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ABSTRACT

To address the issues of large number of parameters and low deployment efficiency on mobile devices in the
existing YOLOv8-DSFF model for corn pest detection, this study proposes an improved object detection model
that integrates the CSPPC lightweight module and the Wise-loUv3 loss function. The optimized model reduces
the number of parameters by 85.6%, achieves an mAP@0.5 of 90.8%, reaches 204 FPS inference speed on
PC and 42 FPS on mobile devices. This provides a practical low-power solution for real-time field monitoring
of corn pests.
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INTRODUCTION
Corn is an important crop in China, and its yield and quality are of great significance for national food

security and farmers’ income (Chen, 2013). However, pests have always been one of the key factors affecting
corn growth and yield. According to statistics, pests can cause a 10%-15% reduction in corn yield, resulting in
huge losses to agricultural production (Wang et al., 2025). Traditional manual detection methods are inefficient
and difficult to meet the real-time monitoring needs of large-scale farmland. Therefore, developing an efficient
and accurate real-time corn pest detection method is of great practical significance (Wu et al., 2024).

In recent years, deep learning technology has made significant progress in the field of object detection.
The YOLO (You Only Look Once) series models have been widely used in various object detection tasks due
to their high efficiency and accuracy (Chu et al, 2025). Gao et al., (2025), proposed AGRI-YOLO, a lightweight
corn weed detection model based on YOLO v11n. Optimized with DWConv, ADown, and LADH, it achieves
82.8% mAP50 (similar to baseline), with 46.6% fewer parameters, 49.2% lower GFLOPs, fit for edge devices.
Nguyen et al., (2025), proposed aSiLU, an improved activation function for YOLO models, integrating scaling
factor a into standard SiLU to boost feature extraction. With a=1.05 on tomato/cucumber datasets,
YOLOv11n’s mAP@50 rose by 1.1%/0.2%, with minimal inference speed impact, suitable for real agriculture.
Kamat et al., (2025), benchmarked four models (YOLOv5, YOLOv6, YOLOv7, SSD-MobileNetv1) for multi-
class fruit ripeness detection on strawberries and avocados to reduce post-harvest losses. Using a publicly
available, naturally captured annotated dataset and 5-fold cross-validation, YOLOvV6 achieved the highest
mean accuracy (99.5%) and a good balance with real-time speed (85.2 FPS), proving most reliable for smart
sorting. Hao et al., (2025), proposed BCS_YOLO based on YOLOv11n for corn leaf pest detection, adding
SPCGA, HLFFE, LAE modules. It achieved 78.4% precision, 82.0% mAP@50,3. 0%-4.6% higher than
baseline, outperforming mainstream models. Ganapathy et al., (2025), evaluated four YOLO models for guava
defect detection. YOLOv11n, with 2.6M params and 6.3 GFLOPs, achieved 98.0% mAP50-95 and 255 FPS,
outperforming others in lightweight and efficiency for resource-constrained scenarios.
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Alkhawaldeh et al., (2025), used YOLOv3/YOLOV4 to address difficult early plant disease recognition. YOLOv4
achieved 98% accuracy, 98% mAP, 29s detection time with lower complexity, outperforming YOLOv3.

In summary, YOLO models are generally applicable to object recognition tasks in the agricultural field.
However, the existing YOLOv8-DSFF model has a large parameter count (reaching 12.69 million), leading to
problems such as slow recognition speed and target missing detection when deployed on mobile devices.
Existing lightweight models (e.g., MobileNet-SSD) reduce computational complexity through depthwise
separable convolution (Kamath, 2024), but suffer from insufficient small-target detection accuracy; ShuffleNet-
YOLO optimizes feature fusion using channel shuffle, yet its parameter count remains relatively high (Yu et al.,
2024). In contrast, YOLOv8-DSFF has advantages in detection accuracy, but its computational complexity
restricts deployment on mobile devices, limiting its promotion in practical field applications.

To address the above issues, this study proposes a real-time corn pest detection method based on
the CSPPC lightweight module and the Wise-loU loss function (Liao et al., 2025). By introducing the CSPPC
lightweight module to replace the original C2f convolution module, the model's parameter count is significantly
reduced (by 85.6%) (Guo et al., 2025). Meanwhile, the Wise-loU loss function is adopted to optimize the
model’s small-target detection performance, improving the small-target detection accuracy by 3.2%. This
method can significantly enhance the model's real-time performance while ensuring detection accuracy,
making it suitable for deployment on mobile devices and providing visual support for field robot detection (Song
et al., 2025).

MATERIALS AND METHODS
YOLOv8-DSFF Object Recognition Model

Based on the original YOLOv8 model, the YOLOvV8-DSFF object recognition model optimizes three
key modules: feature extraction, feature fusion, and detection head. The specific optimizations are as follows:
Backbone: Replaces the last C2f module with DAttention. By dynamically adjusting the position and weight of
attention sampling points, it accurately focuses on the key features of small-target corn pests. Neck: Designs
the C2f_SCConv module to replace all C2f modules. Through spatial reorganization and channel
reorganization, SCConv reduces false detections caused by the similar colors of pests and corn leaves. Head:
Replaces the original decoupled head with ASFF (Adaptive Spatial Feature Fusion). ASFF adaptively adjusts
the weights of feature maps at different scales, enhancing adaptability to pests of different sizes. Through the
above improvements to the YOLOv8 model, a new YOLOv8-DSFF model is obtained.

On the self-built pest dataset, the mMAP@0.5 (mean Average Precision at loU=0.5) of the YOLOv8-
DSFF object recognition model reaches 93.8%, increasing by 5.9 percentage points compared with the original
YOLOvVS8 (87.9%). The AP (Average Precision) values of all 5 pest categories are improved: among them, the
AP of small-target aphids rises from 78.9% to 86.6%, and the AP of corn borers increases from 85.4% to
95.0%.

Model Parameter Metrics

FLOPs (Floating-Point Operations): Refers to the number of floating-point operations required to train
a single image, and is used to measure the model's computational complexity.

Model Parameter Count: Measured by the total number of weights and biases, and is directly related
to the model's storage and transmission costs.

Inference Speed (FPS, Frames Per Second): Refers to the number of images processed by the model
per second, and reflects the real-time detection capability (Zhang et al., 2025).

Parameter Analysis

The comparison of specific parameters and characteristics among the YOLOv8, YOLOv8-DSFF,
YOLOv8-Datt model with DAttention introduced alone, YOLOv8-SCConv model with SCConv introduced alone,
and YOLOv8-ASFF model with the ASFF detection head is shown in detail in Table 1.

Table 1
Comparison of Parameter Analysis Among Various Models
Model Parameters | GPLOPS | FPS Core Characteristics
YOLOv8 3011628 8.2 4.8 Basic model with moderate balance
YOLOV8+Datt 3595039 101 6.1 Enhances feature extraction capability and has optimal

performance-cost balance
Reduces parameters, but internal logic offsets speed
advantage

YOLOv8+SCConv 2501919 6.5 5.4
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Model Parameters | GPLOPS | FPS Core Characteristics

Parameter count and computational complexity increase
significantly

Optimal accuracy but large parameter count and
computational complexity

YOLOV8+ASFF 4379905 10.3 5.5

YOLOv8+DSFF 12693761 371 10.7

From the comprehensive comparison, it can be concluded that YOLOv8+Datt is the optimal lightweight
base model. The reasons are as follows: First, YOLOv8+Datt retains the feature extraction capability of
DAttention for small targets, laying the foundation for "accuracy preservation" after subsequent lightweight
modification; second, its parameter count is only 3.60 M, far lower than the 12.69 M of YOLOv8-DSFF, offering
great potential for lightweight modification; third, its model inference speed is 6.1 ms, close to the real-time
requirements of mobile devices, and is expected to be further reduced to less than 5 ms after lightweight
modification.

CSPPC Lightweight Module

While mainstream depthwise separable convolutions and group convolutions can reduce FLOPs
(Floating-point Operations), they tend to lead to a sharp drop in detection accuracy. Based on the DualConv
concept, the CSPPC module achieves channel-wise feature fusion by replacing the inverted residual structure
and adding convolutional layers in the PConv (partial convolution) stage, thereby balancing "reducing
computational complexity" and "maintaining accuracy".

PConv and PW-Conv

Partial Convolution (PConv) leverages the high similarity of feature maps between channels,
performing convolution only on partial channels to extract spatial features while leaving the other channels
unchanged (Yan et al., 2025). Its FLOPs are lower than those of conventional convolution but higher than
those of depthwise convolution and group convolution; under a specific ratio, the FLOPs of PConv are only
1/4 of those of conventional convolution.

Pointwise Convolution (PW-Conv) and PConv form a T-shaped convolution, which focuses more on
the center of the feature map (consistent with the law of significant position distribution of pre-trained ResNet18
filters). Further FLOPs reduction can be achieved after decomposition (Yan et al., 2025).

When PW-Conv is appended after PConv, their effective receptive fields form a T-shaped
convolution—compared with conventional convolution that processes regions uniformly, this T-shaped
convolution focuses more on the central position. By querying the histogram of significant positions of pre-
trained ResNet18 filters, it is confirmed that the central position is most frequently the significant position, which
is consistent with the characteristics of the T-shaped convolution.

k

Fig. 1 - T-shaped Convolution in Partial Convolution (PConv)

Under the same input and output conditions, the FLOPs of the T-shaped convolution are higher than
the sum of those of PConv (Partial Convolution) and PW-Conv (Pointwise Convolution), and they satisfy a
specific numerical relationship. Decomposing the T-shaped convolution into PConv and PW-Conv can
leverage the redundancy between filters, thereby achieving further FLOPs reduction.

Structural Optimization Based on the FasterNet Backbone Network
The CSPPC module is designed based on the FasterNet general backbone network. The architectural
feature of FasterNet lies in the combination of hierarchical feature extraction and efficient module stacking.
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Specifically, the overall architecture of a new FasterNet general backbone network adapted to CSPPC, which
is composed of PConv and PWConv, is shown in Figure 2.
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Fig. 2 - Structural Diagram of the FasterNet Backbone Network

This architecture consists of 4 stages (stage1-stage4). Before each stage, an "embedding layer" (a
standard convolution with a stride of 4, used for input downsampling and channel expansion) or a "merging
layer" (a standard convolution with a stride of 2, used for downsampling between stages) is arranged. Each
stage stacks multiple FasterNet modules, where each module is composed of 1PConv(Partial
Convolution)+2PW-Conv (Pointwise Convolution) and adopts an inverted residual structure.

On this basis, the CSPPC module optimizes and transforms the original structure by replacing the
inverted residual with a residual structure, enhancing feature concatenation, and adjusting the allocation of
stage modules. The structural diagram of the CSPPC module is shown in Figure 3.
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Fig. 3 - Structural Diagram of the CSPPC Module

Bounding Box Loss Function Wise-loU

In the lightweight process, module replacement may lead to a decline in small-target localization
accuracy. Therefore, the Wise-loU loss function is introduced to address the defects of the original loU
(Intersection over Union) in small-target detection. Intersection over Union (loU) struggles to accurately
measure small-resolution targets in object detection; thus, Wise-loU (WIloU) is proposed. Compared with the
traditional loU loss, which suffers from gradient vanishing in small-target detection, Wise-loU evaluates anchor
box quality by introducing an outlier degree (Yang et al., 2025). When there is a large aspect ratio deviation
between the predicted box and the ground truth box (e.g., small targets such as corn aphids), the dynamic
non-monotonic Focusing Mechanism (FM) enhances the gradient penalty for low-quality anchor boxes while
reducing the weight of high-quality anchor boxes, preventing the model from falling into a local optimum.
Compared with GloU and DloU, Wise-loU maintains computational efficiency while achieving a more
significant improvement in small-target localization accuracy.
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The Wise-loU loss consists of two components: classification loss and regression loss. Among them, the
regression loss is constructed based on loU (Intersection over Union) and FM(OD) (Focusing Mechanism with
Outlier Degree), and its formula is as follows:

LWIoU= Lcis(p, p*)+ A-[1-IoU + FM (OD))] (1)

where: 1, (p,p")denotes the classification loss: the cross-entropy loss is adopted, where ! represents the

cls
pest category probability predicted by the model, and 7 *is the ground-truth category label—both are used to
optimize the accuracy of category judgment. 1is the regression loss weight, which balances the training priority
of classification and regression tasks. 1-[oU serves as the basic regression loss, ensuring the maximization
of the Intersection over Union (loU) between the predicted box and the ground-truth box. Fas (oD)is the

dynamic penalty term, which enhances the penalty for outlier anchor boxes of small targets to improve
localization accuracy.

Lightweight Convolution Module Based on YOLOv8-CSPPC

To address the issues of large parameter count in the ASFF (Adaptive Spatial Feature Fusion) and
high computational complexity in the C2f_SCConv of YOLOv8-DSFF, the optimization solutions are as follows:
retain the DAttention (Dilated Attention) mechanism to preserve the small-target feature extraction capability;
replace the original C2f module with the CSPPC module to reduce parameters and computational complexity;
adopt "focus-adjusted feature fusion" to enhance the corn pest feature fusion in the Neck section, offsetting
the accuracy loss caused by lightweighting; and replace the loss function with Wise-loU to reduce the model
regression error (Su et al., 2025).
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Corn Pest Dataset

To support the training of corn pest detection models, a corn pest dataset was constructed (Clarke et
al., 2024) The dataset images were collected in two categories: first, for Helicoverpa armigera (cotton
bollworm), Ostrinia furnacalis (Asian corn borer), Agriotes spp. (wireworms), and Gryllotalpa spp. (mole
crickets), images were captured in a self-built indoor simulated environment based on their activity
characterlstlcs second, for aphids, relevant images were selected from the open-source platform Kaggle.

F,‘;F:»'F"F"

7 A

Fig. 5 - Simulated Photography Based on the Fig. 6 - Corn Aphid Dataset from the Kaggle
Living Habits of Pests Open-Source Platform

After completing the collection of raw images for the dataset, the sizes of the collected corn pest
images were uniformly processed to ensure that the image dimensions meet the input size requirements of
the YOLOv8 model (i.e., 640 pixels x 640 pixels). In addition, to address issues such as brightness variations
and occlusions that may occur during the subsequent actual deployment of the model, this study expanded
the dataset by adjusting image brightness and adding color block occlusions. The specific effect of the dataset
expansion is shown in Figure 7.

N~

a) Original Image b) Brightness Adjustment c) Occlusion Addition
Fig. 7 - Effects of Image Enhancement

After the collected images underwent two preprocessing steps—normalization and data
augmentation—the final total number of samples reached 2,480. The number of samples for each category is
as follows: 410 for Helicoverpa armigera (cotton bollworm), 570 for Ostrinia furnacalis (Asian corn borer), 450
for Agriotes spp. (wireworms), 430 for Gryllotalpa spp. (mole crickets), and 620 for aphids. This effectively
alleviates data imbalance. After annotation, the dataset was randomly split into a training set, validation set,
and test set at a ratio of 8:1:1.

RESULTS
Performance Comparison Experiment.

A comparison experiment between the lightweight model, YOLOv8, and YOLOv8-DSFF was
conducted under the following experimental environment: Hardware configuration - Windows 10 operating
system, Intel Core i7-11800HQ processor, 8 GB RAM, and an RTX 4060 (8 GB) graphics card. Software
environment - Based on Python 3.8, with the PyTorch 1.9.0 deep learning framework and CUDA 11.3.

Table 2
Comparison Table of Model Sizes
Model Total Parameters/10k | mMAP@0. 5 | GFLOPs | Detection Time/ms | FPS
1 YOLOv8 268.5 87.9 6.8G 5.0 200
2 | YOLOv8-DSFF 1269.3 93.8 371G 11.2 89
3 | YOLOv8-CSPPC 180.3 90.8 50G 43 204
4 YOLOv5s-lite 270.5 88.5 6.3G 4.9 185

As shown in Table 2, although YOLOvV8-DSFF increases the mAP@0.5 (mean Average
Precision@0.5) to 93.8%, its parameter count (12.693 million), GFLOPs (37.1 G), and detection time (11.2 ms)
increase significantly, making it difficult to meet the requirements of mobile devices.
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Through optimization with the CSPPC lightweight module and Wise-loU loss function, YOLOv8-
CSPPC reduces the parameter count to 1.803 million (a decrease of 85.6% compared with YOLOv8), achieves
5.0 G GFLOPs and a detection time of 4.3 ms, and reaches an mAP@0.5 of 90.8% (an increase of 2.9%
compared with YOLOv8). Additionally, its FPS (Frames Per Second) is 204, which is 10.3% higher than that
of YOLOv5s-lite. This realizes a balance between lightweight performance and accuracy.

Ablation Experiment

Ablation experiments were conducted using AP (Average Precision), Precision (P), Recall (R), and
mAP (mean Average Precision) as metrics to evaluate three optimization strategies: the DAttention mechanism,
the C2f _SCConv convolution module (SCConv + C2f), and the ASFF (Adaptive Spatial Feature Fusion)
adaptive feature fusion detection head. The experimental results are shown in Table 3:

Table 3
Summary Table of Ablation Experiment Results
Model P(%) | R(%) AP mAP
mo w cot | corn | ap
YOLOvS8 829 | 66.6 | 958 | 87.7 | 91.5| 854 | 789 | 87.9
YOLOv8+DALtt 91.0 | 69.7 | 96.0 | 85.9 | 93.3 | 88.7 | 79.9 | 88.8

YOLOv8+SCConv 90.0 | 69.1 | 948 | 87.2 | 93.2 | 88.5 | 80.9 | 88.9
YOLOvV8+ASFF 854 | 68.0 | 959|855 | 979 | 904 | 76.8 | 89.3
YOLOv8+DA+SCC 849 | 68.7 | 952 | 87.9 | 96.1 | 89.9 | 80.9 | 90.0
YOLOv8+DA+ASFF | 91.3 | 69.3 | 95.8 | 88.9 | 946 | 91.0 | 81.7 | 90.4
YOLOv8+SCC+ASFF | 89.3 | 68.1 | 96.5 | 88.8 | 96.3 | 89.1 | 81.1 | 90.4
YOLOV8-DSFF 93.8 | 819 | 971 | 92.2 | 98.0 | 95.0 | 86.6 | 93.8

N[O B[WN|—-

For the experiments (Experiments 2, 3, and 4) involving the addition of a single improvement strategy,
the specific setups are as follows:
. In Experiment 2: The DAttention mechanism was added after the last C2f module in the Backbone.
In Experiment 3: A new C2f_SCConv convolution module (composed of spatial-channel reorganization
convolution) was used in the Neck section to replace the original C2f module of the model.
In Experiment 4: The ASFF detection head was introduced in the Head section.
Compared with Experiment 1 (baseline):
The precision of Experiment 2 increased from 82.9% to 91.0%, an improvement of 8.1%.
The precision of Experiment 3 increased from 82.9% to 90.0%, an improvement of 7.1%.
The precision of Experiment 4 increased from 82.9% to 85.4%, an improvement of 2.5%.
When comparing Experiments 2, 3, and 4, the order of precision (P) from highest to lowest is:
DAttention > C2f _SCConv > ASFF.
Experiments 1-4 show that all models with a single improvement strategy achieve higher precision
compared to the original YOLOV8. The precision values of Experiments 1—4 are illustrated in Figure 8.

mole cricket

wireworm

a) YOLOv8 b) YOLOv8+DALtt —— Cotton bollworm
corn borer

NE[H'Oi"fDMTx.‘ZE-SUWE = aprnds

— all classes

Presision Confidence Curve

. e
Confioncce fidence

c)YOLOv8+SCConv d) YOLOV8+ASFF
Fig. 8 - Precision (P) Curve for Single Improvement Strategies
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Experiments 5, 6, and 7 were designed with random combinations of two improvement strategies, with
specific setups as follows:

. Experiment 5: Added the DAttention mechanism + replaced the original module with the C2f_SCConv
convolution module.

Experiment 6: Added the DAttention mechanism + adopted the ASFF (Adaptive Spatial Feature Fusion)
adaptive detection head.

Experiment 7: Replaced the original module with the C2f_SCConv convolution module + adopted the
ASFF adaptive detection head.

Performance Comparison with the Baseline (Experiment 1)

Compared with Experiment 1 (baseline model):

The precision of Experiment 5 increased from 82.9% to 84.9%, an improvement of 2%.
The precision of Experiment 6 increased from 82.9% to 91.3%, an improvement of 8.4%.
The precision of Experiment 7 increased from 82.9% to 89.3%, an improvement of 6.4%.

In-Depth Analysis of Combined Strategies

1. Effective Combination: DAttention + ASFF (Experiment 6)

The performance improvement of Experiment 6 (DAttention + ASFF), with an mAP of 90.4%,
outperformed the single-strategy experiments (e. g. , Experiments 2 and 4). This is because:

The DAttention mechanism enhances the model’s feature representation capability, enabling it to capture
fine-grained features of pests.

The ASFF fuses multi-scale features via adaptive weights, optimizing the detection of pest targets of
varying sizes. The synergy between these two strategies effectively improves overall detection performance.

2. Ineffective Combination: DAttention + C2f_SCConv (Experiment 5)

Experiment 5 showed a precision decline compared to the effective combined strategy. This may be
attributed to computational redundancy between the spatial-channel reorganization operation of C2f SCConv
and the feature weighting mechanism of DAttention. Such redundancy could lead to overfitting, thereby limiting
precision improvement.

3. Comparison with Single-Strategy Experiments

While all two-strategy combinations (Experiments 5—7) achieved higher precision than the baseline
(Experiment 1), their performance varied when compared to the corresponding single-strategy experiments:

. Experiment 5 (DAttention + C2f_SCConv) vs. single strategies: Precision decreased by 6.1% compared
to Experiment 2 (DAttention alone) and by 5.1% compared to Experiment 3 (C2f_SCConv alone).
Experiment 6 (DAttention + ASFF) vs. single strategies: Precision increased by 0.3% compared to
Experiment 2 (DAttention alone) and by 5.9% compared to Experiment 4 (ASFF alone).

Experiment 7 (C2f_SCConv + ASFF) vs. single strategies: Precision decreased by 0.7% compared to
Experiment 3 (C2f_SCConv alone) but increased by 3.9% compared to Experiment 4 (ASFF alone).

Key Conclusion from Experiments 4—6

Although all two-strategy combinations outperformed the original model, some combinations showed
lower precision than their corresponding single-strategy counterparts. The precision values of Experiments 5,
6, and 7 are illustrated in Figure 9(a), (b), and (c), respectively.

’ pr—— ¥ = mole cricket
wireworm
a) YOLO+DA+SCC b) YOLO+DA+ASFF —— Cotton bollworm
. — corn borer
aphids
— all classes

n Confidence Curve.

¢) YOLO+SCC+ASFF d) YOLO-DSFP
Fig. 9 - Precision (P) Curves for Random Combinations of Two Improvement Strategies
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Experiments 1-7, the YOLOv8-DSFF model shows the following precision improvements:
Compared with the original model (Experiment 1), its precision increased by 10.9%.
Compared with the single-improvement-strategy experiments (Experiments 2—4), its precision increased
by 2.8%, 3.8%, and 8.4% respectively.
Compared with the random two-strategy combination experiments (Experiments 5-7), its precision
increased by 8.9%, 2.5%, and 4.5% respectively.

The precision of YOLOv8-DSFF is illustrated in Figure 9(d). The results indicate that the YOLOvS8-
DSFF model achieves relatively high precision. However, Precision (P) cannot reflect the accuracy of each
individual pest category; therefore, further evaluation using mAP (mean Average Precision) is required to draw
a comprehensive conclusion.

AP Comparison Analysis Across Pest Categories. This section analyzes the Average Precision (AP)
of five pest categories—mole cricket, wireworm, cotton bollworm, corn borer, and aphids—focusing on the
performance of single improvement strategies.

AP Performance of Single Improvement Strategies (vs. Baseline Experiment 1)

Experiments 2, 3, and 4 (each with one single improvement strategy) are compared against
Experiment 1 (the original YOLOv8 model), with results as follows:

1. Experiment 2 vs. Experiment 1
Category-specific AP changes:
Decreases: mole cricket (-0.2%), wireworm (-1.8%);
Increases: cotton bollworm (+1.8%), corn borer (+3.3%), aphids (+1%).
Overall MAP change: Increased from 87.9% to 88.8% (an improvement of 0.9%).

2. Experiment 3 vs. Experiment 1
Category-specific AP changes:
Decreases: mole cricket (-1%), wireworm (-0.5%);
Increases: cotton bollworm (+1.7%), corn borer (+3.1%), aphids (+2%).
Overall MAP change: Increased from 87.9% to 88.9% (an improvement of 1%).

3. Experiment 4 vs. Experiment 1
Category-specific AP changes:
Decreases: wireworm (-2.2%), aphids (-2.1%);
Increases: mole cricket (+0. 1%), cotton bollworm (+6.4%), corn borer (+5%).
Overall MAP change: Increased from 87.9% to 89.3% (an improvement of 1.4%).

Key Findings from Single Improvement Strategy Analysis (Experiments 1—-4)
Overall mAP improvement: All three single improvement strategies outperformed the original YOLOv8
model in terms of overall mAP, confirming their effectiveness in enhancing general detection performance.
Category-specific AP declines: Despite overall improvements, each strategy caused AP decreases for
certain individual pest categories.
Consistent decline in wireworm AP: Notably, all three strategies led to a decrease in wireworm AP-this
suggests potential challenges in adapting these strategies to wireworm detection (e.g., wireworm’s small
size or low contrast with corn plants may conflict with the strategies’ feature extraction logic).

The mAP values of Experiments 1, 2, 3, and 4 are illustrated in Figure 10.

Precision-Bacall Curve

mole cricket
wireworm

—— Cotton bollworm
corn borer
aphids
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a) YOLOvS b) YOLO+DALt
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c) YOLO+SCConv d) YOLO+ASFF
Fig. 10 - mAP Curve for Single Improvement Strategies

Analysis of mAP for Random Combinations of Two Improvement Strategies. Experiments 5, 6, and 7
were designed to test random combinations of two improvement strategies. Below is their mAP (mean Average
Precision) performance analysis, including comparisons with the original YOLOv8 model and the single-
strategy experiments (Experiments 2—4):

Comparison with the Original YOLOv8 Model

When compared to the original YOLOv8 model (baseline), all two-strategy combinations showed mAP
improvements:
Experiment 5: mAP increased by 2.1%.
Experiment 6: mAP increased by 2.5%.
Experiment 7: mAP increased by 2.5%.

Comparison with Single-Strategy Experiments (Experiments 2—4)
1. Experiment 5 (DAttention + C2f_SCConv)
Experiment 5 combines the DAttention mechanism and C2f_SCConv convolution module. Its performance
relative to the corresponding single-strategy experiments is as follows:
Compared with Experiment 2 (DAttention alone):
Overall mAP increased by 1.2%.
For category-specific AP:
Decrease: mole cricket (-0.2%);
Increases: wireworm (+2%), cotton bollworm (+0.2%), corn borer (+4.6%), aphids (+1.0%).
Compared with Experiment 3 (C2f_SCConv alone):
AP of all 5 pest categories increased (no specific declines reported).

2. Experiment 6 (DAttention + ASFF)

Experiment 6 combines the DAttention mechanism and ASFF (Adaptive Spatial Feature Fusion)
adaptive detection head. Its performance relative to the corresponding single-strategy experiments is as
follows:

Compared with Experiment 2 (DAttention alone):

For category-specific AP:

Decrease: mole cricket (no specific value reported);

Increases: wireworm (+3.0%), cotton bollworm (+1.3%), corn borer (+2.3%), aphids (+1.8%).
Compared with Experiment 4 (ASFF alone):

For category-specific AP:

Decrease: mole cricket (no specific value reported);

Increases: wireworm (+3.4%), cotton bollworm (+1.4%), corn borer (+0.6%), aphids (+4.9%).

3. Experiment 7 (C2f_SCConv + ASFF)
Experiment 7 combines the C2f_SCConv convolution module and ASFF adaptive detection head. Its
performance relative to the corresponding single-strategy experiments is as follows:
Compared with Experiment 3 (C2f_SCConv alone):
AP of all 5 pest categories increased, with gains of +1.7% (mole cricket), +1.6% (wireworm), +3.1%
(cotton bollworm), +0.6% (corn borer), and +0.2% (aphids).
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Compared with Experiment 4 (ASFF alone):

For category-specific AP:

Decreases: cotton bollworm (no specific value reported), corn borer (no specific value reported);
Increases: mole cricket (+0.6%), wireworm (+3.3%), aphids (+4.3%).

While random combinations of two improvement strategies achieved overall mAP gains compared to
single-strategy experiments, they still resulted in AP declines for certain individual pest categories. This
indicates that even combined strategies cannot guarantee AP improvements for all categories.

The mAP values of Experiments 5, 6, and 7 are illustrated in Figure 11(a), (b), and (c), respectively.

o4 oo oe Lo . " mecall
pecall mole cricket

wirewiorm
a) DA+SCConv b) DA+ASFF —— Cotton bollworm
Precision-Recall Curve orecision-Recoll Curve carn borer

aphids
— 3l classes

Facall Recall

c) SCC+ASFF d)YOLOv8-DSFF
Fig. 11 - mAP Curves for Random Combinations of Two Improvement Strategies

Experiment 8 evaluates the YOLOv8-DSFF model, with its performance compared against
Experiments 1-7 (covering the original model, single improvement strategies, and random two-strategy
combinations). The results are as follows:

1. Comparison with Experiment 1 (Original YOLOv8 Model)
Overall mAP: Increased by 5.9% compared to Experiment 1.
Category-specific AP: All five pest categories showed AP improvements, with gains of 1.3%, 4.5%, 6. 5%,
6.3%, and 6.7% respectively (corresponding to mole cricket, wireworm, cotton bollworm, corn borer, and
aphids).

2. Comparison with Single Improvement Strategy Experiments (Experiments 2—4)

Compared to Experiments 2—4 (each with one single improvement strategy):

Overall mAP: The YOLOvV8-DSFF model (Experiment 8) achieved mAP increases of 5%, 4.9%, and 4.5%
respectively.
Category-specific AP: All pest categories in Experiment 8 showed higher AP than those in Experiments
2-4 (no category-specific declines were observed).

3. Comparison with Random Two-Strategy Combination Experiments (Experiments 5-7)

Compared to Experiments 5—7 (random combinations of two improvement strategies):

Overall mAP: The YOLOv8-DSFF model (Experiment 8) achieved mAP increases of 3.8%, 3.4%, and
3.4% respectively.
The mAP value of the YOLOv8-DSFF model (Experiment 8) is illustrated in Figure 11(d).

To summarize, after integrating the three strategies, the Precision reaches 93.8% (a 10.9% increase
compared to the baseline), and the mAP (mean Average Precision) reaches 93.8% (a 5.9% increase compared
to the baseline). The AP (Average Precision) of all 5 pest categories has improved: the AP of aphids rises from
78.9% to 86.6%, and the AP of corn borers rises from 85.4% to 95.0%. There is no precision decline at the
category level, which verifies the effectiveness of the multi-strategy synergy. The recognition effect of the
model is shown in Figure 12.
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a) Cotton Bollworm b) Wireworm c) Mole Cricket d) Aphids
Fig. 12 - Recognition effect of the model

Mobile Deployment of Lightweight Models
Optimization and Format Conversion of the YOLOv8-CSPPC Model

To deploy the YOLOv8-CSPPC model on mobile devices via NCNN, model quantization and format
conversion are essential, as detailed below:
1. Convert. pt Format to ONNX Format

The original YOLOv8-CSPPC model is typically saved in PyTorch’s .pt format. Converting it to the
ONNX (Open Neural Network Exchange) format improves cross-platform compatibility and optimizes inference
speed. The conversion steps are:

Use the ultralytics library to load the pre-trained .pt model.
Call the export method and specify the output format as ONNX.
Verify the converted ONNX model using ONNXRuntime to ensure its functionality and correctness (e.g.,
checking if inference results match the original .pt model).
2. Quantize FP32 Model to INT8 Format

The original YOLOvV8-CSPPC model uses FP32 (32-bit floating-point) precision, which results in large
model size and high computational complexity—making it incompatible with resource-constrained Android
devices. To address this, NCNN’s ncnnoptimize tool is used to quantize the model to INT8 (8-bit integer)
precision. This quantization:

. Reduces model storage requirements (e.g., cutting the model size by approximately 75% compared to
FP32).
Lowers computational demands, significantly improving inference speed on CPU-only mobile hardware.
Reduces power consumption, which is critical for prolonged use of mobile or battery-powered devices
(e.g., field pest detection with smartphones).

Mobile Deployment and Testing on Android Devices

Deployment Steps: Import the NCNN-compatible model files (the .param file containing the network
structure and the .bin file containing the quantized weights) into the target Android app project. Enable USB
Debugging on the Android device to facilitate app installation and testing.

Testing and Results: When the app is run on the Android device, it provides the following real-time
information: Live video feed from the device’s camera; Overlaid detection results (bounding boxes around
detected pests); Metadata including the deployed model name (YOLOv8-CSPPC), inference frame rate (FPS),
and target confidence scores.

The detection performance is visualized in Figure 13.

Fig. 13 - Mobile Device Detection Test
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CONCLUSIONS

This paper proposes a real-time corn pest detection method based on the CSPPC lightweight module
and the Wise-loU loss function. By introducing the CSPPC lightweight module to replace the original C2f
convolution module, the model's parameter count is significantly reduced by 85.6%. At the same time, the
Wise-loU loss function is used to optimize the model's small target detection performance, increasing the small
target detection accuracy by 3.2%. Experimental results show that the proposed YOLOv8-CSPPC model
outperforms the YOLOv8 and YOLOv8-DSFF models in metrics such as parameter count, GFLOPs, and
detection time. Moreover, its average detection accuracy reaches 90.8%, which is 1.9% higher than that of the
YOLOv8 model and only 3% lower than that of the YOLOv8-DSFF model. In addition, after model quantization
implemented through the NCNN framework, the model size is reduced by 75%, and the model is successfully
deployed on mobile devices, providing an effective solution for real-time monitoring of corn pests in the field.
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