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ABSTRACT  

Addressing issues such as high soybean seedling detection omission rates and inaccurate target recognition 

during mechanical weeding operations in soybean fields, which lead to low weeding efficiency, this paper 

proposes a lightweight convolutional model based on an improved YOLO11 model. Deployed on an intelligent 

mechanical soybean weeding robot, it utilizes precisely identified soybean seedling coordinates to perform 

mechanical weeding operations, thereby enhancing weeding efficiency. Building upon the original YOLO11 

architecture, this model replaces standard convolutional blocks with Deep Separable Convolution (DWconv) 

modules. It performs channel pruning on the C3K2 lightweight convolutional module and employs Point-Shuffle 

operations for channel mixing to enhance feature map information flow, thereby improving edge feature 

recognition for small targets. The introduction of an Efficient Channel Attention (ECA) mechanism increases 

channel selectivity for large target features, enhancing sensitivity to critical semantic information. The original 

loss function is optimized by incorporating an improved bounding box loss function (SIOU), accelerating model 

convergence and strengthening generalization capabilities. The improved YOLO11 model achieved a 2.0 

percentage point increase in mAP50% on the self-built soybean dataset compared to the original YOLO11, 

reaching 94%. Model parameters and floating-point operations were reduced from 2.59MB and 6.4×10⁶ to 

1.97MB and 5.0×10⁶ respectively, representing decreases of 23.9% and 21.9%. This achieves synergistic 

optimization of model lightweighting and computational efficiency while maintaining detection accuracy.  

 

摘要 

针对大豆田间机械除草作业时识别大豆苗漏检率高,识别目标不准确等导致除草效率低等问题,本文提出了一种基于改进

YOLO11 模型的轻量化卷积模型,部署在智能机械式大豆除草机器人上,利用识精准别到的大豆苗坐标来进行机械除草作业

以提高除草效率.该模型在原 YOLO11网络架构基础上,使用深度可分离卷积模块 DWconv替代普通卷积块,对 C3K2轻量级

卷积模块进行通道裁剪,使用 Point-Shuffle 操作进行通道混洗提高特征图间的信息流动,提高对小目标的边缘特征识别效果.

引入高效通道注意力机制(ECA),增大对大目标特征的通道选择性,提高对关键语义信息的敏感度.对原损失函数进行优化,引

入改进的边界框损失函数（SIOU）,提高模型收敛速度,增强模型泛化性.改进后的 YOLO11模型,相较于原 YOLO11在自建

大豆数据集上 mAP50%提高了 2.0个百分点,达到了 94%.模型参数量、浮点计算量由 2.59MB、6.4×106降低至 1.97MB、

5.0×106同比减少了 23.9%和 21.9%,在保证检测精度的同时,实现了模型轻量化与计算效率的协同优化. 

 

INTRODUCTION 

  China’s annual soybean consumption reaches 120 million tons. In soybean fields, weeds compete 

with soybean seedlings for sunlight and nutrients, significantly reducing yield. With the rapid development of 

smart agriculture, accurate soybean seedling detection—an essential component of intelligent weeding 

operations—faces dual challenges arising from the complexity of field environments and the limited computing 

capacity of edge devices. 

  During field operations, image acquisition is easily affected by mechanical vibrations, illumination 

changes, and soil moisture variations, causing key features of small weed targets—such as leaf edges and 

stems—to be obscured by noise. Moreover, the severe overlap between soybean leaves and weeds, along 

with their similar textures, further complicates discrimination, making it difficult for traditional vision algorithms 

to accurately distinguish between them. 
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  Edge-deployment platforms such as unmanned agricultural machinery and handheld devices impose 

stringent requirements on the lightweight design and low-latency performance of target detection models. It is 

essential to reduce model parameters and computational complexity—while maintaining detection accuracy—

in order to accommodate the limited resources of embedded processors. However, existing object detection 

algorithms exhibit notable limitations in soybean-field scenarios. 

  Two-stage detectors offer high localization accuracy, but their region-proposal mechanisms introduce 

substantial computational overhead, making it difficult to meet real-time operational demands. Single-stage 

detectors, such as SSD, provide faster inference but suffer from insufficient capability in small-object feature 

extraction, and their multi-scale feature fusion strategies lack dynamic channel allocation mechanisms, 

resulting in suboptimal balance between fine-grained detail capture and large-target recognition 

 For example, recent studies have explored crop–weed detection using deep learning–based object 

detection frameworks. An improved Faster R-CNN–based weed detection algorithm was proposed to enhance 

detection accuracy, achieving a mean average precision (mAP) of 81.3% with a processing time of 0.132 s 

per image (Huang et al., 2024). In addition, a deep convolutional neural network incorporating color-based 

features was employed for segmentation, and the improved ResNet model achieved an accuracy of 97.2% on 

the test set with a detection speed of 78.34 frames per second (Jin et al., 2024). Furthermore, attention 

mechanisms have been introduced to single-stage detectors, where an enhanced YOLOv8 model integrating 

an improved convolutional block attention module (CBAM) achieved a mean detection accuracy of 98.2% on 

the test dataset (Gao et al., 2024). 

 Although these approaches demonstrate notable improvements in detection accuracy, their 

applicability to real-world soybean field mechanization remains limited. Two-stage detectors such as Faster R-

CNN exhibit advantages in localization precision; however, the computational overhead associated with region 

proposal generation and refinement makes them unsuitable for deployment on resource-constrained edge 

devices commonly used in agricultural machinery. In addition, the standard feature pyramid network (FPN) 

employed in such frameworks tends to suppress fine-grained features of small objects during multi-scale 

feature fusion, thereby constraining its effectiveness in detecting small soybean seedlings and weeds under 

field conditions.  Single-stage detectors, such as SSD, offer faster inference speeds but suffer from insufficient 

receptive field design for small targets and the absence of dynamic channel allocation mechanisms. These 

limitations hinder the model’s ability to simultaneously preserve detailed features of small seedlings and 

maintain robust recognition performance for larger plant structures, leading to degraded performance in 

complex agricultural environments characterized by uneven illumination, soil background interference, and 

plant overlap.  

 From the perspective of soybean production, mechanized field operations—particularly during the 

early growth stages—face unique challenges, including narrow row spacing, high plant density, and strong 

sensitivity of seedlings to mechanical disturbance. These characteristics impose strict requirements on 

perception accuracy, real-time responsiveness, and computational efficiency for onboard vision systems. 

Therefore, existing detection models, which are primarily optimized for generic scenarios or laboratory 

conditions, fail to fully meet the practical demands of soybean field mechanization. This highlights the necessity 

of developing a lightweight, high-precision, and edge-deployable detection framework specifically tailored to 

soybean field environments, capable of supporting intelligent operations such as precision weeding and 

autonomous field management. 

 YOLO-series algorithms, with their end-to-end detection pipelines and strong multi-scale feature 

learning capabilities, have demonstrated outstanding performance in real-time detection tasks. However, 

YOLO11 still faces challenges such as a relatively large model size and insufficient accuracy in small-object 

detection. Thus, further optimization is required to meet the specific demands of agricultural field scenarios. 

 To address the above issues, this study proposes a lightweight convolutional model based on an 

improved YOLO11 architecture. The model employs depthwise separable convolutions (DWConv) and 

channel pruning to reduce its overall size, enabling deployment on a self-propelled mechanical soybean-

weeding robot for precise identification of soybean seedlings during field weeding operations, thereby 

improving the overall weeding rate. A Point-Shuffle channel-mixing operation is introduced to enhance feature 

flow and improve the recognition of edge features in small targets. Furthermore, an Efficient Channel Attention 

(ECA) mechanism is incorporated to increase sensitivity to key semantic information of large targets, and an 

improved bounding-box regression loss (SIOU) is adopted to enhance localization accuracy. 

 This study aims to achieve collaborative optimization between model lightweighting and detection 

performance, providing an efficient solution for real-time and accurate identification of soybean seedlings and 
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weeds in the field, and promoting the large-scale application of intelligent weeding technologies in agricultural 

production. 
 

IMAGE ACQUISITION 

  The images used in this study were collected from the experimental fields of Heilongjiang Bayi 

Agricultural University and the Nenjiang Farm. The imaging system consisted of a camera-equipped 

acquisition vehicle. Data collection was conducted in June 2023 and July 2024, covering both the cotyledon 

and true-leaf stages of soybean seedlings. After screening and filtering, a total of 30,000 valid images were 

obtained, encompassing diverse conditions such as cloudy, rainy, and sunny weather, as well as various 

occlusions. Representative collected images are shown in Figure 1, where soybean seedlings are highlighted 

with green bounding boxes. The image acquisition height was 86 cm, and the acquisition platform operated at 

a speed of 0.5 m/s. The imaging equipment is presented in Figure 2. 

    
Fig. 1 - Dataset Schematic Diagram                              Fig. 2 - Front View of the Acquisition Vehicle 

 

MATERIALS AND METHODS 

YOLO11 Object Detection Model 

 YOLO11 is an optimized extension of YOLOv8, designed to operate efficiently on edge devices and 

in complex environments. It adopts an anchor-free detection head, eliminating the anchor-box mechanism and 

directly predicting the coordinates and dimensions of bounding boxes, thereby significantly reducing image 

processing time. Compared with the C2f module used in the original YOLO models, YOLO11 employs the 

C2PSA module—an enhanced version of C2f that integrates the PSA module to strengthen feature extraction 

and attention mechanisms. By incorporating the PSA module into the standard C2f structure, YOLO11 

achieves a more powerful attention mechanism, improving its ability to capture critical features. Additionally, 

owing to the optimized CSPNet backbone, the overall model size is reduced by approximately 23–24% 

compared with YOLOv8. 

 Building upon the YOLO11 framework, this study introduces several targeted improvements. First, 

depthwise separable convolutions and channel-pruning techniques are incorporated to substantially reduce 

the number of parameters and computational cost while preserving feature-extraction capability, enabling 

efficient deployment on various edge-computing hardware platforms and lowering power consumption and 

inference latency. Second, a Point-Shuffle channel-mixing mechanism is integrated to enhance the interaction 

and flow of information across channels, thereby improving the model’s adaptability to multi-view and multi-

resolution images and strengthening the robustness of feature representation. Third, the ECA attention 

mechanism is introduced to dynamically adjust channel weights and emphasize multi-scale target features, 

enabling the model to better focus on small seedlings and weeds as well as key features embedded in complex 

backgrounds, effectively mitigating the effects of occlusion and noise. Finally, SIoU loss is adopted to optimize 

the bounding-box regression process, enhancing localization accuracy in scenarios involving plant occlusion 

and target confusion and ensuring precise discrimination between seedlings and weeds. Through these 

improvements, the enhanced YOLO11 model achieves efficient and accurate detection of seedlings and 

weeds under constrained hardware conditions and complex field environments. The improved model 

architecture is illustrated in Fig. 3. 
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Fig. 3 - YOLO11 Model Architecture Diagram 

Note: Conv denotes the convolution module; Concat represents the feature-fusion module; Upsample refers to the upsampling module; 

Detect indicates the detection head; DWConv denotes the depthwise separable convolution module; C3K2PConv represents the C3K2 

module based on partial convolution; and ECA refers to the efficient channel attention mechanism. 

 

C3K2-PConv Module 

 In the operational scenario of mechanical weeding in soybean fields, the working platform requires 

high detection accuracy to ensure efficient field operations. At the same time, due to the limited space available 

on mobile devices, the detection model must remain lightweight to fit within the constrained storage capacity 

of embedded processors, ensuring accurate soybean–weed detection without increasing hardware costs or 

computational power consumption. Moreover, mechanical weeding demands strong real-time performance, 

enabling rapid differentiation and localization of weeds and soybeans so that the operating speed of the 

weeding mechanism can be effectively synchronized with the movement speed of the machine. To address 

these requirements, this study applies a lightweight pruning strategy to the C3K2 module and employs the 

improved C3K2-PConv module, in which channel pruning reduces the number of model parameters and 

enhances the detection frame rate. 

 The C3K2-PConv module is an optimized variant based on the C2P architecture. It divides a single 

input channel into multiple channel groups and applies depthwise convolution to a subset of channels. By 

adopting a hybrid architecture that integrates standard convolution, partial convolution, and residual 

connections, the module achieves a balance between feature representation capability and computational 

efficiency. Parallel processing of multiple channel groups enables the capture of feature information at different 

scales. As illustrated in Fig. 4, when using an input with a batch size of 4, 32 channels, and a feature-map 

resolution of 160×160, the feature maps are first normalized by a batch normalization layer. After the SIoU 

activation function introduces nonlinearity, the data dimensions remain (4×16×160×160). The two branches 

obtained from channel splitting are processed by two sequential PConv partial-convolution modules. In each 

PConv module, the feature-map channels are segmented so that only part of the channels undergo 3×3 

convolution while the remaining channels are preserved, enabling progressive feature extraction through 

multiple partial-convolution operations. This approach reduces computational cost while maintaining 

expressive capability. After passing through the partial-convolution operations, the two branches are fused via 

channel concatenation, restoring the channel count to 32. 
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 Compared with the original C3K2 module used in YOLO11, the application of the C3K2-PConv module 

reduces the number of model parameters from 2.59×10⁶ to 2.41×10⁶, representing a decrease of 

approximately 6.95%. 

                              
Fig. 4 - C3K2-PConv Architecture Diagram 

Note: Conv denotes the convolution module; Concat represents the feature-fusion module; split refers to the channel-splitting operation; 

PConv denotes the partial convolution module; BN indicates the batch normalization layer; SiLU is the activation function; and Padding 

refers to the feature-padding operation. 

 

ECA Efficient Channel Attention Mechanism 

 The ECA module assigns weights to different feature channels through a channel-wise attention 

mechanism, suppressing irrelevant channels and enhancing the representation of key features such as 

soybean leaf textures and contours. This addresses challenges in soybean-field weeding scenarios, where 

severe occlusion between soybean plants and weeds, as well as overlapping visual characteristics—including 

shape, leaf structure, texture, and color—between soybean seedlings and weeds, make accurate 

differentiation difficult. The ECA channel-attention mechanism first applies adaptive average pooling to all 

channels to obtain corresponding descriptors, which represent each channel’s average response over the 

entire spatial feature map and serve as a form of global information aggregation. A 3×3 convolution is then 

applied along the channel dimension to capture local inter-channel dependencies, reducing the number of 

parameters relative to fully connected operations. The convolution output is mapped to the range [0, 1] via a 

Sigmoid activation function to generate attention scores for each channel. These attention weights are 

subsequently fed back to the spatial dimension of the original feature maps, producing weighted feature 

representations that emphasize important channels while suppressing irrelevant ones. The attention 

architecture is illustrated in Fig. 5. 

 
Fig. 5 - ECA Attention Architecture Diagram 
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SIoU Loss Function 

 The SIoU loss function is an improved version of the traditional IoU loss, incorporating geometric 

constraints and a scale-invariant deformation design. In the context of this study, the detection model must 

output the center point of soybean seedlings to prevent potential crop damage. Traditional IoU loss focuses 

solely on the overlap ratio between the predicted and ground-truth bounding boxes and is therefore unable to 

reflect information such as center-point distance or differences in aspect ratio. SIoU enhances the original IoU 

formulation by introducing three additional components—distance loss, angle loss, and shape loss—providing 

a more comprehensive measure of the discrepancy between predicted and ground-truth boxes and offering 

more reasonable gradient guidance. This helps ensure that the predicted bounding box aligns more closely 

with the center of the soybean plant. The angle component penalizes cases where the angle between the 

center-to-center line and the coordinate axes is excessively large, guiding the predicted box toward a more 

optimal direction of movement. The shape component suppresses predicted boxes with large aspect-ratio 

deviations, ensuring that the bounding-box shape remains close to the ground-truth geometry. 

（1）The definition of the angle loss is shown in Fig. 6, and its corresponding calculation formula is 

given in Equation (1). 

 
Fig. 6 - Definition of Angle Loss 

Note: B denotes the predicted bounding box; BGT represents the ground-truth box; σ is the Euclidean distance  

between their center points; CW is the horizontal distance difference; and CH is the vertical distance difference. 

 

 LALoss= cos（2×（arc sin（
CH

σ 
）-

Π

4
）） (1) 

where: 

LALoss denotes the localization-aware loss value; CH is the vertical distance difference.; 𝜎 denotes 

the classification confidence score output by the detector. 

（2）The definition of the distance loss is illustrated in Fig. 7, and its corresponding calculation formula 

is provided in Equation (2). 

 
Fig. 7 - Distance Loss 

Note: DW and DH denote the width and height of the minimum enclosing rectangle of the ground-truth and predicted bounding boxes. 

 LDLoss= ∑ (1-exp(-γ
pi

ci
))

i=DWDH,

, γ=2-LALoss  (2) 

where: 

LDLoss denotes the localization-driven loss for the predicted bounding box;  γ is the scaling factor for 

the distance loss; i is the index of the bounding box or element in the calculation; pi is the predicted probability 

of the target class; ci is the ground-truth label of the target class. 

（3）The calculation formula for the shape loss is shown in Equation (3). 

 LSLoss= ∑ (1-exp(-θ
δi

mi
))

i=W,H

  (3) 

where: 
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LSLoss  denotes the localization shape loss for the predicted bounding box;  θ  is the coefficient 

controlling the contribution of the shape loss; δi is the deviation of the predicted box from the ground-truth box 

in width or height; mi is the scalar to amplify the penalty for shape error. 

 

（4）The overall SIoU loss is given by the calculation formula shown in Equation (4). 

 LSIOU=(1-IOU)+LDLoss+LSLoss   (4) 

where: IOU denotes the localization-driven loss. 
 

 During soybean recognition in open-field environments, seedlings are often affected by various 

disturbances such as weed occlusion, unstable lighting conditions, and changes in camera viewpoint, all of 

which can easily cause fluctuations in detection performance. The SIoU loss function addresses these 

challenges through a dual-core mechanism. On one hand, its distance penalty term precisely quantifies the 

center-point deviation between the predicted box and the ground-truth box, ensuring that the model’s 

localization accuracy remains robust against environmental interference. On the other hand, by incorporating 

the IoU-based penalty term, SIoU effectively constrains the overlap ratio between the predicted and ground-

truth boxes, reducing the risk of missed or incorrect detections caused by occlusion or similar disturbances.  

 

EXPERIMENTS AND ANALYSIS 

 The hardware environment used in this study consisted of a Windows 11 (64-bit) operating system, 

Anaconda version 24.9.2, CUDA version 12.8, an NVIDIA GTX 1650 GPU, 4 GB of system memory, and 

Python 3.9, with PyTorch serving as the deep learning framework. The YOLO11n architecture with YOLO11n 

pretrained weights was employed, and the model was trained for 100 epochs using a self-constructed soybean 

field dataset. The batch size was set to 16, and the input image resolution was 640×640. The optimization 

strategy adopted the SCD optimizer with an initial learning rate of 0.01 kept constant, along with a momentum 

of 0.937 and a weight decay of 0.0005. A warm-up phase was applied during the first three epochs to stabilize 

early training. Data augmentation included Mosaic processing, HSV color transformation, translation–scaling 

operations, and other techniques, while a bounding-box loss weight of 7.5 was used to enhance localization 

accuracy. During training, validation was performed at each epoch using an IoU threshold of 0.7, and automatic 

mixed precision was enabled to accelerate computation. 
 

Baseline Model Comparison Experiments 

 A baseline model comparison experiment was conducted to evaluate the performance improvements 

achieved through model iteration by comparing multiple models from the YOLO family. Compared with other 

models in the same series, YOLO11 demonstrates significant enhancements in detection accuracy, parameter 

count, model size, and floating-point computational cost. In terms of detection accuracy, YOLO11-n achieves 

an mAP@50 of 92, outperforming YOLOv5-n (80.0), YOLOv7-n (85.2), and YOLOv8-n (90.4). Its mAP@50–

95 reaches 64.6, exceeding that of YOLOv5-n (57.5), YOLOv7-n (60.7), and YOLOv8-n (64.4). Regarding 

model size, YOLO11-n is only 4.29 MB, smaller than YOLOv5-n (64.39 MB), YOLOv7-n (5.94 MB), and 

YOLOv8-n (5.61 MB). In terms of floating-point operations, YOLO11-n requires 2.59 GFLOPs, which is lower 

than YOLOv5-n (7.22 GFLOPs), YOLOv7-n (36.9 GFLOPs), and YOLOv8-n (3.16 GFLOPs). For the 

parameter count, YOLO11-n contains 6.4 million parameters, fewer than YOLOv5-n (16.4 million), YOLOv7-n 

(104.5 million), and YOLOv8-n (8.9 million). 

 SSD and Faster R-CNN were selected as comparison models for soybean seedling–weed detection 

experiments. In terms of detection accuracy, YOLO11-n achieves an mAP@50 of 92, which is significantly 

higher than SSD (70.1) and Faster R-CNN (73.3). Its mAP@50–95 reaches 64.6, also surpassing SSD (53.6) 

and Faster R-CNN (55.1), indicating a clear advantage in identifying targets in soybean field environments. 

From the perspective of model size, SSD (90.6 MB) and Faster R-CNN (108 MB) are both much larger than 

YOLO11-n (4.29 MB), making them unsuitable for deployment on resource-constrained platforms such as 

mechanical weeding systems. Regarding computational complexity, SSD requires 26.3 GFLOPs and Faster 

R-CNN requires 137.1 GFLOPs, both considerably higher than YOLO11-n’s 2.59 GFLOPs. In terms of 

parameter count, SSD contains 62.7 million parameters and Faster R-CNN contains 370.2 million, far 

exceeding YOLO11-n’s 6.4 million. These results indicate that SSD and Faster R-CNN impose much higher 

computational demands and struggle to meet the real-time processing requirements of weeding machinery. 

The baseline model comparison results are summarized in Table 1, and the model accuracy curves are shown 

in Fig. 8. 
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 In summary, YOLO11-n demonstrates significant advantages over SSD and Faster R-CNN in terms 

of detection accuracy, model size, and computational resource consumption, making it well suited to the 

practical operational requirements of soybean-field weeding. Therefore, YOLO11-n was selected as the 

baseline model for optimization in this study. 

                                                 
Fig. 8 - Baseline Model Comparison Experiment 

Table 1 

Baseline Model Comparison Experiments 

Model 
Detection Accuracy 

Model Size/MB GFLOPS 
Number of 

Parameters/million mAP@50/% mAP@50～95/% 

YOLOV5-n 80.0 57.5 64.39 7.22 16.4 

YOLOV7-n 85.2 60.7 5.94 36.9 104.5 

YOLOV8-n 90.4 64.4 5.61 3.16 8.9 

YOLO11-n 92 64.6 4.29 2.59 6.4 

SSD 70.1 53.6 90.6 26.3 62.7 

Farster-RCNN 73.3 55.1 108 137.1 370.2 

 

Loss Function Comparison Experiments 

 The design of the loss function has a direct impact on both the model’s localization accuracy and training 

efficiency. Specifically, mAP@50 reflects localization performance under a low IoU threshold, whereas 

mAP@50–95 evaluates comprehensive accuracy across multiple thresholds (0.5 to 0.95), imposing 

substantially stricter requirements on bounding-box regression. Under a unified experimental setting, five 

representative loss functions—IoU, GIoU, DIoU, CIoU, and SIoU—were compared to assess their influence 

on model performance. 

 The results show that SIoU achieves an mAP@50 of 93.4, outperforming IoU (92.0), GIoU (91.8), DIoU 

(92.1), and CIoU (92.4). This indicates that SIoU already provides superior detection capability under relatively 

relaxed localization conditions. More critically, SIoU attains an mAP@50–95 of 67.3, nearly 3 percentage 

points higher than the second-best CIoU (64.4), demonstrating its markedly improved bounding-box prediction 

accuracy under stricter localization requirements. 

 In terms of training dynamics, SIoU converges within 62 epochs, fewer than IoU (80), GIoU (75), DIoU 

(70), and CIoU (68). This suggests that the SIoU formulation better aligns with the model’s optimization process, 

enabling more efficient parameter updates and faster convergence to the optimal solution. Moreover, SIoU 

achieves the lowest average regression error (8.2), substantially outperforming the other loss functions (IoU: 

12.4; GIoU: 11.1; DIoU: 10.3; CIoU: 9.8), indicating more accurate spatial localization and reduced deviation 

in bounding-box coordinate prediction.  

 The comparative results of the loss-function experiments are summarized in Table 2. 
Table 2 

Loss Function Comparison Experiments 

Loss Function mAP@50/% mAP@50～95/% 

Number of 

Convergence 

Epochs 

Average 

Regression 

Error/pixels 

IOU 92.0 62.7 80 12.4 

GIOU 91.8 63.5 75 11.1 

DIOU 92.1 64 70 10.3 

CIOU 92.4 64.4 68 9.8 

SIOU 93.4 67.3 62 8.2 
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Ablation Experiments 

 Ablation experiments were conducted to evaluate the effectiveness of the proposed improvements. 

Individual components—including DWConv, C3K2-PSConv, ECA attention, and the SIoU loss function—as 

well as the fully optimized model were systematically analyzed. The evaluation metrics included mAP@50, 

mAP@50–95, model parameter count, and floating-point operations, with training hyperparameters kept 

consistent across all experiments. 

 Comparative analysis of different YOLO11 variants shows that the YOLO11-C3K2PSConv-DWConv-

ECA-SIoU model, which integrates DWConv, C3K2-PSConv, ECA, and SIoU, significantly outperforms the 

baseline YOLO11 model. In single-component experiments, DWConv reduces parameters by 17.4% and 

FLOPs by 18.8% while improving detection accuracy; C3K2-PSConv enhances feature fusion, increasing 

mAP@50 by 1.0; ECA attention improves mAP@50–95 by 1.5 through channel-wise attention; and SIoU 

substantially boosts mAP@50–95 by 2.7 without increasing model complexity. When multiple components are 

fused, the collaborative effect enables the model to achieve an mAP@50 of 94.0 and mAP@50–95 of 68.1, 

while reducing the parameter count to 1.97 million and GFLOPs to 5.0. These results validate the effectiveness 

of the multi-component complementary fusion strategy in enhancing both detection accuracy and 

computational efficiency. 

 The results of the ablation experiments are summarized in Table 3. 

Table 3 

Ablation Experiments 

Model 
DW 

conv 

C3K2 

PSCON

V 

ECA SloU 
mAP50/

% 

mAP50

～95/% 

Number of 

Parameters

/ million 

GFLOPs 

YOLO11     92 64.6 2.59 6.4 

YOLO11-DWconv √    92.3 65.8 2.14 5.2 

YOLO11-C3K2PSCONV  √   93 65.2 2.45 6.4 

YOLO11-eca   √  93.5 66.1 2.62 6.6 

YOLO11-siou    √ 93.4 67.3 2.59 6.4 

YOLO11-

C3K2PSCONV-DWconv-

eca 

√ √ √ √ 94 68.1 1.97 5.0 

 

Model Visualization Analysis 

 To evaluate the model’s recognition performance, Grad-CAM was employed for heatmap visualization, 

complemented by field experiments. First, input images were resized and padded to 640×640 pixels using the 

letterbox algorithm to satisfy the stride constraints of the YOLO series. During forward propagation, 

intermediate feature maps were captured, and gradients corresponding to class classification and bounding-

box regression were accumulated over multiple backward passes. Grad-CAM was then applied to compute 

channel-wise weights. After ReLU activation and normalization, a single-channel color map was generated. In 

the resulting heatmaps, regions of high to low response were mapped from red to blue and overlaid semi-

transparently onto the original image. The heatmap visualization is shown in Fig. 9. The optimized model 

exhibits strong responses in both weed and soybean regions while effectively suppressing irrelevant 

background areas, thereby validating the effectiveness of the proposed model improvements. 

 
Fig. 9 - Heatmap Analysis 
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Field Experiments 

 The optimized object detection model was deployed on an intelligent soybean field weeding machine 

and validated in the experimental soybean field at Bayi Agricultural University, Heilongjiang. The soybean 

variety used was Suinong 26, and the growth stage was the first trifoliate leaf (V1) stage. The average plant 

height ranged from 50 to 80 mm, with ridge height of 200 mm, ridge width of 1100 mm, intra-row spacing of 

46 mm, and inter-row spacing of 450 mm. The vehicle speed was controlled at 1 m/s. Predictions were 

performed on the experimental field using the optimized model, and the detection results are shown in Figure 

10. By obtaining the precise coordinates of each detected soybean seedling and using the fixed camera height 

along with a scaling factor, the spacing between individual seedlings was calculated, as illustrated in Figure 

11. This spacing information was transmitted via serial communication to a microcontroller to control the motion 

of the weeding mechanism, enabling precise inter-row weeding. The expected weeding rate and seedling 

injury rate were 89.54% and 2.51%, respectively, satisfying the agronomic requirements for soybean weeding 

operations. The overall weeding performance is demonstrated in Figure 12. 

 

 
Fig. 10 - Field Detection Results 

 

    
Fig. 11 - Recognition Interface                                           Fig. 12 -Weeding Effect Diagram 

 

CONCLUSIONS 

 This study proposes a lightweight convolutional model based on an improved YOLO11 framework for 

weed detection in soybean fields. Depthwise separable convolutions (DWConv) were employed to replace 

standard convolutional blocks, and channel pruning was applied to the C3K2 lightweight convolution modules. 

In addition, Point-Shuffle operations were used for channel shuffling to enhance edge feature recognition of 

small targets. An efficient channel attention mechanism (ECA) was introduced to improve channel selectivity 

for large target features, and the loss function was optimized by incorporating SIOU to accelerate model 

convergence and improve generalization. Experimental results on a self-constructed soybean dataset show 

that the improved model achieves a mAP@50% of 94%, representing a 2.0% improvement over the original 

YOLO11 model. The model parameters and floating-point operations were reduced by 23.9% and 21.9%, 

respectively, while achieving a weeding rate of 89.54% and a seedling injury rate of 2.51%, resulting in 

enhanced average weeding efficiency. This work achieves a synergistic optimization of detection accuracy, 

model lightweight design, and computational efficiency, providing an effective solution for real-time soybean 

seedling and weed recognition and enabling the large-scale application of intelligent weeding technology in 

soybean fields. 
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