) in simulating the dynamic interactions of highly heterogeneous and
multiphase media like soil and agricultural machinery. It indicated that the applicability of traditional models
under complex agricultural conditions still needed improvement. These studies collectively promoted the
transition of agricultural tool wear mechanisms from empirical judgment to physics-driven approaches.
However, the accuracy of representing the true physical and biochemical characteristics of soil in these models
still needed to be deeply optimized to address agricultural specifics.

The introduction of data-driven methods has significantly enhanced the generalization capability of
models. Cai et al. (2025), focusing on Mn13 bucket teeth, combined an improved Archard wear model with
random forests and particle swarm optimization support vector machines. This integration improved the
average R? value for wear depth prediction from 0.96294 to 0.98074, demonstrating the value of feature
selection in decoupling complex nonlinear relationships. Kalacska et al. (2020) conducted a collaborative
analysis using 3D optical profilometry and DEM simulation. They found that the cutting edge of tillage tines
can be divided into micro-cutting and micro-plowing regions. By calculating the wear depth (Dr), they clarified
the specific microscopic wear mechanisms associated with each region. Furthermore, the soil disturbance
observed in the DEM simulations closely matched the wear patterns recorded during field tests, indicating a
high degree of agreement in wear modes. This study revealed the unique micro-mechanisms of wear for
agricultural tools, which are significantly different from the wear patterns observed in industrial tools, such as
continuous cutting tools. Hasan et al. (2022) utilized the Hertz-Mindlin contact model and parallel bond
modeling to simulate the cohesive behavior of soil. After calibrating the particle rolling friction coefficient and
shear modulus through a trial-and-error method, they reduced the relative error of the soil reaction forces in
the DEM simulations to within 12%. This work provides an engineering paradigm for the parameter calibration
of data-driven models.

Although a certain research foundation has been established in areas such as modeling and data
collection for agricultural machine tools, the biological dynamics of the operational objects (crops and soil), the
variability of unstructured working environments, and the strong nonlinear characteristics of the tool-soil
interaction mechanisms lead to several critical issues in the application of traditional industrial digital twins for
monitoring wear in agricultural machine tools. These issues include insufficient data collection accuracy,
difficulties in integrating heterogeneous data from multiple sources, and limited generalization capabilities of
the models. Particularly in the full lifecycle management of agricultural tools, it is essential to design
"lightweight" edge digital twins that address the strong seasonality, dispersion, and economic constraints of
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agricultural operations. This will facilitate online diagnostics of key wear indicators and predictions of remaining
useful life. For the digital representation of wear mechanisms, it's necessary to deeply integrate multi-scale
models from soil mechanics, physical chemistry, and biology, developing wear mechanism models that can
characterize the potential impacts of soil biological components, such as microorganisms and root exudates.
In terms of adaptive decision-making in heterogeneous scenarios, the core focus should be on constructing
intelligent control strategies based on a digital twin "observe-diagnose-predict-decide" closed loop. For
instance, dynamically adjusting tillage depth, speed, or replacing worn parts based on real-time wear
predictions and soil condition perceptions to achieve an optimal balance between wear control, operational
efficiency, and energy consumption.

2. Typical applications

Based on the five-dimensional model theory of digital twins proposed by Professor Tao's team (Tao et
al., 2020), combined with the self-developed wear performance testing machine for agricultural machinery
tools (hereinafter referred to as the testing machine), a multidimensional system architecture for monitoring
the wear of agricultural machine tools has been constructed (Fig. 1). This model consists of physical entities,
virtual entities, a data interaction system, a service layer, and an application layer, forming a closed-loop
feedback mechanism of "perception-modeling-analysis-decision”. It integrates multisource data interaction,
high-precision modeling, and intelligent analysis technologies, providing digital support for the performance
evaluation and parameter optimization of agricultural machine tools.
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Fig. 1 - Multi-dimensional architecture for monitoring agricultural machine tool wear

2.1. Physical entity

As shown in Fig. 2, The testing machine was divided into two main functional modules based on its
motion characteristics: static components (such as the base, sand box, and protective cover) and dynamic
components (including the transmission shaft, rotating spindle, and cutting tools). To ensure that the digital
twin model accurately reflected the real-time working conditions of the testing machine, various types of
sensors (including mechanical, visual, and environmental sensors) were deployed. An embedded controller
was used to perform front-end preprocessing of the sensor data. The Alta PCI5657 data acquisition system
was employed to complete the time-domain alignment and noise reduction of the multi-channel signals.
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Finally, the data stream was uploaded to the agricultural machinery equipment material lifecycle quality
inspection system and database (referred to as the PLM system) via industrial Ethernet.

Fig. 2 - Wear performance testing machine for agricultural machihery tools

2.2.Virtual Entity

The virtual entity constructed a multi physical field coupling model. A 3D model of the testing machine
was established based on Inventor, with material properties defined accordingly. The Unity3D game engine
was used as the development platform. High-precision 3D models of the agricultural machinery's soil-engaging
components were created using 3D modeling software, 3D MAX. By integrating technologies such as physical
simulation, data analysis, and visualization, a three-dimensional digital twin system was constructed for the
plowshare wear test, rotary tiller wear test, and disk harrow wear test (as shown in Fig. 3).

PERYUBRHH AT

ENESVSFTTFEES

Inventor 3D Model 3DMAX Model PLM system
Fig. 3 -The virtual entity of the testing machine

The rigid body dynamic model was then constructed using ADAMS. To achieve accurate simulation of
the tool-soil interaction behavior, a wear dynamics model driven by the Discrete Element Method (DEM) was
developed. This model utilized EDEM simulation to realize multiscale predictions of cutting forces and wear
depth. The virtual-physical synchronization mechanism employed the OPC UA communication protocol to
enable reverse control of the physical actuators by the virtual model, thereby creating a bidirectional closed-
loop virtual-physical interaction system.
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2.3. Data interaction system

To ensure the real-time, efficient, and secure transmission of data within the digital twin system, a
comprehensive lifecycle database for agricultural machinery tool wear was established on the Aras Innovator
platform. The collected data was uploaded to the PLM system via a private cloud managed by the Chinese
Academy of Agricultural Machinery Sciences. The Go programming language was utilized along with the Iris
framework to establish a connection with the PLM system, enabling real-time data feedback and monitoring.
The service layer integrated deep learning methods to locally construct a tool wear state prediction model. A
transfer learning strategy was employed to implement edge deployment within the Iris framework, thereby
enabling real-time assessment of tool wear conditions.

2.4. Service layer

By integrating the physical testing machine, virtual testing machine, and twin data, a digital twin system
platform for the testing machine was established within the visualization software. This platform, oriented
towards the wear testing process, achieved effects such as process visualization, transparency of tool wear
conditions, and intelligent equipment management. The input layer received multisource sensor signals
(including force, torque, temperature, and other data). Through a deep convolutional neural network, deep
features were extracted. After optimizing network parameters and training the model, predictions of wear
resistance and tool wear conditions were achieved, allowing for the analysis and assessment of the tool wear
state.

2.5. Application layer

The application layer of the digital twin system for the testing machine served as an integration of
physical entities, virtual entities, service platforms, twin data, and the interactions between them, which was a
key factor in effectively driving the operation of the entire system. In relation to the wear testing process, twin
data such as operating condition data and sensor acquisition data were retrieved and dynamically refreshed
in the visualization interface. By implementing functionalities such as wear testing process simulation and tool
wear prediction, it assisted operators in better understanding and analyzing the current machining conditions.

CHALLENGES

In the monitoring of wear on agricultural machine tools, the application of digital twin technology faces
the following challenges: (1) The agricultural operating environment was characterized by strong vibrations,
high dust levels, and electromagnetic interference, which led to high noise levels and low reliability of sensor
data. Furthermore, there were significant temporal and spatial scale differences in multimodal data (such as
stress, temperature, and soil composition), and the real-time synchronization and feature correlation algorithms
were not yet mature, which restricted the input accuracy of the twin model. (2) Tool wear involved cross-scale
interactions among mechanical, thermal, material, and soil factors. Existing simulation models simplified the
mathematical description of contact nonlinearity and the wear mechanisms of heterogeneous materials,
resulting in accumulated discrepancies between the dynamic responses of the twin model and the actual tool.
Consequently, the reliability of long-term monitoring decreased. (3) The bandwidth of field networks was
limited, making it difficult for traditional cloud-based twin architectures to meet the millisecond-level response
requirements. Lightweight model compression resulted in a loss of predictive accuracy, while high-fidelity
models exceeded the computational capacity of embedded systems in agricultural machinery, thereby
restricting the implementation of online closed-loop control.

CONCLUSION AND OUTLOOK

This paper primarily explored the research status and challenges of digital twin technology in the
monitoring of agricultural machine tool wear. It systematically reviewed the key technologies of digital twins,
the technological evolution in the field of tool wear, the current state of research and application cases of
agricultural machine tool wear monitoring based on digital twin technology, and the challenges faced in this
area. Digital twin technology has achieved certain successes in data collection, simulation modeling, and data-
driven approaches for monitoring agricultural machine tool wear. However, it still faced multiple challenges in
practical applications, including issues related to the accuracy of signal acquisition, the complexity of data
processing, and the real-time performance of models. The integrated application of digital twin technology
provided robust technical support for the intelligent transformation of the agricultural machinery industry, laying
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the foundation for the comprehensive lifecycle management and performance optimization of tools. This
advancement facilitated the shift from experience-driven approaches to data-driven methodologies.

Future research can be conducted in the following directions: (1) Improve the data reliability of
sensors under complex working conditions by designing and manufacturing sensors capable of operating in
environments with strong vibrations, high dust levels, and electromagnetic interference, thereby enhancing the
accuracy and reliability of data collection. Additionally, establish an intelligent analysis framework based on
deep learning to improve the accuracy of data acquisition and processing. In particular, when dealing with
complex conditions, soil heterogeneity, and dynamic system changes, it is necessary to develop more flexible
models. (2) Develop more precise multi-physics coupling models that take into account the interactions
between mechanics, thermodynamics, materials, and crops (soil), in order to enhance the accuracy of tool
wear models. Additionally, investigate more complex nonlinear contact models that consider the wear behavior
of heterogeneous materials, aiming to reduce the discrepancies between the responses of the digital twin and
the actual tools. (3) In the deployment of agricultural machine tool wear monitoring systems, it is essential to
balance system cost and performance issues, particularly among small-scale users such as farmers.
Promoting low-cost and efficient digital twin solutions can help reduce implementation barriers.
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