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ABSTRACT 

In this study, a machine-vision-based automatic control system for the topsoil stripping of Fritillaria ussuriensis 

Maxim. (FUM) was designed to address the problems of manual adjustment, low control accuracy, and 

response lag in stripping-depth control during FUM harvesting. An improved YOLOv5s-SA target detection 

algorithm was used to calculate FUM density and was deployed on the Jetson Nano edge-computing platform. 

Combined with a fuzzy control algorithm, it drives the servo electric cylinder to achieve dynamic depth 

adjustment of the scraping board. Test results showed that, after deploying the target detection algorithm on 

the edge AI device and accelerating it with TensorRT, the average inference time was 0.077 s, and the system 

response time was 0.26 s, meeting the real-time requirements of agricultural operations. Simulation results 

indicated that the average error between the stripping depth of the automatic control system and the preset 

depth was 3.72 mm, representing a 44.1% improvement compared with fixed-depth control. The average ideal 

stripping rate reached 54.96%, an improvement of 21.66% over the 33.3% achieved under fixed-depth control. 

 

摘要 

针对平贝母收获中表土剥离深度依赖人工调节、控制精度低及响应滞后等问题，设计了一种基于机器视觉的平

贝母表土剥离自动控制系统。采用改进的 YOLOv5s-SA 目标检测算法实现平贝母识别密度计算，并部署于 

Jetson Nano 边缘计算平台上，结合模糊控制算法驱动伺服电缸，实现刮土板的动态深度调节。所提出的控制

系统试验结果表明，目标检测算法在边缘 AI 设备部署并经 TensorRT 加速后，识别平均推理耗时为 0.077 s，

响应时间 0.26s，满足农业作业实时性要求。模拟试验结果表明，自动控制系统剥离深度与预铺设深度平均误差

为 3.72 mm，相较固定深度控制改善 44.1%，平均剥离理想率为 54.96%。相比于固定深度控制理想剥离率 33.3%，

提升了 21.66%。 

 

 

 

INTRODUCTION 

Fritillaria ussuriensis Maxim. (FUM), a member of the lily family, is a perennial herbaceous plant (Fig. 1) 

(Li et al., 2025). The medicinal and harvestable part is the underground bulb, which has an average diameter 

of 3–30 mm (Jiao et al., 2022). It has properties such as heat-clearing, cough relief, and phlegm resolution and 

is widely used in the production of traditional Chinese medicine preparations and health food (Yang et al., 

2025). FUM is mainly distributed in the Xiao Xing’anling Mountains and Changbai Mountains in the three 

northeastern provinces. According to incomplete statistics, its cultivation area has reached 100,000 mu, with 

an annual economic output value of more than one billion yuan, and it has high economic value (An et al., 

2024). 
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Fig. 1 - Distribution of FUM stems, leaves, and fruits 

 

At present, (FUM) is mainly harvested through manual digging and mechanical two-stage operations, 

which are labor-intensive, inefficient, and highly sensitive to seasonal rainfall during the peak harvest season, 

often resulting in significant post-harvest losses (Song et al., 2023). To address this, Heilongjiang Bayi 

Agricultural University has developed a two-stage FUM harvester (Fig. 2) (Song et al., 2015), consisting of a 

topsoil stripping unit and a screening unit (Song et al., 2017). In the first stage, the stripper removes surface 

soil to expose and loosen the bulbs, followed by natural drying. In the second stage, the mixture is collected 

and screened to complete harvesting. 

However, accurate control of stripping depth is critical (Li et al., 2022). Over-stripping increases energy 

consumption and bulb damage, while under-stripping leads to soil contamination, longer screening times, and 

higher impurity rates. Existing machines still rely on manual depth adjustments based on visual observation, 

which suffers from poor precision and delayed response. Therefore, achieving automated control of stripping 

depth is essential for improving harvesting efficiency and reducing bulb damage. 

 

  

(a) (b) 
Fig. 2 – Two-stage FUM harvester 

(a) FUM topsoil stripper (b) FUM screening machine 

 

With regard to the control of digging or stripping depth during the harvesting of underground fruits, 

current research by domestic and international scholars has mainly focused on obtaining surface 

characteristics through position sensors, ultrasonic waves, or ground pressure sensors and then achieving 

automatic depth limitation control through control algorithms such as fuzzy PID (Wang et al., 2025). Xiong et 

al., (2022), introduced a sensor + PLC + hydraulic system into a cassava harvester and adopted integrated 

separation fuzzy PID control to improve the harvester’s performance. This system addressed issues such as 

unstable digging depth, cassava damage, high loss rates, and high energy consumption. Tao et al., (2021), 

designed an automatic depth control system for a tuber harvester. By using angle sensors to collect changes 

in the contour of the ridges, a dual-threshold dead zone control algorithm was employed to drive hydraulic 

cylinders and achieve real-time depth adjustment, effectively reducing tuber damage and missed harvesting 

rates. You et al., (2015), designed an ultrasonic distance measurement-based depth adjustment device for 

peanut harvesters, achieving real-time response control of digging depth. Dai et al., (2019), used an STM32 

controller combined with a rotary encoder to construct a servo control system, achieving dynamic control of 

working depth. However, these methods are mainly based on surface features and cannot directly perceive 

crop information, resulting in “overdigging” or “underdigging” problems in field environments with uneven crop 

distribution or complex terrain. With the development of computer vision and deep learning, machine vision 

has gradually been applied to the field of agricultural automation. Ding et al., (2022), proposed an automatic 

digging depth control system for garlic combined harvesters based on YOLOv5. By using machine vision 

technology to calculate the length of garlic roots, the system drives the length of the electric push rod to achieve 

dynamic depth adjustment of the digging shovel.  

 



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

761 

Sang et al., (2024), designed a corn sowing depth consistency adjustment system based on a 

stereoscopic structured light camera, which can detect the trench depth in real time and drive an electronically 

controlled soil covering and compacting mechanism for adaptive adjustment, thereby reducing depth errors 

during the sowing process. Shi et al., (2024) used lidar technology to detect the cutting height of sugarcane 

harvesters in real time and combined displacement sensors to achieve closed-loop control, thereby improving 

adaptability to hilly terrain. In summary, most of the current research on limited depth digging technology 

focuses on peanuts and potatoes, while only mechanical structure research has been conducted on FUM 

harvesting. 

On the basis of the above analysis, this study proposes a machine vision-based automatic control 

system for FUM topsoil stripping. The system uses an improved YOLOv5 target detection algorithm to identify 

changes in FUM density in the stripping area in real time and combines a servo mechanism to adjust the 

stripping depth automatically, thereby achieving automatic control of the depth of FUM topsoil stripping. This 

provides a theoretical reference for the development and application of FUM topsoil stripping machines. 

 

MATERIAL AND METHODS 

Overall system structure and working principle  

As shown in Fig. 3, the platform comprises five modules: a drive mechanism, image acquisition module, 

topsoil stripping device, control system, and human–machine interface. The drive mechanism adopts a DC 

motor chain drive with Hall sensors for real-time speed monitoring. The image acquisition module uses an 

adjustable camera mounted above the rear of the scraper to capture stripping area images. The stripping 

device consists of a screw-type servo electric cylinder linked to the scraper plate for dynamic depth adjustment. 

The control system integrates a host computer, running a target detection model to estimate FUM exposure 

density, and a subordinate controller that combines detection results with current depth data to execute fuzzy 

control and generate adjustment commands. The human–machine interface enables parameter setting, real-

time display of operation status and stripping depth, and manual intervention. During operation, captured 

images are processed by the host computer, and the controller outputs pulse signals to regulate the scraper 

depth adaptively. 

 
Fig. 3 – Topsoil stripping control system test platform 

1.Vehicle speed detection device; 2. Work platform; 3. Power supply system; 4. Lower-level machine control system box;  

5. Touchscreen; 6. Upper-level machine; 7. Camera; 8. Topsoil removal device. 

 

Control system hardware design 

The system's power module adopts a 24 V DC supply, with DC–DC converters providing 12 V and 5 V 

outputs to ensure voltage compatibility and stable operation across components. The image acquisition and 

processing module employs an NVIDIA Jetson Nano as the host controller, which integrates a 128-core CUDA 

GPU and 4 GB LPDDR4 memory. With support for TensorRT acceleration and USB 3.0 camera interface, it 

enables real-time image acquisition and target detection under low power consumption. Detection results are 

transmitted to the STM32F103ZET6 microcontroller via UART (115,200 bps), which executes control 

algorithms and generates pulse signals to drive a servo motor–actuated ball screw electric cylinder for scraper 

depth regulation. The control module also integrates Hall and displacement sensors for speed and position 

feedback. The execution module comprises a servo drive, electric cylinder, and scraping plate.  
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A touchscreen interface is used for system status display and parameter adjustment. Detailed hardware 

specifications are listed in Table 1. The hardware relationships among various systems are as shown in Fig. 4. 

Table 1 

Detailed parameters of each equipment 

Part Name Main Technical Parameters / Model Specifications 

24V power supply 24 V · 25 Ah 

DC-DC voltage regulator module 24 V→12 V，24 V→5 V 

Camera 1920 × 1080 @ 60 fps, USB 3.0 port 

Jetson Nano B01 4 GB LPDDR4, 128 CUDA cores (Maxwell) 

STM32F103ZET6 32-bit Cortex-M3，72 MHz, Flash 512 KB，UART（115 200 bps） 

Screw Type Servo Electric Cylinder Stroke: 150 mm, screw guide 5 mm, thrust: 5000 N, speed: 50 

mm/s, reduction ratio 4:1 

servo motor Power: 400 W, rated speed: 3000 r/min, rated torque: 1.27 Nm 

Linear Displacement Sensors Stroke 0-150 mm, output 0-5 V, resolution 0.05 mm 

DC Geared Motors Power: 600 W, rated speed 60 r min-¹ 

Hall Velocity Sensors 60 ppr, NPN Open Collector Outputs 

13.3-inch touch screen 1920 x 1080, resistive touch, USB/HDMI communication 

scraper Dimensions: 500 mm × 100 mm 

 

 
Fig. 4 – System control hardware configuration diagram 

 

Identification system design 

Data set production 

To closely reflect real working conditions, image samples were collected from the FUM planting base in 

Hongxing, Yichun City, Heilongjiang Province, encompassing diverse scenarios such as varying lighting, 

occlusion, aggregation, and fragmentation (Fig. 5, a~f). A total of 2,000 images (1280 × 960 resolution) were 

obtained to construct the FUM dataset.  
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The samples were augmented using affine transformation, mosaic enhancement, and histogram 

equalization (Fig. 5; g~h) to improve data diversity. The dataset was split into a training set (70%) and a 

validation set (30%), with the 1,400 training images expanded to 8,400 through augmentation to enhance the 

model’s robustness to variations in target posture and scale (Song et al., 2023). 

Fig. 5 - Examples of images of FUM in different environments and Effect of processing the dataset  
(a) Grass-covered FUM; (b) FUM covered with soil; (c) Multiple clusters of FUM; (d) Broken FUM; (e) Natural light angle; (f) Backlight 

angle (g) Original figure; (h) Horizontal flip; (i) Rotate at any angle; (j) Vertical flip; (k) Mosaic enhancement; (l) Histogram equilibrium. 

 

Based on the improved YOLOv5s model 

Given that the topsoil stripping machine only needs to detect the number of FUM, it is a single-class 

detection. YOLOv5 is a single-stage detection model with few parameters and fast detection speed and is 

widely used in actual agricultural operations (Qanouni et al., 2025;). To improve detection speed and accuracy, 

this study selects the YOLOv5s model, which performs well in terms of speed and accuracy, on the basis of 

the compatibility of the actual deployed hardware edge computing device Jetson Nano and the image features 

of the detection objects. 

In view of the small target size and complex background of FUM, the detection accuracy and speed are 

improved by optimizing the network structure and introducing an attention mechanism. The Swin Transformer 

v2 attention module is introduced to enhance the modeling ability of local and global features. The ACON 

activation function is adopted to enhance the network’s nonlinear expression capability (Zhaoet al., 2023;). 

The improved algorithm is referred to as YOLOv5s-Swin Transformer v2-ACON (abbreviated as YOLOv5s-SA 

algorithm), and its algorithm structure is shown in Fig. 6. 

 

Fig. 6 – YOLOv5s-SA structure diagram 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 
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The hyperparameter settings for the algorithm training after pretraining are as follows: lr0, 0.01; 

momentum, 0.937; weight_decay, 0.0005; epochs, 300; batch size, 32. Under the same environmental 

conditions and parameter settings, the YOLOv5s and YOLOv5s-SA network models were trained separately. 

The results showed that the average mean precision of the YOLOv5s-SA model was 4 percentage points 

higher than that of the original model. The improved YOLOv5s-SA model outperformed the YOLOv5s model 

in terms of mAP, F1 score (F1), and precision (P). with mAP reaching 96.6%. The results of the field tests are 

shown in Fig. 7. 

  

(a) (b) 

Fig. 7 – Comparison of model detection performance  
(a) mAP (b) Test results for different FUM densities 

Fuzzy control algorithm design 

The fuzzy controller takes two parameters from the image recognition system—FUM exposure number 

N and short-term change rate ΔN—as inputs, and outputs the servo electric cylinder adjustment Δd based on 

fuzzy rules derived from manual operation experience. It consists of fuzzification, rule base, inference, and 

defuzzification modules, establishing a fuzzy mapping between input and output (Ban et al., 2024;). 

Fuzzification converts exact values into fuzzy variables by discretizing continuous data into fuzzy sets. 

Considering FUM planting density, vision frame rate, and operating speed, the domain of N is set to [0, 20] 

plants, ΔN to [−1, 1], and Δd to [−8 mm, 8 mm]. Triangular membership functions are adopted for all variables 

due to their sensitivity and computational simplicity. N is divided into seven subsets (VL, L, ML, M, MH, H, VH), 

ΔN into five subsets (NL, NS, ZE, PS, PL), and Δd into seven subsets from significant increase (NB) to 

significant decrease (PB), as illustrated in Fig. 8. 

   

(a) (b) (c) 

Fig. 8 – Membership function 

 

The rule library is the basis for fuzzy controllers to perform logical reasoning and is usually derived from 

human operational experience and experimental feedback. For fuzzy controllers with two inputs and one output, 

the fuzzy reasoning rules are described as follows: 

If (N is A) and (ΔN is B), then (Δd is C). 

Among them, A, B, and C represent the detection quantity, short-term change rate, and fuzzy terms of 

the output variable, respectively. On the basis of the manual operation experience of the topsoil stripping 

machine, 35 control rules were established, as shown in Table 2. Given that the fuzzy control output is a fuzzy 

quantity, it cannot be directly used to drive the servo electric cylinder movement. Therefore, defuzzification 

must be performed using the center of gravity method to obtain the corresponding continuous quantity Δd, 

which serves as the displacement adjustment command for the servo electric cylinder controller. 
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Table 2 

Rules Library 

N 
ΔN 

NL NS ZE PS PL 

VL PB PM PM PS PS 

L PM PS PS ZE PS 

ML PS PS ZE PM PM 

M ZE ZE ZE ZE ZE 

MH NS NS NB NM NB 

H NM NM NM NB NB 

VH NB NB NB NB NB 

 

Control strategy 

With the image processing results used as feedback and the extension length of the servo electric 

cylinder used as the control variable, a closed-loop control system for digging depth is formed. The system 

control flow chart is shown in Fig. 9. 
begin

System initialisation

Set target density value

Image capture

Detect quantity density 

information

Has the current density reached the 
target?

Still
Raising soil 

scraping device

end

Y

N

Detection density > Set density range

Y

Lowering the 

scraper device

N

 

Fig. 9 – System control flowchart 

 

To avoid undercompensation caused by “entering the next frame determination before the soil scraping 

plate is in place,” a time–speed constraint model for the camera guidance control system will be established, 

and the theoretical upper limit for the maximum travel speed will be provided. 

The effective visual length obtained by the current camera each time is 𝐿𝑣𝑎𝑟. When the work platform 

moves forward at a speed of v, the time required for one complete coverage is: 

𝑇 =
𝐿𝑣𝑎𝑟

𝑣
 （1） 

Therefore, the control cycle should meet the following requirements to ensure that the overall adjustment 

response time tsys completes one control cycle: 

𝑇 ≥ 𝑡𝑠𝑦𝑠 

（ 2

） 

Therefore, from Equations (1) and (2), the time constraint for the travel speed can be obtained: 
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𝑣 ≤
𝐿𝑣𝑎𝑟

𝑡𝑠𝑦𝑠
 （3） 

When the maximum allowable depth adjustment per cycle is ∆𝑑𝑚𝑎𝑥, and considering the redundancy 

introduced by signal processing and uncertainty, the effective action time 𝑡𝑒𝑓𝑓 = 𝜂𝑇 (0 < 𝜂 < 1) is defined as 

the safety factor. Therefore, the minimum speed required for the servo electric cylinder is: 

𝑣𝑐 =
∆𝑑𝑚𝑎𝑥

𝜂𝑇
 （4） 

 

By substituting (1) into (4), the linear relationship between the servo electric cylinder speed and the 

travel speed is obtained: 

𝑣𝑐 =
∆𝑑𝑚𝑎𝑥𝑣

𝜂𝐿𝑣𝑎𝑟
 （5） 

 

Therefore, the basic constraint equations can be obtained by combining Equations (1) and (4). 

𝑣𝑐𝑇 =
∆𝑑𝑚𝑎𝑥

𝜂
 （6） 

 

Given that the system must simultaneously satisfy two constraints, namely, the control cycle and the 

servo electric cylinder capacity: 

{
𝑇 ≥ 𝑡𝑠𝑦𝑠

𝑣𝑐 ≤ 𝑣
𝑐，𝑚𝑎𝑥

 
（7） 

Therefore, by substituting (1) and (5) into Equation (7), the comprehensive upper limit of the travel speed 

is obtained: 

𝑣 ≤ 𝑚𝑖𝑛 (
𝐿𝑣𝑎𝑟

𝑡𝑠𝑦𝑠
，

𝑣
𝑐，𝑚𝑎𝑥

𝜂𝐿𝑣𝑎𝑟

∆𝑑𝑚𝑎𝑥
) 

（8） 

 

Therefore, as shown by Equation (8), increasing 𝐿𝑣𝑎𝑟 or reducing ∆𝑑𝑚𝑎𝑥 helps to relax the two types 

of constraints. While increasing the safety factor 𝜂 can reduce the servo electric cylinder speed requirement, 

it also compresses the effective action time, necessitating a comprehensive trade-off. Therefore, the current 

travel speed of the FUM topsoil stripper is 0.6 km/h, the servo electric cylinder speed is 50 mm/s, the camera 

field of view length is 0.2 m, and the maximum depth adjustment is 8 mm, which meets the system working 

requirements. From this, the control cycle T is determined to be 1.2 s. 

The PyQt interface designed is shown in Fig. 10. The interface can be used to adjust various parameters 

via the touch screen before work begins. 

 

Fig. 10 – Upper computer monitoring interface 
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RESULTS 

Deployment of object detection algorithms and RT acceleration 

To improve the inference efficiency of the model on edge AI device platforms, an intermediate model in 

ONNX format was adopted, and the NVIDIA TensorRT toolchain was used to compile and accelerate the model 

on the Jetson Nano platform. The .pt files exported after training the YOLOv5 series models are large and 

consume high inference resources, which will significantly affect system real-time performance if deployed 

directly.  

By converting to the TensorRT engine format, graph computation optimization and convolution/activation 

fusion can be achieved, thereby reducing model load and improving execution efficiency (Lv et al., 2025). In 

this experiment, the input image resolution was set to 640×640, and 300 frames of images were processed 

continuously. The system clock was recorded at the start and end of model inference, and the average 

inference time was calculated. To eliminate external interference, the graphical interface and disk write 

operations were disabled during testing to ensure exclusive access to GPU resources. The average detection 

time for each model on different platforms and inference frameworks is shown in Table 3. 

Table 3 

Model detection time 

model t1（s） t2（s） t3（s） 

YOLOv5s 0.033 0.184 0.117 

YOLOv5s-SA 0.021 0.118 0.077 

* Note: t1 represents the detection time for inference on a PC; t2 represents the detection time for inference on the original .pt model on 

Jetson Nano; t3 represents the detection time for inference on the engine model using TensorRT on Jetson Nano. 

 

 

Fig. 11 – Time required for image processing of 300 frames of FUM 

 

System response testing 

To evaluate the real-time performance of deep regulation, the total system response time 𝑡𝑠𝑦𝑠 is divided 

into image processing time 𝑡3, control signal transmission time 𝑡4, and actuator response time 𝑡5, which are 

related as follows: 

𝑡𝑠𝑦𝑠 = 𝑡3 + 𝑡4 + 𝑡5 （9） 

 

Image processing time 𝑡3: Deploying the lightweight YOLOv5-SA model on Jetson Nano and performing 

inference with RT acceleration. This process was measured in Section 3.1 and took 0.077 seconds. 
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𝑡3 =
1

𝑁
∑(𝑡𝑖,𝑒𝑛𝑑 − 𝑡𝑖,𝑠𝑡𝑎𝑟𝑡)

𝑁

𝑖=1

 
(10) 

Decision signal transmission time 𝑡4: A 100 MHz oscilloscope was used to simultaneously monitor the 

rising edges of the Jetson Nano GPIO trigger signal and the STM32 PWM output signal, and the delay was 

calculated. The measured time for this process was 0.0058 seconds. 

𝑡4 = 𝑡𝑃𝑊𝑀𝑟𝑖𝑠𝑒
− 𝑡𝐺𝑃𝐼𝑂𝑟𝑖𝑠𝑒

 (11) 

Actuator response time 𝑡5: Fill the test soil scraping mechanism with 100 mm thick soil, and move the 

test bench between the soil ridges at a typical speed of 0.6 km/h for removing topsoil using FUM. Use computer 

monitoring software to control the extension and retraction of the soil scraping plate at different soil depths, 

and use a single-chip microcomputer to collect the number of opposite feedbacks from the electric cylinder 

photoelectric encoder Z to determine whether the electric cylinder is in the correct position. The response time 

was measured using the timer of the single-chip microcomputer and the number of external interrupts. The 

timer of the single-chip microcomputer was set to a timing cycle of 5 ms. The response time was used to 

determine the change in the maximum adjustment length of the electric cylinder at different soil depths. Since 

no FUM detection crops were planted on the soil ridge surface, the camera captured zero recognition 

information. Based on the set fuzzy control algorithm, the maximum elongation under single control was 

determined to be 8 mm. 

Table 4 

Displacement response time at different soil depths 

Soil depth / mm 
Soil response time averages / 

ms 
Average soil-free  

response time / ms 

50 176 

164 

55 174 

60 172 

65 178 

70 181 

75 177 

80 180 

 

Fig. 12 – Response time at different soil depths 

 

The results showed that soil filling had little effect on response time (average difference of 13 ms), and 

the average response time under soil filling was calculated to be 0.177 s. 
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Therefore, 𝑡𝑠𝑦𝑠 is the total time for the stripping response (0.077 s + 0.0058 s + 0.177 s) s. Finally, the 

time after the topsoil stripping response is approximately 0.26 s relative to the electrical signal. 

The servo electric cylinder can achieve an operating speed of up to 50 mm/s, with a maximum stroke of 

8 mm in 0.26 seconds; the topsoil stripper can advance approximately 0.043 m in 0.26 seconds at a speed of 

0.6 km/h. In contrast, topsoil strippers use traditional air springs and hydraulic control systems, which require 

the hydraulic pump and air pump to be started before operation. The depth of soil scraping is adjusted by 

switching the electromagnetic valve on and off. The start-up and operation time is significantly longer than 0.26 

seconds. Therefore, compared with the other two control methods, the servo electric cylinder control system 

has lower system delay in soil scraping adjustment and can alleviate the soil scraping lag problem to a certain 

extent. 

 

Motion error test 

In the topsoil stripping system, vertically mounted servo electric cylinders drive the scraper plate to 

adjust stripping depth, and depth errors directly affect removal quality. To evaluate actuator accuracy, a motion 

error test was conducted (Fig. 13). The test simulated field operation indoors by inserting the scraper plate into 

a soil ridge and performing reciprocating movements.  

 

Fig. 13 – Installation diagram of displacement sensor and servo electric cylinder 

Motion commands were sent from a Jetson Nano to a microcontroller, with test depths set at 50, 60, 70, 

and 80 mm—covering the typical FUM stripping range (50–80 mm). The scraper was retracted by 5 mm per 

step until returning to the initial position. Each setting was tested five times in both extension and retraction 

directions, and displacement sensor readings were recorded to calculate average motion error. Test results 

are summarized in Table 5. 

Table 5 

Results of motion error tests 

Target displacement/mm Average displacement/mm 5 mm retractions Average error/mm 

50 50.02 10 0.02 

55 54.93 11 0.07 

60 59.45 12 0.55 

65 65.31 13 0.31 

70 70.06 14 0.06 

75 74.88 15 0.12 

80 80.61 16 0.61 
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As shown in the table, the maximum average error of the servo electric cylinder action is 0.61 mm, with 

an error not exceeding 1 mm, thus meeting the requirements for precise stripping tests. Analysis of the 

mechanical structure of the servo electric cylinder revealed that the motion error was mainly caused by 

mechanical clearance between the gear and the lead screw during movement. The main causes of mechanical 

clearance are machining errors and installation errors. Improvements need to be made during the 

manufacturing process of the servo electric cylinder to reduce the error caused by clearance. 
 

Topsoil stripping performance test 

To evaluate the system’s performance in controlling topsoil stripping under simulated field conditions, a 

12 m × 0.4 m × 0.1 m soil ridge stripping test platform was constructed within the Engineering College of the 

Ba Yi Agricultural University in Heilongjiang Province (Fig. 14). 

  

(a) (b) 

Fig. 14 – Soil ridge simulation experiment 

(a) FUM laid out (b) Experimental scenario diagram 

 

FUM sample plants were simulated buried in three layers, buried at depths of 50, 60, and 70 mm, 

respectively. The size of each layer of sample plants was randomly arranged, and the ideal density range of 

FUM in a single operation was set to 6–10 plants. The travel speed was 0.6 km/h, the servo electric cylinder 

speed was 50 mm/s, and the machine walked 0.2 m each time. The servo electric cylinder output displacement 

was recorded using a displacement sensor. 

 
Fig. 15 – Changes in working depth during automatic control system operation  

with the same burial depth for both closing and opening operations 

   
(a) (b) (c) 

Fig. 16 – Stripping effect diagram 
(a) Excessive stripping (b) Insufficient stripping (c) Ideal separation 

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−75

−70

−65

−60

−55

−50

−45

De
pt
h 
(m
m)

Distance (m)

 Target_Depth_mm
 Fixed_Control_Depth_mm
 Group1_Actual_Depth_mm
 Group2_Actual_Depth_mm
 Group3_Actual_Depth_mm
 Group4_Actual_Depth_mm
 Group5_Actual_Depth_mm



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

771 

CONCLUSIONS 

This study addresses the current issues in the harvesting of FUM, such as the lack of intelligent 

assurance of a constant digging depth, reliance on manual adjustment, low control accuracy, and response 

lag. A machine-vision-based automatic control system for topsoil stripping was designed and implemented. 

The system integrates an improved YOLOv5 object detection algorithm and is deployed on the Jetson Nano 

edge AI computing platform and servo electric cylinder actuators. Combined with a fuzzy control strategy, the 

system achieves real-time adaptive adjustment of the stripping depth.  

The experimental results show that the proposed YOLOv5s-SA model achieves a mAP of 96.6% in FUM 

detection, which is 4 percentage points higher than the basic YOLOv5s. After acceleration with TensorRT, the 

model achieves an inference time of 0.077 seconds on the Jetson Nano platform. In a simulated test platform, 

the control system reduces the average depth error from 6.67 mm under fixed control to 3.72 mm, representing 

a 44.1% improvement in error reduction; the average ideal separation rate improves to 54.96%, an increase 

of 21.66% compared with fixed control. The system’s total response time is approximately 0.26 seconds, 

demonstrating excellent control accuracy and responsiveness, outperforming traditional hydraulic or 

pneumatic regulation methods. 
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