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ABSTRACT  

In recent years, the development of vineyard robots has emerged as a significant development in agricultural 

equipment, playing an increasingly vital role in precision agriculture and intelligent operations. These robots 

are capable of precise navigation, obstacle avoidance, and real-time path planning within agricultural settings. 

The paper employs laser Simultaneous Localization and Mapping (SLAM) technology as the primary method 

for achieving real-time, accurate positioning of the robot, thereby providing reliable environmental perception 

capabilities and prior map information for the vineyard robot. The Robust-Time Elastic Band (R-TEB) local 

planning algorithm developed in this study automatically generates a smooth, continuous inspection path within 

the operational area. This objective is pursued by the consideration of parameters such as the robot's working 

width, minimum turning radius, and operational strip width, with the aim of achieving a minimization of energy 

consumption. Utilizing the Root Mean Square Error (RMSE) metric to gauge prediction accuracy, the R-TEB 

algorithm yielded values ranging from 0.016 to 0.022 meters, while the TEB algorithm produced values 

between 0.012 and 0.025 meters. The findings indicate that the R-TEB algorithm optimizes trajectory quality 

in vineyard environments, thereby enhancing the robot's autonomous navigation capabilities and obstacle 

avoidance efficiency. 

 

摘要 

近年来，葡萄园机器人的研发已成为农业设备领域的重要突破，在精准农业与智能化作业中发挥着日益关键的

作用。这类机器人能够在农业场景中实现精准导航、障碍物规避及实时路径规划。本文采用激光同步定位与建

图（SLAM）技术作为核心方法，实现机器人实时精准定位，从而为葡萄园机器人提供可靠的环境感知能力和

预先地图信息。研究开发的鲁棒时间弹性带（R-TEB）局部规划算法，能在作业区域内自动生成平滑连续的巡

检路径。该算法通过综合考虑机器人作业宽度、最小转弯半径及作业带宽度等参数，实现能耗最小化目标。采

用均方根误差（RMSE）指标评估预测精度时，R-TEB算法得出 0.016至 0.022米的误差值，而 TEB算法误差

值介于 0.012至 0.025米之间。研究表明，R-TEB算法能优化葡萄园环境中的轨迹质量，从而提升机器人的自

主导航能力和避障效率。 

 

INTRODUCTION 

Multi-object obstacle avoidance and path planning represent core challenges in the realm of 

autonomous navigation for vineyard robots. The primary task of the system is to generate collision-free and 

efficient motion trajectories. This is particularly challenging in complex agricultural environments such as 

vineyards, where the system must navigate regular row spacing, dense obstacles, and sparse point cloud data 

(Fox et al., 1997). 

Autonomous positioning and navigation technology for vineyard robots serves as the core 

foundational architecture within smart agriculture systems (Qiu et al., 2020). Its performance directly 

determines the operational autonomy and control robustness of agricultural robots in unstructured agricultural 

environments.  
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SLAM-based navigation systems construct high-precision 3D point cloud maps using LiDAR point 

cloud data, providing mobile robots with centimeter-level positioning accuracy and dynamic environmental 

perception capabilities.  

Through the combined use of front-end odometry and back-end optimization, real-time pose 

estimation and incremental map updating can be achieved (Zhou et al., 2021). Gao et al. (2021) developed a 

tightly coupled factor-graph optimization framework that integrates LiDAR, IMU, and GNSS data, where loop-

closure detection and motion constraints are introduced as nonlinear factors in the back-end optimization to 

support 3D reconstruction. Nie et al. (2021) proposed a lightweight SLAM system that builds a sparse tree-

trunk feature map and suppresses branch- and leaf-induced occlusion by analyzing point cloud density 

gradients. Furthermore, a multi-criteria trunk detection algorithm was developed that combines curvature 

features with reflectance-intensity thresholds to enable accurate trunk identification. 

In the context of local path planning, the TEB algorithm has been demonstrated to exhibit exceptional 

performance by generating smooth trajectories through the optimization of time elastic bands. However, in 

sparse point cloud environments, its trajectory optimization efficiency is relatively low, and it lacks a dynamic 

adjustment mechanism for static obstacles. Subsequent researchers proposed a velocity-constrained TEB 

variant, which improved path smoothness but still exhibited path jittering in narrow-channel scenarios. Zhou et 

al., 2014, innovatively applied the ant colony optimization algorithm to solve the travelling salesman problem. 

The experimental data demonstrate that this method significantly enhances the prediction accuracy of 

agricultural machinery movement trajectories in complex obstacle environments. Addressing the specific 

requirements of omnidirectional mobile agricultural platforms, Zhang et al., 2024, deeply integrated the FMT 

algorithm with an improved artificial potential field method. This was then combined with B-spline curve path 

smoothing technology and a gravity adjustment mechanism based on relative distance was introduced. The 

findings indicate that, in comparison with FMT, RRT, and Informed-RR algorithms, this methodology results in 

a reduction of search time by over 45%, thereby significantly enhancing the operational efficiency and safety 

of agricultural machinery in unstructured farmland. 

The present paper puts forward a local path planning algorithm for vineyard robots that is based on 

laser SLAM as prior information. The system framework is illustrated in Figure 1. Lidar is utilized as the visual 

perception sensor to map the entire vineyard through the SLAM system. The resulting three-dimensional map 

facilitates positioning and navigation, while the two-dimensional map aids path planning. The positioning data 

reception and conversion system provides positioning information to the path planning system. The robot relies 

on prior map information to perform real-time local planning and obstacle avoidance. 

 
Fig. 1 – System framework  
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MATERIALS AND METHODS 

Vineyard Raw Data Collection 

The site selection for data collection by vineyard robots must ensure open space to guarantee stable 

positioning signals. This site is located at the Thousand-Mu Garden Grape Planting Base in Huantai County, 

Zibo City, Shandong Province. The standardized planting pattern of 3-meter row spacing and 1.5-meter plant 

spacing provides an ideal environment for robotic data collection and algorithm testing. 

 
Fig. 2 – The Thousand-Mu Garden 

 

As shown in Figure 3, the vineyard robot is equipped with a LiDAR device mounted on an aluminum 

profile bracket positioned 1 meter above the ground. For precise positioning, two sets of GNSS antennas—

one front and one rear—are secured via powerful magnetic suction cups. This enables the GNSS-RTK system 

to provide the robot with real-time positioning data accurate to the centimeter level. Additionally, the robot 

incorporates an artificial intelligence processor. Multiple cables are used to establish system communication: 

a serial cable connects the control computer to the robot chassis drive board, a USB cable interfaces with the 

GNSS-RTK positioning receiver, and an Ethernet cable links the system to the LiDAR adapter box. The tracked 

chassis of the orchard robot is powered through a buck-converter module, which steps down the 48 V supply 

to 24 V for the LiDAR and further reduces it to 5 V for the AI processor. 

 
Fig. 3 –Crawler-Type Vineyard Robot 

1. External Monitor; 2. Artificial Intelligence (AI) Processors;  

3. Crawler-Type Mobile Chassis; 4. Dual-Antenna GNSS-RTK; 5. 64-Line 3D LiDAR. 
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Figure 4 shows the hardware connection diagram of the robot. 

 
Fig. 4 – Hardware Connection Diagram of Vineyard Robot 

 

SLAM System and R-TEB Algorithm Details 

In outdoor orchard environments, the position of the sun continuously shifts from sunrise to sunset, 

and the intensity of sunlight fluctuates over time. These natural conditions can easily cause visual sensors to 

misidentify objects or experience positioning errors. In contrast, laser sensors do not rely on external light 

sources. By emitting their own laser beams for detection, they effectively mitigate interference from changing 

illumination and maintain stable sensing performance (Xue et al., 2023). 

The SC-LeGO-LOAM algorithm was adopted as the SLAM framework in this study. SC-LeGO-LOAM 

is based on LeGO-LOAM and incorporates loop closure detection using scan context. This improves detection 

speed compared to LeGO-LOAM (Shan et al., 2018). The system primarily consists of four components: point 

cloud segmentation, feature extraction, radar odometry and map construction (Lv et al., 2025). As illustrated 

in Figure 5, point cloud ground segmentation, denoising and downsampling are common pre-processing 

methods. The effectiveness of these methods was validated through before-and-after image comparisons in 

our self-created vineyard dataset. The loop closure detection module aligns with the SC-LeGO-LOAM 

algorithm framework. Odometry calculations use a feature-point-based front-end registration method 

integrated with the loop closure detection module for collaborative processing (Qin et al., 2024). 

Finally, the optimized pose and map data are fed into the graph optimization back-end to enhance 

orchard mapping accuracy. The resulting 3D map facilitates navigation, while the 2D map supports path 

planning. The 3D map is converted to 2D in real time, with the current pose serving as input to the path planning 

system (Zhang et al., 2014). 

 

 
Fig. 5 –Autonomous Navigation Schematic Diagram 
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In practical engineering applications, to adapt to diverse complex environments and achieve superior 

obstacle avoidance, the classic “Elastic Band” algorithm describes the motion state of mobile robots through 

a sequence of poses 2 1( , , )T

i i i iX x y S=  R . However, this approach fails to account for temporal constraints, 

potentially rendering path planning ineffective in dynamic real-world scenarios (Pire et al., 2017. To address 

this issue, Rösmann et al., 2015, proposed the TEB algorithm. Building upon the Elastic Band framework, it 

incorporates temporal interval information by introducing a time difference 
jT between consecutive pose 

sequences. This enables path planning to not only optimize spatial trajectories but also dynamically adjust 

temporal allocation, thereby enhancing the feasibility of trajectory tracking.  
The TEB path can be represented as: 

0 , 0 1: ( , ) ( , )i j i n j nB Q X T =  =  −= =                                                               (1) 

Where: Q denotes the state trajectory;  denotes the time interval sequence; B is the data structure 

composed of the state trajectory and the corresponding time interval sequence (Wu et al., 2021). 

During the TEB path optimization process, it is essential to ensure that the robot satisfies the Ackerman 

kinematic model constraint, meaning its turning radius must not be less than the minimum turning radius:  

           
min

k

k

d
P


=


                                                                                 (2) 

where: 
kd  is the Euclidean distance between adjacent trajectory points; 

k  is the change in steering 

angle between adjacent trajectory points. When the robot moves along the trajectory, its velocity kv  and 

acceleration 
ka  must satisfy the physical constraints (Yang et al., 2022): 
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                                                         (3) 

Although the TEB algorithm demonstrates strong trajectory optimization capabilities in dynamic 

environments, it still suffers from insufficient path smoothness. Since TEB primarily focuses on the joint 

optimization of time and space, the path optimization objective often prioritizes obstacle avoidance and time 

constraints. This can result in trajectories with numerous abrupt turns and significant curvature changes. Such 

trajectories not only compromise the stability of robotic motion but also increase the difficulty of execution 

control. Particularly in narrow or complex terrains, this tendency can lead to increased path tracking errors 

(Zhang et al., 2022).  

To address this issue, this paper proposes an improved R-TEB algorithm. While preserving TEB's 

computational efficiency and obstacle avoidance capabilities, it further optimizes trajectory smoothness, 

enhancing the stability and feasibility of robot path tracking (Zhong et al., 2020). 

1) Introducing curvature optimization constraints: 

B-spline curves possess higher-order continuity, enabling secondary optimization of paths generated 

by the TEB algorithm to achieve smoother trajectories while preserving their curvature. Trajectory points 

produced by the TEB algorithm often exhibit a step-like appearance, which is detrimental to smooth tracking. 

Therefore, B-splines can be employed to refine these paths. The specific process is as follows: Extract key 

control points from the TEB trajectory. Let the trajectory points generated by TEB be denoted as 

0 1{ , , , }nX X X X=  , where each point 
iX  contains position information 

,( )i ix y  and time interval 
iT . Select a 

subset of key trajectory points 
iP  as control points for the B-spline to reduce computational complexity while 

ensuring global consistency of the trajectory. 

Construct a B-spline curve using a cubic B-spline (k=3) fit: 

,30
( ) ( )

n

i ii
P u N u P

=
=                                                              (4) 

             Compute the basis function 
,3( )iN u  to ensure the trajectory satisfies smoothness. 

             Smooth Path Optimization Calculates Curvature ( )u  to Evaluate Path Smoothness: 

 3

2 2 2
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                                                              (5) 
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By adjusting control points to minimize the curvature change rate ( )u , the feasibility of the robot's 

trajectory is ensured. 
 

2) Introducing curvature optimization constraints: 

By optimizing the time interval 
kT , the TEB algorithm reduces abrupt velocity changes while ensuring 

path feasibility, thereby enhancing trajectory traceability. To ensure safety, the TEB algorithm incorporates 

obstacle distance constraints during optimization, guaranteeing the robot maintains a safe distance from 

obstacles (Zhou et al., 2020): 

 
min, omin

pmin

jd r
e S

r


 −
=  

 
 

                                                                             (6) 

where: min, jd  represents the minimum distance between the robot and an obstacle or target point; ominr  

denotes the obstacle avoidance safety distance; pminr  indicates the maximum permissible deviation when 

reaching the target point. To enhance the robot's task execution efficiency, the TEB algorithm minimizes the 

total travel time: 

time kk
f T=                                                                            (7) 

By optimizing path time allocation, the TEB algorithm ensures that the robot finds the optimal trajectory 

while satisfying all constraints. 

The core of the TEB algorithm is to optimize a weighted multi-objective function, ensuring that the 

generated path satisfies kinematic constraints while adapting to complex environments. Its objective function 

is as follows: 

 TEB ( )k kk
J f B=                                                                         (8) 

where: ( )kf B  represents the constraint function in path planning, related to robot motion constraints, obstacle 

avoidance, and path smoothness; 
k  denotes the weighting of each constraint, determining the importance of 

different optimization objectives. 

 

3) Introducing velocity smoothing constraints 

In path planning and trajectory optimization, the smoothness of a robot's velocity directly impacts the 

stability and execution efficiency of its motion. To enhance path tracking performance in dynamic environments, 

this paper introduces a velocity smoothing constraint. This constraint aims to prevent unreasonable velocity 

fluctuations during path execution, ensuring smooth motion. 

 

In traditional path optimization algorithms, particularly the TEB algorithm, velocity control often lacks 

smoothness. This can lead to excessive acceleration or abrupt deceleration during execution, increasing 

control difficulty and potentially causing system oscillations. To address this, the following constraint is 

proposed by optimizing the smoothness of velocity changes (Jiang et al., 2022): 

 
2

smoothness 1

1

( )
N

i i

i

J V V −

=

= −                                                                 (9) 

Here, iV  and 1iV −  denote the linear velocities at trajectory points iP  and 1iP− , respectively. By 

minimizing the velocity difference between adjacent trajectory points, smooth velocity transitions are 

maintained, preventing large velocity discontinuities and reducing sudden acceleration or deceleration events. 

 

Additionally, to achieve finer control over velocity smoothness, velocity smoothing constraints can be 

integrated with other trajectory optimization constraints—such as time interval optimization and obstacle 

avoidance optimization—to work synergistically throughout the overall optimization process. This approach 

ensures obstacle avoidance and trajectory smoothness while further guaranteeing more gradual velocity 

changes during path tracking. It reduces requirements on the dynamics model and enhances both the precision 

and stability of trajectory execution. 
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4) Integrate global path information 

In dynamic environments, relying solely on local path optimization often leads to getting stuck in local 

optima, especially when obstacles are unevenly distributed or path changes are significant. To enhance the 

global consistency of path planning and prevent robots from deviating from global objectives during local 

planning, this paper proposes integrating global path information into the local path optimization process to 

improve the overall feasibility and stability of the path. In this algorithm, local path planning is optimized using 

the TEB algorithm. However, a global path deviation constraint is introduced during this process to ensure 

consistency between the local trajectory and the global path. This constraint helps the robot maintain the 

correct direction of travel, thereby preventing path deviation or deadlock issues arising from the local 

optimization process (Yang et al., 2015). 

 

To ensure consistency between local paths and global paths, the global path deviation constraint is 

defined as: 

global 2

1

global | | ||
N

i i

i

J p p
=

= −                                                                       (10) 

In the actual optimization process, global path information does not directly influence local path 

optimization but serves as a guiding factor. After integrating global path information, the robot considers the 

direction and trend of the global path during local path optimization, preventing deviation from the overall 

objective in complex environments. This approach not only ensures path feasibility but also enhances path 

coherence. Particularly in multi-obstacle and dynamic environments, the robot can perform path tracking more 

effectively. Simultaneously, leveraging global path information to guide local optimization prevents getting 

stuck in local optima. This enables the robot to maintain effective motion planning in dynamic environments, 

ultimately boosting the overall efficiency and success rate of path planning. 

 

RESULTS 

Vineyard Field Test 

The experimental design developed multiple test protocols based on the actual conditions of the 

Thousand-Mu Garden grape experimental field, aiming to comprehensively validate the application 

effectiveness of the pose correction algorithm and trajectory tracking control algorithm in a vineyard 

environment. The experiments encompassed key aspects such as multi-object obstacle detection, path 

planning, and path tracking, ensuring a realistic reflection of the robot's performance in complex environments. 

By collecting actual measurement data, this study conducted a detailed assessment of the robot's path tracking 

accuracy and system robustness under various operational conditions. Data analysis results will validate 

whether the path planning algorithm generates feasible operational paths in the field and further assess the 

trajectory tracking algorithm's performance in practical applications. 

 

 
Fig. 6 –Schematic Diagram of Inspection Area 

 

As shown in Figures 6 and 7, the robot can achieve autonomous navigation within a vineyard 

environment. Under this path planning scenario, the orchard robot can smoothly navigate around obstacles 

and continue its inspection operations.  
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Fig. 7 – Robot Obstacle Avoidance Diagram 

 

Test Result Analysis 

Based on the recorded data, differences between the R-TEB and TEB algorithms were analyzed with 

respect to path smoothness, obstacle avoidance capability, and tracking accuracy, enabling a comprehensive 

assessment of the applicability of the R-TEB algorithm in complex vineyard environments. During testing, the 

robot traveled along an optimized path, with the R-TEB algorithm adjusting the path based on real-time sensor 

data to ensure smooth obstacle avoidance and precise path tracking. Data was recorded throughout the entire 

process to analyze the stability and real-time dynamic obstacle avoidance capabilities of the R-TEB algorithm.  
During the test, the robot traveled along the predetermined target path while continuously recording 

changes in its linear and angular velocities. The robot maintained a relatively stable linear velocity during linear 

path segments. However, during obstacle avoidance or turning maneuvers, the angular velocity adjusted 

accordingly to ensure smooth path transitions.  
As shown in Figures 8 and 9, compared to the traditional TEB algorithm, the R-TEB algorithm 

effectively reduces abrupt changes in linear and angular velocities by introducing curvature optimization and 

velocity smoothing constraints. This results in smoother velocity adjustments, thereby enhancing the stability 

of trajectory tracking. 

 

 

Fig. 8 –Linear Speed Comparison Between TEB and R-TEB Algorithms 

 

 

 

Fig. 9 –Comparison of Angular Velocity Between TEB and R-TEB Algorithms 
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As shown in Figure 10, under identical obstacle avoidance conditions, the robot’s actual travel 

trajectories were recorded using RTK positioning while operating with the R-TEB and TEB algorithms. The 

experimental results reveal that the path planned by the TEB algorithm exhibits significant curvature changes, 

causing the robot to deviate from the planned trajectory during actual operation. This deviation is particularly 

pronounced at obstacle-avoidance turns. In contrast, the R-TEB algorithm, which optimizes curvature, enables 

the robot to follow the planned path more smoothly. The deviation between the actual trajectory and the 

theoretical path is smaller, resulting in superior path tracking performance.   

 
Fig. 10 –Actual Trajectories of TEB and R-TEB Algorithms 

Table 1 

Trajectory Tracking Test RTK Output Absolute Lateral Deviation Statistics (Unit: meters) 

Test TEB 
average 

TEB 
Standard deviation 

TEB 
RMSE 

R-TEB 
average 

R-TEB 
Standard deviation 

R-TEB 
RMSE 

1 0.017            0.018 0.017 0.019 0.015 0.020 

2 0.019 0.019 0.019 0.018 0.016 0.019 

        3       0.020 0.022 0.022 0.019 0.018 0.019 

4 0.021 0.018 0.018 0.017 0.017 0.016 

5 0.018 0.021 0.016 0.018 0.018 0.020 

6 0.017 0.018 0.019 0.019 0.015 0.017 

7 0.019 0.021 0.025 0.017 0.011 0.016 

8 0.019 0.019 0.019 0.019 0.018 0.020 

9 0.024 0.019 0.023 0.018 0.019 0.022 

10 0.021 0.020 0.012 0.018 0.016 0.020 

 

The tracking performance of the two algorithms was evaluated by operating the robot at a constant 

speed of 10 km/h. For both trials, the initial position deviation and heading deviation were set to zero (with the 

initial position deviation limited to a maximum of 3 cm and the heading deviation restricted to a maximum of 

1.5°). A GNSS-RTK device with a 10-Hz sampling frequency was employed to record the vehicle's position 

and heading information. The calculation of relative deviations was achieved by means of data analysis from 

multiple test runs. 

Table 1 presents statistical results for absolute lateral deviations output by RTK, derived from repeated 

obstacle-avoidance tracking tests using multiple sets of R-TEB and TEB algorithms within the vineyard. Using 

RMSE (Root Mean Square Error) as the metric for prediction accuracy, the R-TEB algorithm yielded values 

between 0.016–0.022 m, while the TEB algorithm produced values between 0.012–0.025 m. This further 

demonstrates the R-TEB algorithm's superior tracking capability in practical applications. 

 

CONCLUSIONS 

The experimental results demonstrate that this vineyard robot exhibits optimized path planning and 

tracking accuracy under various experimental conditions. The system has demonstrated its efficacy in 

effectively addressing challenges posed by complex terrain and dynamic environments, thereby validating its 

practical application potential in vineyard scenarios. This finding is of considerable significance for the vigorous 

advancement of smart agriculture and the empowerment of agricultural modernization in the future. 
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