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ABSTRACT

In recent years, the development of vineyard robots has emerged as a significant development in agricultural
equipment, playing an increasingly vital role in precision agriculture and intelligent operations. These robots
are capable of precise navigation, obstacle avoidance, and real-time path planning within agricultural settings.
The paper employs laser Simultaneous Localization and Mapping (SLAM) technology as the primary method
for achieving real-time, accurate positioning of the robot, thereby providing reliable environmental perception
capabilities and prior map information for the vineyard robot. The Robust-Time Elastic Band (R-TEB) local
planning algorithm developed in this study automatically generates a smooth, continuous inspection path within
the operational area. This objective is pursued by the consideration of parameters such as the robot's working
width, minimum turning radius, and operational strip width, with the aim of achieving a minimization of energy
consumption. Utilizing the Root Mean Square Error (RMSE) metric to gauge prediction accuracy, the R-TEB
algorithm yielded values ranging from 0.016 to 0.022 meters, while the TEB algorithm produced values
between 0.012 and 0.025 meters. The findings indicate that the R-TEB algorithm optimizes trajectory quality
in vineyard environments, thereby enhancing the robot's autonomous navigation capabilities and obstacle
avoidance efficiency.
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INTRODUCTION

Multi-object obstacle avoidance and path planning represent core challenges in the realm of
autonomous navigation for vineyard robots. The primary task of the system is to generate collision-free and
efficient motion trajectories. This is particularly challenging in complex agricultural environments such as
vineyards, where the system must navigate regular row spacing, dense obstacles, and sparse point cloud data
(Fox et al., 1997).

Autonomous positioning and navigation technology for vineyard robots serves as the core
foundational architecture within smart agriculture systems (Qiu et al., 2020). lts performance directly
determines the operational autonomy and control robustness of agricultural robots in unstructured agricultural
environments.
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SLAM-based navigation systems construct high-precision 3D point cloud maps using LiDAR point
cloud data, providing mobile robots with centimeter-level positioning accuracy and dynamic environmental
perception capabilities.

Through the combined use of front-end odometry and back-end optimization, real-time pose
estimation and incremental map updating can be achieved (Zhou et al., 2021). Gao et al. (2021) developed a
tightly coupled factor-graph optimization framework that integrates LiDAR, IMU, and GNSS data, where loop-
closure detection and motion constraints are introduced as nonlinear factors in the back-end optimization to
support 3D reconstruction. Nie et al. (2021) proposed a lightweight SLAM system that builds a sparse tree-
trunk feature map and suppresses branch- and leaf-induced occlusion by analyzing point cloud density
gradients. Furthermore, a multi-criteria trunk detection algorithm was developed that combines curvature
features with reflectance-intensity thresholds to enable accurate trunk identification.

In the context of local path planning, the TEB algorithm has been demonstrated to exhibit exceptional
performance by generating smooth trajectories through the optimization of time elastic bands. However, in
sparse point cloud environments, its trajectory optimization efficiency is relatively low, and it lacks a dynamic
adjustment mechanism for static obstacles. Subsequent researchers proposed a velocity-constrained TEB
variant, which improved path smoothness but still exhibited path jittering in narrow-channel scenarios. Zhou et
al., 2014, innovatively applied the ant colony optimization algorithm to solve the travelling salesman problem.
The experimental data demonstrate that this method significantly enhances the prediction accuracy of
agricultural machinery movement trajectories in complex obstacle environments. Addressing the specific
requirements of omnidirectional mobile agricultural platforms, Zhang et al., 2024, deeply integrated the FMT
algorithm with an improved artificial potential field method. This was then combined with B-spline curve path
smoothing technology and a gravity adjustment mechanism based on relative distance was introduced. The
findings indicate that, in comparison with FMT, RRT, and Informed-RR algorithms, this methodology results in
a reduction of search time by over 45%, thereby significantly enhancing the operational efficiency and safety
of agricultural machinery in unstructured farmland.

The present paper puts forward a local path planning algorithm for vineyard robots that is based on
laser SLAM as prior information. The system framework is illustrated in Figure 1. Lidar is utilized as the visual
perception sensor to map the entire vineyard through the SLAM system. The resulting three-dimensional map
facilitates positioning and navigation, while the two-dimensional map aids path planning. The positioning data
reception and conversion system provides positioning information to the path planning system. The robot relies
on prior map information to perform real-time local planning and obstacle avoidance.
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MATERIALS AND METHODS
Vineyard Raw Data Collection
The site selection for data collection by vineyard robots must ensure open space to guarantee stable
positioning signals. This site is located at the Thousand-Mu Garden Grape Planting Base in Huantai County,
Zibo City, Shandong Province. The standardized planting pattern of 3-meter row spacing and 1.5-meter plant
spacing provides an ideal environment for robotic data collection and algorithm testing.
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Fig. 2 — The Thousand-Mu Garden

As shown in Figure 3, the vineyard robot is equipped with a LIDAR device mounted on an aluminum
profile bracket positioned 1 meter above the ground. For precise positioning, two sets of GNSS antennas—
one front and one rear—are secured via powerful magnetic suction cups. This enables the GNSS-RTK system
to provide the robot with real-time positioning data accurate to the centimeter level. Additionally, the robot
incorporates an artificial intelligence processor. Multiple cables are used to establish system communication:
a serial cable connects the control computer to the robot chassis drive board, a USB cable interfaces with the
GNSS-RTK positioning receiver, and an Ethernet cable links the system to the LIDAR adapter box. The tracked
chassis of the orchard robot is powered through a buck-converter module, which steps down the 48 V supply
to 24 V for the LIiDAR and further reduces it to 5 V for the Al processor.
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Fig. 3 —Crawler-Type Vineyard Robot
1. External Monitor; 2. Atrtificial Intelligence (Al) Processors;
3. Crawler-Type Mobile Chassis; 4. Dual-Antenna GNSS-RTK; 5. 64-Line 3D LiDAR.
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Figure 4 shows the hardware connection diagram of the robot.
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Fig. 4 — Hardware Connection Diagram of Vineyard Robot

SLAM System and R-TEB Algorithm Details

In outdoor orchard environments, the position of the sun continuously shifts from sunrise to sunset,
and the intensity of sunlight fluctuates over time. These natural conditions can easily cause visual sensors to
misidentify objects or experience positioning errors. In contrast, laser sensors do not rely on external light
sources. By emitting their own laser beams for detection, they effectively mitigate interference from changing
illumination and maintain stable sensing performance (Xue et al., 2023).

The SC-LeGO-LOAM algorithm was adopted as the SLAM framework in this study. SC-LeGO-LOAM
is based on LeGO-LOAM and incorporates loop closure detection using scan context. This improves detection
speed compared to LeGO-LOAM (Shan et al., 2018). The system primarily consists of four components: point
cloud segmentation, feature extraction, radar odometry and map construction (Lv et al., 2025). As illustrated
in Figure 5, point cloud ground segmentation, denoising and downsampling are common pre-processing
methods. The effectiveness of these methods was validated through before-and-after image comparisons in
our self-created vineyard dataset. The loop closure detection module aligns with the SC-LeGO-LOAM
algorithm framework. Odometry calculations use a feature-point-based front-end registration method
integrated with the loop closure detection module for collaborative processing (Qin et al., 2024).

Finally, the optimized pose and map data are fed into the graph optimization back-end to enhance
orchard mapping accuracy. The resulting 3D map facilitates navigation, while the 2D map supports path
planning. The 3D map is converted to 2D in real time, with the current pose serving as input to the path planning
system (Zhang et al., 2014).

Mapping Location Path Planning

Ground Segmentation Point Cloud Denoising l Buse

Downsampling

Original Vineyard Point Cloud Data

Before

Before
2D Raster Map Conversion

After

After

|
@

3D Point Cloud Map Construction for Vineyards l

Local Path Planning Based on the Map

Scan-to-map

Fig. 5 —Autonomous Navigation Schematic Diagram
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In practical engineering applications, to adapt to diverse complex environments and achieve superior
obstacle avoidance, the classic “Elastic Band” algorithm describes the motion state of mobile robots through
asequence of poses X, =(x,y,, )" e R*xS'. However, this approach fails to account for temporal constraints,

potentially rendering path planning ineffective in dynamic real-world scenarios (Pire et al., 2017. To address
this issue, Résmann et al., 2015, proposed the TEB algorithm. Building upon the Elastic Band framework, it
incorporates temporal interval information by introducing a time difference AT, between consecutive pose

sequences. This enables path planning to not only optimize spatial trajectories but also dynamically adjust
temporal allocation, thereby enhancing the feasibility of trajectory tracking.
The TEB path can be represented as:
B = (Q’ T) = (Xi’ Aij)i:O.“n,j:O,..nfl (1)
Where: Q denotes the state trajectory; 7 denotes the time interval sequence; B is the data structure
composed of the state trajectory and the corresponding time interval sequence (Wu et al., 2021).
During the TEB path optimization process, it is essential to ensure that the robot satisfies the Ackerman
kinematic model constraint, meaning its turning radius must not be less than the minimum turning radius:
P, = (2)
Ay
where: d, is the Euclidean distance between adjacent trajectory points; Ap, is the change in steering

angle between adjacent trajectory points. When the robot moves along the trajectory, its velocity v, and
acceleration a, must satisfy the physical constraints (Yang et al., 2022):

v, :i’ a, = Vit Yk 3)
AT, AT,

Although the TEB algorithm demonstrates strong trajectory optimization capabilities in dynamic
environments, it still suffers from insufficient path smoothness. Since TEB primarily focuses on the joint
optimization of time and space, the path optimization objective often prioritizes obstacle avoidance and time
constraints. This can result in trajectories with numerous abrupt turns and significant curvature changes. Such
trajectories not only compromise the stability of robotic motion but also increase the difficulty of execution
control. Particularly in narrow or complex terrains, this tendency can lead to increased path tracking errors
(Zhang et al., 2022).

To address this issue, this paper proposes an improved R-TEB algorithm. While preserving TEB's
computational efficiency and obstacle avoidance capabilities, it further optimizes trajectory smoothness,
enhancing the stability and feasibility of robot path tracking (Zhong et al., 2020).

1) Introducing curvature optimization constraints:

B-spline curves possess higher-order continuity, enabling secondary optimization of paths generated
by the TEB algorithm to achieve smoother trajectories while preserving their curvature. Trajectory points
produced by the TEB algorithm often exhibit a step-like appearance, which is detrimental to smooth tracking.
Therefore, B-splines can be employed to refine these paths. The specific process is as follows: Extract key
control points from the TEB trajectory. Let the trajectory points generated by TEB be denoted as
X ={X,,X,,....X,}, where each point x, contains position information (x, y,) and time interval A7 . Select a

subset of key trajectory points P, as control points for the B-spline to reduce computational complexity while

ensuring global consistency of the trajectory.
Construct a B-spline curve using a cubic B-spline (k=3) fit:

Pu)= N, P (4)
Compute the basis function v ,(u) to ensure the trajectory satisfies smoothness.

Smooth Path Optimization Calculates Curvature k() to Evaluate Path Smoothness:

ey = X000~ @@

(X'() +y'w)*)?

©®)
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By adjusting control points to minimize the curvature change rate x(u), the feasibility of the robot's
trajectory is ensured.

2) Introducing curvature optimization constraints:
By optimizing the time interval AT, , the TEB algorithm reduces abrupt velocity changes while ensuring

path feasibility, thereby enhancing trajectory traceability. To ensure safety, the TEB algorithm incorporates
obstacle distance constraints during optimization, guaranteeing the robot maintains a safe distance from
obstacles (Zhou et al., 2020):

min, j romin

e =8 (6)

rpmin

where: dmin’j represents the minimum distance between the robot and an obstacle or target point; 7.

omin

denotes the obstacle avoidance safety distance; 7.

min iNdicates the maximum permissible deviation when
reaching the target point. To enhance the robot's task execution efficiency, the TEB algorithm minimizes the

total travel time:

ﬁime = ZkAT;c (7)

By optimizing path time allocation, the TEB algorithm ensures that the robot finds the optimal trajectory
while satisfying all constraints.

The core of the TEB algorithm is to optimize a weighted multi-objective function, ensuring that the
generated path satisfies kinematic constraints while adapting to complex environments. Its objective function
is as follows:

Jren :Zkykﬁc(B) (8)
where: f, (B) represents the constraint function in path planning, related to robot motion constraints, obstacle

avoidance, and path smoothness; y, denotes the weighting of each constraint, determining the importance of

different optimization objectives.

3) Introducing velocity smoothing constraints

In path planning and trajectory optimization, the smoothness of a robot's velocity directly impacts the
stability and execution efficiency of its motion. To enhance path tracking performance in dynamic environments,
this paper introduces a velocity smoothing constraint. This constraint aims to prevent unreasonable velocity
fluctuations during path execution, ensuring smooth motion.

In traditional path optimization algorithms, particularly the TEB algorithm, velocity control often lacks
smoothness. This can lead to excessive acceleration or abrupt deceleration during execution, increasing
control difficulty and potentially causing system oscillations. To address this, the following constraint is
proposed by optimizing the smoothness of velocity changes (Jiang et al., 2022):

N

=X V=V, ©)
i=1

smoothness

Here, V. and V., denote the linear velocities at trajectory points P and P_,, respectively. By

minimizing the velocity difference between adjacent trajectory points, smooth velocity transitions are
maintained, preventing large velocity discontinuities and reducing sudden acceleration or deceleration events.

Additionally, to achieve finer control over velocity smoothness, velocity smoothing constraints can be
integrated with other trajectory optimization constraints—such as time interval optimization and obstacle
avoidance optimization—to work synergistically throughout the overall optimization process. This approach
ensures obstacle avoidance and trajectory smoothness while further guaranteeing more gradual velocity
changes during path tracking. It reduces requirements on the dynamics model and enhances both the precision
and stability of trajectory execution.
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4) Integrate global path information

In dynamic environments, relying solely on local path optimization often leads to getting stuck in local
optima, especially when obstacles are unevenly distributed or path changes are significant. To enhance the
global consistency of path planning and prevent robots from deviating from global objectives during local
planning, this paper proposes integrating global path information into the local path optimization process to
improve the overall feasibility and stability of the path. In this algorithm, local path planning is optimized using
the TEB algorithm. However, a global path deviation constraint is introduced during this process to ensure
consistency between the local trajectory and the global path. This constraint helps the robot maintain the
correct direction of travel, thereby preventing path deviation or deadlock issues arising from the local
optimization process (Yang et al., 2015).

To ensure consistency between local paths and global paths, the global path deviation constraint is
defined as:

lep, PP (10)

In the actual optimization process, gIobaI path information does not directly influence local path
optimization but serves as a guiding factor. After integrating global path information, the robot considers the
direction and trend of the global path during local path optimization, preventing deviation from the overall
objective in complex environments. This approach not only ensures path feasibility but also enhances path
coherence. Particularly in multi-obstacle and dynamic environments, the robot can perform path tracking more
effectively. Simultaneously, leveraging global path information to guide local optimization prevents getting
stuck in local optima. This enables the robot to maintain effective motion planning in dynamic environments,
ultimately boosting the overall efficiency and success rate of path planning.

RESULTS
Vineyard Field Test

The experimental design developed multiple test protocols based on the actual conditions of the
Thousand-Mu Garden grape experimental field, aiming to comprehensively validate the application
effectiveness of the pose correction algorithm and trajectory tracking control algorithm in a vineyard
environment. The experiments encompassed key aspects such as multi-object obstacle detection, path
planning, and path tracking, ensuring a realistic reflection of the robot's performance in complex environments.
By collecting actual measurement data, this study conducted a detailed assessment of the robot's path tracking
accuracy and system robustness under various operational conditions. Data analysis results will validate
whether the path planning algorithm generates feasible operational paths in the field and further assess the
trajectory tracking algorithm's performance in practical applications.
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Fig. 6 —Schematic Diagram of Inspection Area
As shown in Figures 6 and 7, the robot can achieve autonomous navigation within a vineyard

environment. Under this path planning scenario, the orchard robot can smoothly navigate around obstacles
and continue its inspection operations.

983



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

Fig. 7 — Robot Obstacle Avoidance Diagram

Test Result Analysis

Based on the recorded data, differences between the R-TEB and TEB algorithms were analyzed with
respect to path smoothness, obstacle avoidance capability, and tracking accuracy, enabling a comprehensive
assessment of the applicability of the R-TEB algorithm in complex vineyard environments. During testing, the
robot traveled along an optimized path, with the R-TEB algorithm adjusting the path based on real-time sensor
data to ensure smooth obstacle avoidance and precise path tracking. Data was recorded throughout the entire
process to analyze the stability and real-time dynamic obstacle avoidance capabilities of the R-TEB algorithm.

During the test, the robot traveled along the predetermined target path while continuously recording
changes in its linear and angular velocities. The robot maintained a relatively stable linear velocity during linear
path segments. However, during obstacle avoidance or turning maneuvers, the angular velocity adjusted
accordingly to ensure smooth path transitions.

As shown in Figures 8 and 9, compared to the traditional TEB algorithm, the R-TEB algorithm
effectively reduces abrupt changes in linear and angular velocities by introducing curvature optimization and
velocity smoothing constraints. This results in smoother velocity adjustments, thereby enhancing the stability
of trajectory tracking.

3.75¢
> Raw Linear Velocity

3.50 | === Smoothed Linear Velocity
3.25¢+
3.00
2.75

2.50F

Linear Velocity (m/s)

2.25¢

2.00

0 “5 20 30 a0 50
Time Step
Fig. 8 —Linear Speed Comparison Between TEB and R-TEB Algorithms
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As shown in Figure 10, under identical obstacle avoidance conditions, the robot’s actual travel
trajectories were recorded using RTK positioning while operating with the R-TEB and TEB algorithms. The
experimental results reveal that the path planned by the TEB algorithm exhibits significant curvature changes,
causing the robot to deviate from the planned trajectory during actual operation. This deviation is particularly
pronounced at obstacle-avoidance turns. In contrast, the R-TEB algorithm, which optimizes curvature, enables
the robot to follow the planned path more smoothly. The deviation between the actual trajectory and the

theoretical path is smaller, resulting in superior path tracking performance.
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Fig. 10 —Actual Trajectories of TEB and R-TEB Algorithms

Table 1

Trajectory Tracking Test RTK Output Absolute Lateral Deviation Statistics (Unit: meters)
Test TEB TEB TEB R-TEB R-TEB R-TEB
average Standard deviation RMSE average Standard deviation RMSE
1 0.017 0.018 0.017 0.019 0.015 0.020
2 0.019 0.019 0.019 0.018 0.016 0.019
3 0.020 0.022 0.022 0.019 0.018 0.019
4 0.021 0.018 0.018 0.017 0.017 0.016
5 0.018 0.021 0.016 0.018 0.018 0.020
6 0.017 0.018 0.019 0.019 0.015 0.017
7 0.019 0.021 0.025 0.017 0.011 0.016
8 0.019 0.019 0.019 0.019 0.018 0.020
9 0.024 0.019 0.023 0.018 0.019 0.022
10 0.021 0.020 0.012 0.018 0.016 0.020

The tracking performance of the two algorithms was evaluated by operating the robot at a constant
speed of 10 km/h. For both trials, the initial position deviation and heading deviation were set to zero (with the
initial position deviation limited to a maximum of 3 cm and the heading deviation restricted to a maximum of
1.5°). A GNSS-RTK device with a 10-Hz sampling frequency was employed to record the vehicle's position
and heading information. The calculation of relative deviations was achieved by means of data analysis from
multiple test runs.

Table 1 presents statistical results for absolute lateral deviations output by RTK, derived from repeated
obstacle-avoidance tracking tests using multiple sets of R-TEB and TEB algorithms within the vineyard. Using
RMSE (Root Mean Square Error) as the metric for prediction accuracy, the R-TEB algorithm yielded values
between 0.016-0.022 m, while the TEB algorithm produced values between 0.012-0.025 m. This further
demonstrates the R-TEB algorithm's superior tracking capability in practical applications.

CONCLUSIONS

The experimental results demonstrate that this vineyard robot exhibits optimized path planning and
tracking accuracy under various experimental conditions. The system has demonstrated its efficacy in
effectively addressing challenges posed by complex terrain and dynamic environments, thereby validating its
practical application potential in vineyard scenarios. This finding is of considerable significance for the vigorous
advancement of smart agriculture and the empowerment of agricultural modernization in the future.
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