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ABSTRACT

Addressing issues such as high soybean seedling detection omission rates and inaccurate target recognition
during mechanical weeding operations in soybean fields, which lead to low weeding efficiency, this paper
proposes a lightweight convolutional model based on an improved YOLO11 model. Deployed on an intelligent
mechanical soybean weeding robot, it utilizes precisely identified soybean seedling coordinates to perform
mechanical weeding operations, thereby enhancing weeding efficiency. Building upon the original YOLO11
architecture, this model replaces standard convolutional blocks with Deep Separable Convolution (DWconv)
modules. It performs channel pruning on the C3K2 lightweight convolutional module and employs Point-Shuffle
operations for channel mixing to enhance feature map information flow, thereby improving edge feature
recognition for small targets. The introduction of an Efficient Channel Attention (ECA) mechanism increases
channel selectivity for large target features, enhancing sensitivity to critical semantic information. The original
loss function is optimized by incorporating an improved bounding box loss function (SIOU), accelerating model
convergence and strengthening generalization capabilities. The improved YOLO11 model achieved a 2.0
percentage point increase in mAP50% on the self-built soybean dataset compared to the original YOLO11,
reaching 94%. Model parameters and floating-point operations were reduced from 2.59MB and 6.4x10°¢ to
1.97MB and 5.0%10° respectively, representing decreases of 23.9% and 21.9%. This achieves synergistic
optimization of model lightweighting and computational efficiency while maintaining detection accuracy.
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INTRODUCTION

China’s annual soybean consumption reaches 120 million tons. In soybean fields, weeds compete
with soybean seedlings for sunlight and nutrients, significantly reducing yield. With the rapid development of
smart agriculture, accurate soybean seedling detection—an essential component of intelligent weeding
operations—faces dual challenges arising from the complexity of field environments and the limited computing
capacity of edge devices.

During field operations, image acquisition is easily affected by mechanical vibrations, illumination
changes, and soil moisture variations, causing key features of small weed targets—such as leaf edges and
stems—to be obscured by noise. Moreover, the severe overlap between soybean leaves and weeds, along
with their similar textures, further complicates discrimination, making it difficult for traditional vision algorithms
to accurately distinguish between them.
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Edge-deployment platforms such as unmanned agricultural machinery and handheld devices impose
stringent requirements on the lightweight design and low-latency performance of target detection models. It is
essential to reduce model parameters and computational complexity—while maintaining detection accuracy—
in order to accommodate the limited resources of embedded processors. However, existing object detection
algorithms exhibit notable limitations in soybean-field scenarios.

Two-stage detectors offer high localization accuracy, but their region-proposal mechanisms introduce
substantial computational overhead, making it difficult to meet real-time operational demands. Single-stage
detectors, such as SSD, provide faster inference but suffer from insufficient capability in small-object feature
extraction, and their multi-scale feature fusion strategies lack dynamic channel allocation mechanisms,
resulting in suboptimal balance between fine-grained detail capture and large-target recognition

For example, recent studies have explored crop—weed detection using deep learning—based object
detection frameworks. An improved Faster R-CNN—-based weed detection algorithm was proposed to enhance
detection accuracy, achieving a mean average precision (mAP) of 81.3% with a processing time of 0.132 s
per image (Huang et al., 2024). In addition, a deep convolutional neural network incorporating color-based
features was employed for segmentation, and the improved ResNet model achieved an accuracy of 97.2% on
the test set with a detection speed of 78.34 frames per second (Jin et al., 2024). Furthermore, attention
mechanisms have been introduced to single-stage detectors, where an enhanced YOLOv8 model integrating
an improved convolutional block attention module (CBAM) achieved a mean detection accuracy of 98.2% on
the test dataset (Gao et al., 2024).

Although these approaches demonstrate notable improvements in detection accuracy, their
applicability to real-world soybean field mechanization remains limited. Two-stage detectors such as Faster R-
CNN exhibit advantages in localization precision; however, the computational overhead associated with region
proposal generation and refinement makes them unsuitable for deployment on resource-constrained edge
devices commonly used in agricultural machinery. In addition, the standard feature pyramid network (FPN)
employed in such frameworks tends to suppress fine-grained features of small objects during multi-scale
feature fusion, thereby constraining its effectiveness in detecting small soybean seedlings and weeds under
field conditions. Single-stage detectors, such as SSD, offer faster inference speeds but suffer from insufficient
receptive field design for small targets and the absence of dynamic channel allocation mechanisms. These
limitations hinder the model's ability to simultaneously preserve detailed features of small seedlings and
maintain robust recognition performance for larger plant structures, leading to degraded performance in
complex agricultural environments characterized by uneven illumination, soil background interference, and
plant overlap.

From the perspective of soybean production, mechanized field operations—particularly during the
early growth stages—face unique challenges, including narrow row spacing, high plant density, and strong
sensitivity of seedlings to mechanical disturbance. These characteristics impose strict requirements on
perception accuracy, real-time responsiveness, and computational efficiency for onboard vision systems.
Therefore, existing detection models, which are primarily optimized for generic scenarios or laboratory
conditions, fail to fully meet the practical demands of soybean field mechanization. This highlights the necessity
of developing a lightweight, high-precision, and edge-deployable detection framework specifically tailored to
soybean field environments, capable of supporting intelligent operations such as precision weeding and
autonomous field management.

YOLO-series algorithms, with their end-to-end detection pipelines and strong multi-scale feature
learning capabilities, have demonstrated outstanding performance in real-time detection tasks. However,
YOLO11 still faces challenges such as a relatively large model size and insufficient accuracy in small-object
detection. Thus, further optimization is required to meet the specific demands of agricultural field scenarios.

To address the above issues, this study proposes a lightweight convolutional model based on an
improved YOLO11 architecture. The model employs depthwise separable convolutions (DWConv) and
channel pruning to reduce its overall size, enabling deployment on a self-propelled mechanical soybean-
weeding robot for precise identification of soybean seedlings during field weeding operations, thereby
improving the overall weeding rate. A Point-Shuffle channel-mixing operation is introduced to enhance feature
flow and improve the recognition of edge features in small targets. Furthermore, an Efficient Channel Attention
(ECA) mechanism is incorporated to increase sensitivity to key semantic information of large targets, and an
improved bounding-box regression loss (SIOU) is adopted to enhance localization accuracy.

This study aims to achieve collaborative optimization between model lightweighting and detection
performance, providing an efficient solution for real-time and accurate identification of soybean seedlings and
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weeds in the field, and promoting the large-scale application of intelligent weeding technologies in agricultural
production.

IMAGE ACQUISITION

The images used in this study were collected from the experimental fields of Heilongjiang Bayi
Agricultural University and the Nenjiang Farm. The imaging system consisted of a camera-equipped
acquisition vehicle. Data collection was conducted in June 2023 and July 2024, covering both the cotyledon
and true-leaf stages of soybean seedlings. After screening and filtering, a total of 30,000 valid images were
obtained, encompassing diverse conditions such as cloudy, rainy, and sunny weather, as well as various
occlusions. Representative collected images are shown in Figure 1, where soybean seedlings are highlighted
with green bounding boxes. The image acquisition height was 86 cm, and the acquisition platform operated at
a speed of 0.5 m/s. The imaging equipment is presented in Figure 2.

A i

Fig. 1 - Dataset Schematic Diagram Fig. 2 - Front View of the Acquisition Vehicle
MATERIALS AND METHODS
YOLO11 Object Detection Model

YOLO11 is an optimized extension of YOLOvS8, designed to operate efficiently on edge devices and
in complex environments. It adopts an anchor-free detection head, eliminating the anchor-box mechanism and
directly predicting the coordinates and dimensions of bounding boxes, thereby significantly reducing image
processing time. Compared with the C2f module used in the original YOLO models, YOLO11 employs the
C2PSA module—an enhanced version of C2f that integrates the PSA module to strengthen feature extraction
and attention mechanisms. By incorporating the PSA module into the standard C2f structure, YOLO11
achieves a more powerful attention mechanism, improving its ability to capture critical features. Additionally,
owing to the optimized CSPNet backbone, the overall model size is reduced by approximately 23—-24%
compared with YOLOvS.

Building upon the YOLO11 framework, this study introduces several targeted improvements. First,
depthwise separable convolutions and channel-pruning techniques are incorporated to substantially reduce
the number of parameters and computational cost while preserving feature-extraction capability, enabling
efficient deployment on various edge-computing hardware platforms and lowering power consumption and
inference latency. Second, a Point-Shuffle channel-mixing mechanism is integrated to enhance the interaction
and flow of information across channels, thereby improving the model’s adaptability to multi-view and multi-
resolution images and strengthening the robustness of feature representation. Third, the ECA attention
mechanism is introduced to dynamically adjust channel weights and emphasize multi-scale target features,
enabling the model to better focus on small seedlings and weeds as well as key features embedded in complex
backgrounds, effectively mitigating the effects of occlusion and noise. Finally, SloU loss is adopted to optimize
the bounding-box regression process, enhancing localization accuracy in scenarios involving plant occlusion
and target confusion and ensuring precise discrimination between seedlings and weeds. Through these
improvements, the enhanced YOLO11 model achieves efficient and accurate detection of seedlings and
weeds under constrained hardware conditions and complex field environments. The improved model
architecture is illustrated in Fig. 3.
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Fig. 3 - YOLO11 Model Architecture Diagram
Note: Conv denotes the convolution module; Concat represents the feature-fusion module; Upsample refers to the upsampling module;
Detect indicates the detection head; DWConv denotes the depthwise separable convolution module; C3K2PConv represents the C3K2
module based on partial convolution; and ECA refers to the efficient channel attention mechanism.

C3K2-PConv Module

In the operational scenario of mechanical weeding in soybean fields, the working platform requires
high detection accuracy to ensure efficient field operations. At the same time, due to the limited space available
on mobile devices, the detection model must remain lightweight to fit within the constrained storage capacity
of embedded processors, ensuring accurate soybean—weed detection without increasing hardware costs or
computational power consumption. Moreover, mechanical weeding demands strong real-time performance,
enabling rapid differentiation and localization of weeds and soybeans so that the operating speed of the
weeding mechanism can be effectively synchronized with the movement speed of the machine. To address
these requirements, this study applies a lightweight pruning strategy to the C3K2 module and employs the
improved C3K2-PConv module, in which channel pruning reduces the number of model parameters and
enhances the detection frame rate.

The C3K2-PConv module is an optimized variant based on the C2P architecture. It divides a single
input channel into multiple channel groups and applies depthwise convolution to a subset of channels. By
adopting a hybrid architecture that integrates standard convolution, partial convolution, and residual
connections, the module achieves a balance between feature representation capability and computational
efficiency. Parallel processing of multiple channel groups enables the capture of feature information at different
scales. As illustrated in Fig. 4, when using an input with a batch size of 4, 32 channels, and a feature-map
resolution of 160x160, the feature maps are first normalized by a batch normalization layer. After the SloU
activation function introduces nonlinearity, the data dimensions remain (4x16x160%160). The two branches
obtained from channel splitting are processed by two sequential PConv partial-convolution modules. In each
PConv module, the feature-map channels are segmented so that only part of the channels undergo 3x3
convolution while the remaining channels are preserved, enabling progressive feature extraction through
multiple partial-convolution operations. This approach reduces computational cost while maintaining
expressive capability. After passing through the partial-convolution operations, the two branches are fused via
channel concatenation, restoring the channel count to 32.
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Compared with the original C3K2 module used in YOLO11, the application of the C3K2-PConv module
reduces the number of model parameters from 2.59x10° to 2.41x10°%, representing a decrease of

approximately 6.95%.
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Fig. 4 - C3K2-PConv Architecture Diagram
Note: Conv denotes the convolution module; Concat represents the feature-fusion module; split refers to the channel-splitting operation;
PConv denotes the partial convolution module; BN indicates the batch normalization layer; SiLU is the activation function; and Padding
refers to the feature-padding operation.

ECA Efficient Channel Attention Mechanism

The ECA module assigns weights to different feature channels through a channel-wise attention
mechanism, suppressing irrelevant channels and enhancing the representation of key features such as
soybean leaf textures and contours. This addresses challenges in soybean-field weeding scenarios, where
severe occlusion between soybean plants and weeds, as well as overlapping visual characteristics—including
shape, leaf structure, texture, and color—between soybean seedlings and weeds, make accurate
differentiation difficult. The ECA channel-attention mechanism first applies adaptive average pooling to all
channels to obtain corresponding descriptors, which represent each channel’s average response over the
entire spatial feature map and serve as a form of global information aggregation. A 3x3 convolution is then
applied along the channel dimension to capture local inter-channel dependencies, reducing the number of
parameters relative to fully connected operations. The convolution output is mapped to the range [0, 1] via a
Sigmoid activation function to generate attention scores for each channel. These attention weights are
subsequently fed back to the spatial dimension of the original feature maps, producing weighted feature
representations that emphasize important channels while suppressing irrelevant ones. The attention
architecture is illustrated in Fig. 5.

K=3
GAP Sigmoid
—_ _— —_ —_

HxWxC 1x1xC 1x1xC HxWxC

Fig. 5 - ECA Attention Architecture Diagram
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SloU Loss Function

The SloU loss function is an improved version of the traditional loU loss, incorporating geometric
constraints and a scale-invariant deformation design. In the context of this study, the detection model must
output the center point of soybean seedlings to prevent potential crop damage. Traditional loU loss focuses
solely on the overlap ratio between the predicted and ground-truth bounding boxes and is therefore unable to
reflect information such as center-point distance or differences in aspect ratio. SloU enhances the original loU
formulation by introducing three additional components—distance loss, angle loss, and shape loss—providing
a more comprehensive measure of the discrepancy between predicted and ground-truth boxes and offering
more reasonable gradient guidance. This helps ensure that the predicted bounding box aligns more closely
with the center of the soybean plant. The angle component penalizes cases where the angle between the
center-to-center line and the coordinate axes is excessively large, guiding the predicted box toward a more
optimal direction of movement. The shape component suppresses predicted boxes with large aspect-ratio
deviations, ensuring that the bounding-box shape remains close to the ground-truth geometry.

(1) The definition of the angle loss is shown in Fig. 6, and its corresponding calculation formula is
given in Equation (1).

Fig. 6 - Definition of Angle Loss
Note: B denotes the predicted bounding box; BGT represents the ground-truth box; ¢ is the Euclidean distance
between their center points; CW is the horizontal distance difference; and CH is the vertical distance difference.

Cy II
Lyoss=cos (2% (arcsin (— ) -Z) ) (1)
o
where:
L 41,5 denotes the localization-aware loss value; Cy is the vertical distance difference.; o denotes
the classification confidence score output by the detector.

(2) The definition of the distance loss is illustrated in Fig. 7, and its corresponding calculation formula
is provided in Equation (2).

Fig. 7 - Distance Loss
Note: DW and DH denote the width and height of the minimum enclosing rectangle of the ground-truth and predicted bounding boxes.

I
LDLoss: Z (1 -exp ('y%)) ’ yZZ'LALoss (2)
i=DyDy,
where:

Lp; s denotes the localization-driven loss for the predicted bounding box; v is the scaling factor for
the distance loss; i is the index of the bounding box or element in the calculation; pi is the predicted probability
of the target class; ci is the ground-truth label of the target class.

(3) The calculation formula for the shape loss is shown in Equation (3).

oi
LSLoss: Z (]'exp('e_.)) (3)
mi
i=W,H
where:
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Lg; s denotes the localization shape loss for the predicted bounding box; € is the coefficient
controlling the contribution of the shape loss; di is the deviation of the predicted box from the ground-truth box
in width or height; mi is the scalar to amplify the penalty for shape error.

(4) The overall SloU loss is given by the calculation formula shown in Equation (4).

LSIOU =(1 -1 Ow+LDL0SS +LSL()SS (4)
where: IOU denotes the localization-driven loss.

During soybean recognition in open-field environments, seedlings are often affected by various
disturbances such as weed occlusion, unstable lighting conditions, and changes in camera viewpoint, all of
which can easily cause fluctuations in detection performance. The SloU loss function addresses these
challenges through a dual-core mechanism. On one hand, its distance penalty term precisely quantifies the
center-point deviation between the predicted box and the ground-truth box, ensuring that the model's
localization accuracy remains robust against environmental interference. On the other hand, by incorporating
the loU-based penalty term, SloU effectively constrains the overlap ratio between the predicted and ground-
truth boxes, reducing the risk of missed or incorrect detections caused by occlusion or similar disturbances.

EXPERIMENTS AND ANALYSIS

The hardware environment used in this study consisted of a Windows 11 (64-bit) operating system,
Anaconda version 24.9.2, CUDA version 12.8, an NVIDIA GTX 1650 GPU, 4 GB of system memory, and
Python 3.9, with PyTorch serving as the deep learning framework. The YOLO11n architecture with YOLO11n
pretrained weights was employed, and the model was trained for 100 epochs using a self-constructed soybean
field dataset. The batch size was set to 16, and the input image resolution was 640x640. The optimization
strategy adopted the SCD optimizer with an initial learning rate of 0.01 kept constant, along with a momentum
of 0.937 and a weight decay of 0.0005. A warm-up phase was applied during the first three epochs to stabilize
early training. Data augmentation included Mosaic processing, HSV color transformation, translation—scaling
operations, and other techniques, while a bounding-box loss weight of 7.5 was used to enhance localization
accuracy. During training, validation was performed at each epoch using an loU threshold of 0.7, and automatic
mixed precision was enabled to accelerate computation.

Baseline Model Comparison Experiments

A baseline model comparison experiment was conducted to evaluate the performance improvements
achieved through model iteration by comparing multiple models from the YOLO family. Compared with other
models in the same series, YOLO11 demonstrates significant enhancements in detection accuracy, parameter
count, model size, and floating-point computational cost. In terms of detection accuracy, YOLO11-n achieves
an mAP@50 of 92, outperforming YOLOvV5-n (80.0), YOLOvV7-n (85.2), and YOLOv8-n (90.4). Its mAP@50—
95 reaches 64.6, exceeding that of YOLOv5-n (57.5), YOLOv7-n (60.7), and YOLOvV8-n (64.4). Regarding
model size, YOLO11-n is only 4.29 MB, smaller than YOLOv5-n (64.39 MB), YOLOv7-n (5.94 MB), and
YOLOvVS8-n (5.61 MB). In terms of floating-point operations, YOLO11-n requires 2.59 GFLOPs, which is lower
than YOLOv5-n (7.22 GFLOPs), YOLOv7-n (36.9 GFLOPs), and YOLOv8-n (3.16 GFLOPs). For the
parameter count, YOLO11-n contains 6.4 million parameters, fewer than YOLOv5-n (16.4 million), YOLOv7-n
(104.5 million), and YOLOV8-n (8.9 million).

SSD and Faster R-CNN were selected as comparison models for soybean seedling—weed detection
experiments. In terms of detection accuracy, YOLO11-n achieves an mAP@50 of 92, which is significantly
higher than SSD (70.1) and Faster R-CNN (73.3). Its mMAP@50-95 reaches 64.6, also surpassing SSD (53.6)
and Faster R-CNN (55.1), indicating a clear advantage in identifying targets in soybean field environments.
From the perspective of model size, SSD (90.6 MB) and Faster R-CNN (108 MB) are both much larger than
YOLO11-n (4.29 MB), making them unsuitable for deployment on resource-constrained platforms such as
mechanical weeding systems. Regarding computational complexity, SSD requires 26.3 GFLOPs and Faster
R-CNN requires 137.1 GFLOPs, both considerably higher than YOLO11-n’s 2.59 GFLOPs. In terms of
parameter count, SSD contains 62.7 million parameters and Faster R-CNN contains 370.2 million, far
exceeding YOLO11-n’s 6.4 million. These results indicate that SSD and Faster R-CNN impose much higher
computational demands and struggle to meet the real-time processing requirements of weeding machinery.
The baseline model comparison results are summarized in Table 1, and the model accuracy curves are shown
in Fig. 8.
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In summary, YOLO11-n demonstrates significant advantages over SSD and Faster R-CNN in terms
of detection accuracy, model size, and computational resource consumption, making it well suited to the
practical operational requirements of soybean-field weeding. Therefore, YOLO11-n was selected as the
baseline model for optimization in this study.

mMAP50

Epoch

Fig. 8 - Baseline Model Comparison Experiment
Table 1
Baseline Model Comparison Experiments
Detection Accurac . Number of
Model mAP@50/% mAP@:0~95/% Model Size/MB GFLOPS Parameters/million
YOLOV5-n 80.0 57.5 64.39 7.22 16.4
YOLOV7-n 85.2 60.7 5.94 36.9 104.5
YOLOV8-n 904 64.4 5.61 3.16 8.9
YOLO11-n 92 64.6 4.29 2.59 6.4
SSD 70.1 53.6 90.6 26.3 62.7
Farster-RCNN 73.3 55.1 108 137.1 370.2

Loss Function Comparison Experiments

The design of the loss function has a direct impact on both the model’s localization accuracy and training
efficiency. Specifically, mAP@50 reflects localization performance under a low loU threshold, whereas
MAP@50-95 evaluates comprehensive accuracy across multiple thresholds (0.5 to 0.95), imposing
substantially stricter requirements on bounding-box regression. Under a unified experimental setting, five
representative loss functions—IloU, GloU, DloU, CloU, and SloU—were compared to assess their influence
on model performance.

The results show that SloU achieves an mAP@50 of 93.4, outperforming loU (92.0), GloU (91.8), DloU
(92.1), and CloU (92.4). This indicates that SloU already provides superior detection capability under relatively
relaxed localization conditions. More critically, SloU attains an mAP@50-95 of 67.3, nearly 3 percentage
points higher than the second-best CloU (64.4), demonstrating its markedly improved bounding-box prediction
accuracy under stricter localization requirements.

In terms of training dynamics, SloU converges within 62 epochs, fewer than loU (80), GloU (75), DloU
(70), and CloU (68). This suggests that the SloU formulation better aligns with the model’s optimization process,
enabling more efficient parameter updates and faster convergence to the optimal solution. Moreover, SloU
achieves the lowest average regression error (8.2), substantially outperforming the other loss functions (loU:
12.4; GloU: 11.1; DloU: 10.3; CloU: 9.8), indicating more accurate spatial localization and reduced deviation
in bounding-box coordinate prediction.

The comparative results of the loss-function experiments are summarized in Table 2.

Table 2
Loss Function Comparison Experiments
Number of Average

Loss Function mAP@50/% mAP@50~95/% Convergence Regression

Epochs Error/pixels
[e]] 92.0 62.7 80 12.4
GIOU 91.8 63.5 75 11.1
DIOU 92.1 64 70 10.3
Clou 92.4 64.4 68 9.8
SIOoU 93.4 67.3 62 8.2
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Ablation Experiments

Ablation experiments were conducted to evaluate the effectiveness of the proposed improvements.
Individual components—including DWConv, C3K2-PSConv, ECA attention, and the SloU loss function—as
well as the fully optimized model were systematically analyzed. The evaluation metrics included mAP@50,
MmAP@50-95, model parameter count, and floating-point operations, with training hyperparameters kept
consistent across all experiments.

Comparative analysis of different YOLO11 variants shows that the YOLO11-C3K2PSConv-DWConv-
ECA-SloU model, which integrates DWConv, C3K2-PSConv, ECA, and SloU, significantly outperforms the
baseline YOLO11 model. In single-component experiments, DWConv reduces parameters by 17.4% and
FLOPs by 18.8% while improving detection accuracy; C3K2-PSConv enhances feature fusion, increasing
MAP@50 by 1.0; ECA attention improves mAP@50-95 by 1.5 through channel-wise attention; and SloU
substantially boosts mAP@50-95 by 2.7 without increasing model complexity. When multiple components are
fused, the collaborative effect enables the model to achieve an mAP@50 of 94.0 and mAP@50-95 of 68.1,
while reducing the parameter count to 1.97 million and GFLOPs to 5.0. These results validate the effectiveness
of the multi-component complementary fusion strategy in enhancing both detection accuracy and
computational efficiency.

The results of the ablation experiments are summarized in Table 3.

Table 3
Ablation Experiments
C3K2 Number of
Model bW PSCON | ECA | SloU onPSOI mAP5°0 Parameters | GFLOPs
conv v % ~98% | miltion

YOLO11 92 64.6 2.59 6.4

YOLO11-DWconv v 92.3 65.8 2.14 5.2

YOLO11-C3K2PSCONV S 93 65.2 2.45 6.4

YOLO11-eca v 93.5 66.1 2.62 6.6

YOLO11-siou v 93.4 67.3 2.59 6.4
YOLO11-

C3K2PSCONV-DWconv- | v Y Y Y 94 68.1 1.97 5.0

eca

Model Visualization Analysis

To evaluate the model’s recognition performance, Grad-CAM was employed for heatmap visualization,
complemented by field experiments. First, input images were resized and padded to 640x640 pixels using the
letterbox algorithm to satisfy the stride constraints of the YOLO series. During forward propagation,
intermediate feature maps were captured, and gradients corresponding to class classification and bounding-
box regression were accumulated over multiple backward passes. Grad-CAM was then applied to compute
channel-wise weights. After ReLU activation and normalization, a single-channel color map was generated. In
the resulting heatmaps, regions of high to low response were mapped from red to blue and overlaid semi-
transparently onto the original image. The heatmap visualization is shown in Fig. 9. The optimized model
exhibits strong responses in both weed and soybean regions while effectively suppressing irrelevant
background areas, thereby validating the effectiveness of the proposed model improvements.

Optimized Model

Fig. 9 - Heatmap Analysis
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Field Experiments

The optimized object detection model was deployed on an intelligent soybean field weeding machine
and validated in the experimental soybean field at Bayi Agricultural University, Heilongjiang. The soybean
variety used was Suinong 26, and the growth stage was the first trifoliate leaf (V1) stage. The average plant
height ranged from 50 to 80 mm, with ridge height of 200 mm, ridge width of 1100 mm, intra-row spacing of
46 mm, and inter-row spacing of 450 mm. The vehicle speed was controlled at 1 m/s. Predictions were
performed on the experimental field using the optimized model, and the detection results are shown in Figure
10. By obtaining the precise coordinates of each detected soybean seedling and using the fixed camera height
along with a scaling factor, the spacing between individual seedlings was calculated, as illustrated in Figure
11. This spacing information was transmitted via serial communication to a microcontroller to control the motion
of the weeding mechanism, enabling precise inter-row weeding. The expected weeding rate and seedling
injury rate were 89.54% and 2.51%, respectively, satisfying the agronomic requirements for soybean weeding
operations. The overall weeding performance is demonstrated in Figure 12.

Fig. 11 - Recognition Interface Fig. 12 -Weeding Effect Diagram

CONCLUSIONS

This study proposes a lightweight convolutional model based on an improved YOLO11 framework for
weed detection in soybean fields. Depthwise separable convolutions (DWConv) were employed to replace
standard convolutional blocks, and channel pruning was applied to the C3K2 lightweight convolution modules.
In addition, Point-Shuffle operations were used for channel shuffling to enhance edge feature recognition of
small targets. An efficient channel attention mechanism (ECA) was introduced to improve channel selectivity
for large target features, and the loss function was optimized by incorporating SIOU to accelerate model
convergence and improve generalization. Experimental results on a self-constructed soybean dataset show
that the improved model achieves a mAP@50% of 94%, representing a 2.0% improvement over the original
YOLO11 model. The model parameters and floating-point operations were reduced by 23.9% and 21.9%,
respectively, while achieving a weeding rate of 89.54% and a seedling injury rate of 2.51%, resulting in
enhanced average weeding efficiency. This work achieves a synergistic optimization of detection accuracy,
model lightweight design, and computational efficiency, providing an effective solution for real-time soybean
seedling and weed recognition and enabling the large-scale application of intelligent weeding technology in
soybean fields.
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