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ABSTRACT 

To address the issues of large number of parameters and low deployment efficiency on mobile devices in the 

existing YOLOv8-DSFF model for corn pest detection, this study proposes an improved object detection model 

that integrates the CSPPC lightweight module and the Wise-IoUv3 loss function. The optimized model reduces 

the number of parameters by 85.6%, achieves an mAP@0.5 of 90.8%, reaches 204 FPS inference speed on 

PC and 42 FPS on mobile devices. This provides a practical low-power solution for real-time field monitoring 

of corn pests. 

 

摘要 

此前玉米虫害识别研究中，YOLOv8-DSFF 模型虽较其他检测模型优势显著，但存在参数量大、移动端部署效

率低的问题。为此，研究提出融合 CSPPC 轻量化模块与 Wise-IoUv3 的目标识别模型改进方案。通过改进模

型参数量降低 85. 6%；模型 mAP@0. 5达 90. 8%；PC端推理速度 204FPS；移动端帧率 42FPS，可为田间

实时监测提供低功耗方案。 

 

INTRODUCTION 

 Corn is an important crop in China, and its yield and quality are of great significance for national food 

security and farmers’ income (Chen, 2013). However, pests have always been one of the key factors affecting 

corn growth and yield. According to statistics, pests can cause a 10%-15% reduction in corn yield, resulting in 

huge losses to agricultural production (Wang et al., 2025). Traditional manual detection methods are inefficient 

and difficult to meet the real-time monitoring needs of large-scale farmland. Therefore, developing an efficient 

and accurate real-time corn pest detection method is of great practical significance (Wu et al., 2024).  

 In recent years, deep learning technology has made significant progress in the field of object detection. 

The YOLO (You Only Look Once) series models have been widely used in various object detection tasks due 

to their high efficiency and accuracy (Chu et al, 2025). Gao et al., (2025), proposed AGRI-YOLO, a lightweight 

corn weed detection model based on YOLO v11n. Optimized with DWConv, ADown, and LADH, it achieves 

82.8% mAP50 (similar to baseline), with 46.6% fewer parameters, 49.2% lower GFLOPs, fit for edge devices. 

Nguyen et al., (2025), proposed αSiLU, an improved activation function for YOLO models, integrating scaling 

factor α into standard SiLU to boost feature extraction. With α=1.05 on tomato/cucumber datasets, 

YOLOv11n’s mAP@50 rose by 1.1%/0.2%, with minimal inference speed impact, suitable for real agriculture. 

Kamat et al., (2025), benchmarked four models (YOLOv5, YOLOv6, YOLOv7, SSD-MobileNetv1) for multi-

class fruit ripeness detection on strawberries and avocados to reduce post-harvest losses. Using a publicly 

available, naturally captured annotated dataset and 5-fold cross-validation, YOLOv6 achieved the highest 

mean accuracy (99.5%) and a good balance with real-time speed (85.2 FPS), proving most reliable for smart 

sorting. Hao et al., (2025), proposed BCS_YOLO based on YOLOv11n for corn leaf pest detection, adding 

SPCGA, HLFFE, LAE modules. It achieved 78.4% precision, 82.0% mAP@50,3. 0%-4.6% higher than 

baseline, outperforming mainstream models. Ganapathy et al., (2025), evaluated four YOLO models for guava 

defect detection. YOLOv11n, with 2.6M params and 6.3 GFLOPs, achieved 98.0% mAP50-95 and 255 FPS, 

outperforming others in lightweight and efficiency for resource-constrained scenarios.  
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Alkhawaldeh et al., (2025), used YOLOv3/YOLOv4 to address difficult early plant disease recognition. YOLOv4 

achieved 98% accuracy, 98% mAP, 29s detection time with lower complexity, outperforming YOLOv3.  

In summary, YOLO models are generally applicable to object recognition tasks in the agricultural field. 

However, the existing YOLOv8-DSFF model has a large parameter count (reaching 12.69 million), leading to 

problems such as slow recognition speed and target missing detection when deployed on mobile devices. 

Existing lightweight models (e.g., MobileNet-SSD) reduce computational complexity through depthwise 

separable convolution  (Kamath, 2024), but suffer from insufficient small-target detection accuracy; ShuffleNet-

YOLO optimizes feature fusion using channel shuffle, yet its parameter count remains relatively high (Yu et al., 

2024). In contrast, YOLOv8-DSFF has advantages in detection accuracy, but its computational complexity 

restricts deployment on mobile devices, limiting its promotion in practical field applications.  

 To address the above issues, this study proposes a real-time corn pest detection method based on 

the CSPPC lightweight module and the Wise-IoU loss function (Liao et al., 2025). By introducing the CSPPC 

lightweight module to replace the original C2f convolution module, the model’s parameter count is significantly 

reduced (by 85.6%) (Guo et al., 2025). Meanwhile, the Wise-IoU loss function is adopted to optimize the 

model’s small-target detection performance, improving the small-target detection accuracy by 3.2%. This 

method can significantly enhance the model’s real-time performance while ensuring detection accuracy, 

making it suitable for deployment on mobile devices and providing visual support for field robot detection (Song 

et al., 2025). 

 

MATERIALS AND METHODS 

YOLOv8-DSFF Object Recognition Model 

 Based on the original YOLOv8 model, the YOLOv8-DSFF object recognition model optimizes three 

key modules: feature extraction, feature fusion, and detection head. The specific optimizations are as follows: 

Backbone: Replaces the last C2f module with DAttention. By dynamically adjusting the position and weight of 

attention sampling points, it accurately focuses on the key features of small-target corn pests. Neck: Designs 

the C2f_SCConv module to replace all C2f modules. Through spatial reorganization and channel 

reorganization, SCConv reduces false detections caused by the similar colors of pests and corn leaves. Head: 

Replaces the original decoupled head with ASFF (Adaptive Spatial Feature Fusion). ASFF adaptively adjusts 

the weights of feature maps at different scales, enhancing adaptability to pests of different sizes. Through the 

above improvements to the YOLOv8 model, a new YOLOv8-DSFF model is obtained.  

 On the self-built pest dataset, the mAP@0.5 (mean Average Precision at IoU=0.5) of the YOLOv8-

DSFF object recognition model reaches 93.8%, increasing by 5.9 percentage points compared with the original 

YOLOv8 (87.9%). The AP (Average Precision) values of all 5 pest categories are improved: among them, the 

AP of small-target aphids rises from 78.9% to 86.6%, and the AP of corn borers increases from 85.4% to 

95.0%.  
 

Model Parameter Metrics 

 FLOPs (Floating-Point Operations): Refers to the number of floating-point operations required to train 

a single image, and is used to measure the model's computational complexity.  

 Model Parameter Count: Measured by the total number of weights and biases, and is directly related 

to the model's storage and transmission costs.  

 Inference Speed (FPS, Frames Per Second): Refers to the number of images processed by the model 

per second, and reflects the real-time detection capability (Zhang et al., 2025).  
 

Parameter Analysis 

 The comparison of specific parameters and characteristics among the YOLOv8, YOLOv8-DSFF, 

YOLOv8-Datt model with DAttention introduced alone, YOLOv8-SCConv model with SCConv introduced alone, 

and YOLOv8-ASFF model with the ASFF detection head is shown in detail in Table 1.  

Table 1 

Comparison of Parameter Analysis Among Various Models 

Model Parameters GPLOPS FPS Core Characteristics 

YOLOv8 3011628 8.2 4.8 Basic model with moderate balance 

YOLOv8+Datt 3595039 10.1 6.1 
Enhances feature extraction capability and has optimal 

performance-cost balance 

YOLOv8+SCConv 2501919 6.5 5.4 
Reduces parameters, but internal logic offsets speed 

advantage 
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Model Parameters GPLOPS FPS Core Characteristics 

YOLOv8+ASFF 4379905 10.3 5.5 
Parameter count and computational complexity increase 

significantly 

YOLOv8+DSFF 12693761 37.1 10.7 
Optimal accuracy but large parameter count and 

computational complexity 

 

 From the comprehensive comparison, it can be concluded that YOLOv8+Datt is the optimal lightweight 

base model. The reasons are as follows: First, YOLOv8+Datt retains the feature extraction capability of 

DAttention for small targets, laying the foundation for "accuracy preservation" after subsequent lightweight 

modification; second, its parameter count is only 3.60 M, far lower than the 12.69 M of YOLOv8-DSFF, offering 

great potential for lightweight modification; third, its model inference speed is 6.1 ms, close to the real-time 

requirements of mobile devices, and is expected to be further reduced to less than 5 ms after lightweight 

modification.  

  

CSPPC Lightweight Module 

 While mainstream depthwise separable convolutions and group convolutions can reduce FLOPs 

(Floating-point Operations), they tend to lead to a sharp drop in detection accuracy. Based on the DualConv 

concept, the CSPPC module achieves channel-wise feature fusion by replacing the inverted residual structure 

and adding convolutional layers in the PConv (partial convolution) stage, thereby balancing "reducing 

computational complexity" and "maintaining accuracy".  

 

PConv and PW-Conv 

 Partial Convolution (PConv) leverages the high similarity of feature maps between channels, 

performing convolution only on partial channels to extract spatial features while leaving the other channels 

unchanged (Yan et al., 2025). Its FLOPs are lower than those of conventional convolution but higher than 

those of depthwise convolution and group convolution; under a specific ratio, the FLOPs of PConv are only 

1/4 of those of conventional convolution.  

 Pointwise Convolution (PW-Conv) and PConv form a T-shaped convolution, which focuses more on 

the center of the feature map (consistent with the law of significant position distribution of pre-trained ResNet18 

filters). Further FLOPs reduction can be achieved after decomposition (Yan et al., 2025).  

 When PW-Conv is appended after PConv, their effective receptive fields form a T-shaped 

convolution—compared with conventional convolution that processes regions uniformly, this T-shaped 

convolution focuses more on the central position. By querying the histogram of significant positions of pre-

trained ResNet18 filters, it is confirmed that the central position is most frequently the significant position, which 

is consistent with the characteristics of the T-shaped convolution.  

 

 
Fig. 1 - T-shaped Convolution in Partial Convolution (PConv) 

  

 

 Under the same input and output conditions, the FLOPs of the T-shaped convolution are higher than 

the sum of those of PConv (Partial Convolution) and PW-Conv (Pointwise Convolution), and they satisfy a 

specific numerical relationship. Decomposing the T-shaped convolution into PConv and PW-Conv can 

leverage the redundancy between filters, thereby achieving further FLOPs reduction.  

Structural Optimization Based on the FasterNet Backbone Network 

 The CSPPC module is designed based on the FasterNet general backbone network. The architectural 

feature of FasterNet lies in the combination of hierarchical feature extraction and efficient module stacking. 
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Specifically, the overall architecture of a new FasterNet general backbone network adapted to CSPPC, which 

is composed of PConv and PWConv, is shown in Figure 2.  

 
Fig. 2 - Structural Diagram of the FasterNet Backbone Network 

 

 This architecture consists of 4 stages (stage1-stage4). Before each stage, an "embedding layer" (a 

standard convolution with a stride of 4, used for input downsampling and channel expansion) or a "merging 

layer" (a standard convolution with a stride of 2, used for downsampling between stages) is arranged. Each 

stage stacks multiple FasterNet modules, where each module is composed of 1PConv(Partial 

Convolution)+2PW-Conv (Pointwise Convolution) and adopts an inverted residual structure.  

 On this basis, the CSPPC module optimizes and transforms the original structure by replacing the 

inverted residual with a residual structure, enhancing feature concatenation, and adjusting the allocation of 

stage modules. The structural diagram of the CSPPC module is shown in Figure 3.  

 

 
Fig. 3 - Structural Diagram of the CSPPC Module 

 

 

Bounding Box Loss Function Wise-IoU 

 In the lightweight process, module replacement may lead to a decline in small-target localization 

accuracy. Therefore, the Wise-IoU loss function is introduced to address the defects of the original IoU 

(Intersection over Union) in small-target detection. Intersection over Union (IoU) struggles to accurately 

measure small-resolution targets in object detection; thus, Wise-IoU (WIoU) is proposed. Compared with the 

traditional IoU loss, which suffers from gradient vanishing in small-target detection, Wise-IoU evaluates anchor 

box quality by introducing an outlier degree (Yang et al., 2025). When there is a large aspect ratio deviation 

between the predicted box and the ground truth box (e.g., small targets such as corn aphids), the dynamic 

non-monotonic Focusing Mechanism (FM) enhances the gradient penalty for low-quality anchor boxes while 

reducing the weight of high-quality anchor boxes, preventing the model from falling into a local optimum. 

Compared with GIoU and DIoU, Wise-IoU maintains computational efficiency while achieving a more 

significant improvement in small-target localization accuracy.  
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The Wise-IoU loss consists of two components: classification loss and regression loss. Among them, the 

regression loss is constructed based on IoU (Intersection over Union) and FM(OD) (Focusing Mechanism with 

Outlier Degree), and its formula is as follows:  

 ( ) [1 ( )],LWIoU Lcls p p IoU FM OD=  +  − +                   (1) 

where:  *( , )clsL p p denotes the classification loss: the cross-entropy loss is adopted, where p  represents the 

pest category probability predicted by the model, and p  is the ground-truth category label—both are used to 

optimize the accuracy of category judgment.  is the regression loss weight, which balances the training priority 

of classification and regression tasks. 1 IoU−  serves as the basic regression loss, ensuring the maximization 

of the Intersection over Union (IoU) between the predicted box and the ground-truth box. ( )FM OD is the 

dynamic penalty term, which enhances the penalty for outlier anchor boxes of small targets to improve 
localization accuracy.  
 

Lightweight Convolution Module Based on YOLOv8-CSPPC 

 To address the issues of large parameter count in the ASFF (Adaptive Spatial Feature Fusion) and 

high computational complexity in the C2f_SCConv of YOLOv8-DSFF, the optimization solutions are as follows: 

retain the DAttention (Dilated Attention) mechanism to preserve the small-target feature extraction capability; 

replace the original C2f module with the CSPPC module to reduce parameters and computational complexity; 

adopt "focus-adjusted feature fusion" to enhance the corn pest feature fusion in the Neck section, offsetting 

the accuracy loss caused by lightweighting; and replace the loss function with Wise-IoU to reduce the model 

regression error (Su et al., 2025).  

 

 
Fig. 4 - Lightweight Model Based on CSPPC 
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Corn Pest Dataset 

 To support the training of corn pest detection models, a corn pest dataset was constructed (Clarke et 

al., 2024) The dataset images were collected in two categories: first, for Helicoverpa armigera (cotton 

bollworm), Ostrinia furnacalis (Asian corn borer), Agriotes spp. (wireworms), and Gryllotalpa spp. (mole 

crickets), images were captured in a self-built indoor simulated environment based on their activity 

characteristics; second, for aphids, relevant images were selected from the open-source platform Kaggle.  

  
Fig. 5 - Simulated Photography Based on the  

Living Habits of Pests 

Fig. 6 - Corn Aphid Dataset from the Kaggle 

Open-Source Platform 
 

 After completing the collection of raw images for the dataset, the sizes of the collected corn pest 

images were uniformly processed to ensure that the image dimensions meet the input size requirements of 

the YOLOv8 model (i.e.,  640 pixels × 640 pixels). In addition, to address issues such as brightness variations 

and occlusions that may occur during the subsequent actual deployment of the model, this study expanded 

the dataset by adjusting image brightness and adding color block occlusions. The specific effect of the dataset 

expansion is shown in Figure 7.  

   
a) Original Image b) Brightness Adjustment c) Occlusion Addition 

Fig. 7 - Effects of Image Enhancement 

 

 After the collected images underwent two preprocessing steps—normalization and data 

augmentation—the final total number of samples reached 2,480. The number of samples for each category is 

as follows: 410 for Helicoverpa armigera (cotton bollworm), 570 for Ostrinia furnacalis (Asian corn borer), 450 

for Agriotes spp. (wireworms), 430 for Gryllotalpa spp. (mole crickets), and 620 for aphids. This effectively 

alleviates data imbalance. After annotation, the dataset was randomly split into a training set, validation set, 

and test set at a ratio of 8:1:1.  
 

RESULTS 

Performance Comparison Experiment .  

 A comparison experiment between the lightweight model, YOLOv8, and YOLOv8-DSFF was 

conducted under the following experimental environment: Hardware configuration - Windows 10 operating 

system, Intel Core i7-11800HQ processor, 8 GB RAM, and an RTX 4060 (8 GB) graphics card. Software 

environment - Based on Python 3.8, with the PyTorch 1.9.0 deep learning framework and CUDA 11.3.  

Table 2 
Comparison Table of Model Sizes 

 Model Total Parameters/10k mAP@0. 5 GFLOPs Detection Time/ms FPS 

1 YOLOv8 268.5 87.9 6.8 G 5.0 200 

2 YOLOv8-DSFF 1269.3 93.8 37.1 G 11.2 89 

3 YOLOv8-CSPPC 180.3 90.8 5.0 G 4.3 204 

4 YOLOv5s-lite 270.5 88.5 6.3 G 4.9 185 

  As shown in Table 2, although YOLOv8-DSFF increases the mAP@0.5 (mean Average 

Precision@0.5) to 93.8%, its parameter count (12.693 million), GFLOPs (37.1 G), and detection time (11.2 ms) 

increase significantly, making it difficult to meet the requirements of mobile devices.  
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 Through optimization with the CSPPC lightweight module and Wise-IoU loss function, YOLOv8-

CSPPC reduces the parameter count to 1.803 million (a decrease of 85.6% compared with YOLOv8), achieves 

5.0 G GFLOPs and a detection time of 4.3 ms, and reaches an mAP@0.5 of 90.8% (an increase of 2.9% 

compared with YOLOv8). Additionally, its FPS (Frames Per Second) is 204, which is 10.3% higher than that 

of YOLOv5s-lite. This realizes a balance between lightweight performance and accuracy.  

Ablation Experiment 

 Ablation experiments were conducted using AP (Average Precision), Precision (P), Recall (R), and 

mAP (mean Average Precision) as metrics to evaluate three optimization strategies: the DAttention mechanism, 

the C2f_SCConv convolution module (SCConv + C2f), and the ASFF (Adaptive Spatial Feature Fusion) 

adaptive feature fusion detection head. The experimental results are shown in Table 3: 

Table 3 
Summary Table of Ablation Experiment Results 

 Model P(%) R(%) 
AP 

mAP 
mo w cot corn ap 

1 YOLOv8 82.9 66.6 95.8 87.7 91.5 85.4 78.9 87.9 

2 YOLOv8+DAtt 91.0 69.7 96.0 85.9 93.3 88.7 79.9 88.8 

3 YOLOv8+SCConv 90.0 69.1 94.8 87.2 93.2 88.5 80.9 88.9 

4 YOLOv8+ASFF 85.4 68.0 95.9 85.5 97.9 90.4 76.8 89.3 

5 YOLOv8+DA+SCC 84.9 68.7 95.2 87.9 96.1 89.9 80.9 90.0 

6 YOLOv8+DA+ASFF 91.3 69.3 95.8 88.9 94.6 91.0 81.7 90.4 

7 YOLOv8+SCC+ASFF 89.3 68.1 96.5 88.8 96.3 89.1 81.1 90.4 

8 YOLOv8-DSFF 93.8 81.9 97.1 92.2 98.0 95.0 86.6 93.8 

 

 For the experiments (Experiments 2, 3, and 4) involving the addition of a single improvement strategy, 

the specific setups are as follows: 

 In Experiment 2: The DAttention mechanism was added after the last C2f module in the Backbone.  

 In Experiment 3: A new C2f_SCConv convolution module (composed of spatial-channel reorganization 

convolution) was used in the Neck section to replace the original C2f module of the model.  

 In Experiment 4: The ASFF detection head was introduced in the Head section.  

 Compared with Experiment 1 (baseline): 

 The precision of Experiment 2 increased from 82.9% to 91.0%, an improvement of 8.1%.  

 The precision of Experiment 3 increased from 82.9% to 90.0%, an improvement of 7.1%.  

 The precision of Experiment 4 increased from 82.9% to 85.4%, an improvement of 2.5%.  

 When comparing Experiments 2, 3, and 4, the order of precision (P) from highest to lowest is: 

DAttention > C2f_SCConv > ASFF.  

 Experiments 1–4 show that all models with a single improvement strategy achieve higher precision 

compared to the original YOLOv8. The precision values of Experiments 1–4 are illustrated in Figure 8.  

  

 

 a）YOLOv8 b）YOLOv8+DAtt 

  

c)YOLOv8+SCConv d）YOLOv8+ASFF 

Fig. 8 - Precision (P) Curve for Single Improvement Strategies 
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 Experiments 5, 6, and 7 were designed with random combinations of two improvement strategies, with 

specific setups as follows: 

 Experiment 5: Added the DAttention mechanism + replaced the original module with the C2f_SCConv 

convolution module.  

 Experiment 6: Added the DAttention mechanism + adopted the ASFF (Adaptive Spatial Feature Fusion) 

adaptive detection head.  

 Experiment 7: Replaced the original module with the C2f_SCConv convolution module + adopted the 

ASFF adaptive detection head.  

Performance Comparison with the Baseline (Experiment 1) 

 Compared with Experiment 1 (baseline model): 

 The precision of Experiment 5 increased from 82.9% to 84.9%, an improvement of 2%.  

 The precision of Experiment 6 increased from 82.9% to 91.3%, an improvement of 8.4%.  

 The precision of Experiment 7 increased from 82.9% to 89.3%, an improvement of 6.4%.  

In-Depth Analysis of Combined Strategies 

1. Effective Combination: DAttention + ASFF (Experiment 6) 

 The performance improvement of Experiment 6 (DAttention + ASFF), with an mAP of 90.4%, 

outperformed the single-strategy experiments (e. g. , Experiments 2 and 4). This is because: 

 The DAttention mechanism enhances the model’s feature representation capability, enabling it to capture 

fine-grained features of pests.  

 The ASFF fuses multi-scale features via adaptive weights, optimizing the detection of pest targets of 

varying sizes. The synergy between these two strategies effectively improves overall detection performance.  

2. Ineffective Combination: DAttention + C2f_SCConv (Experiment 5) 

 Experiment 5 showed a precision decline compared to the effective combined strategy. This may be 

attributed to computational redundancy between the spatial-channel reorganization operation of C2f_SCConv 

and the feature weighting mechanism of DAttention. Such redundancy could lead to overfitting, thereby limiting 

precision improvement.  

3. Comparison with Single-Strategy Experiments 

 While all two-strategy combinations (Experiments 5–7) achieved higher precision than the baseline 

(Experiment 1), their performance varied when compared to the corresponding single-strategy experiments: 

 Experiment 5 (DAttention + C2f_SCConv) vs. single strategies: Precision decreased by 6.1% compared 

to Experiment 2 (DAttention alone) and by 5.1% compared to Experiment 3 (C2f_SCConv alone).  

 Experiment 6 (DAttention + ASFF) vs. single strategies: Precision increased by 0.3% compared to 

Experiment 2 (DAttention alone) and by 5.9% compared to Experiment 4 (ASFF alone).  

 Experiment 7 (C2f_SCConv + ASFF) vs. single strategies: Precision decreased by 0.7% compared to 

Experiment 3 (C2f_SCConv alone) but increased by 3.9% compared to Experiment 4 (ASFF alone).  

Key Conclusion from Experiments 4–6  

 Although all two-strategy combinations outperformed the original model, some combinations showed 

lower precision than their corresponding single-strategy counterparts. The precision values of Experiments 5, 

6, and 7 are illustrated in Figure 9(a), (b), and (c), respectively.  

  

 

a) YOLO+DA+SCC b) YOLO+DA+ASFF 

  
c) YOLO+SCC+ASFF d) YOLO-DSFP 

Fig. 9 - Precision (P) Curves for Random Combinations of Two Improvement Strategies 
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Experiments 1–7, the YOLOv8-DSFF model shows the following precision improvements: 

 Compared with the original model (Experiment 1), its precision increased by 10.9%.  

 Compared with the single-improvement-strategy experiments (Experiments 2–4), its precision increased 

by 2.8%, 3.8%, and 8.4% respectively.  

 Compared with the random two-strategy combination experiments (Experiments 5–7), its precision 

increased by 8.9%, 2.5%, and 4.5% respectively.  

 The precision of YOLOv8-DSFF is illustrated in Figure 9(d). The results indicate that the YOLOv8-

DSFF model achieves relatively high precision. However, Precision (P) cannot reflect the accuracy of each 

individual pest category; therefore, further evaluation using mAP (mean Average Precision) is required to draw 

a comprehensive conclusion.  

 AP Comparison Analysis Across Pest Categories. This section analyzes the Average Precision (AP) 

of five pest categories—mole cricket, wireworm, cotton bollworm, corn borer, and aphids—focusing on the 

performance of single improvement strategies.  

AP Performance of Single Improvement Strategies (vs. Baseline Experiment 1) 

 

 Experiments 2, 3, and 4 (each with one single improvement strategy) are compared against 

Experiment 1 (the original YOLOv8 model), with results as follows: 

 

1. Experiment 2 vs. Experiment 1 

 Category-specific AP changes:  

Decreases: mole cricket (-0.2%), wireworm (-1.8%);  

Increases: cotton bollworm (+1.8%), corn borer (+3.3%), aphids (+1%).  

 Overall mAP change: Increased from 87.9% to 88.8% (an improvement of 0.9%).  

 

2. Experiment 3 vs. Experiment 1 

 Category-specific AP changes:  

Decreases: mole cricket (-1%), wireworm (-0.5%);  

Increases: cotton bollworm (+1.7%), corn borer (+3.1%), aphids (+2%).  

 Overall mAP change: Increased from 87.9% to 88.9% (an improvement of 1%).  

 

3. Experiment 4 vs. Experiment 1 

 Category-specific AP changes:  

Decreases: wireworm (-2.2%), aphids (-2.1%);  

Increases: mole cricket (+0. 1%), cotton bollworm (+6.4%), corn borer (+5%).  

 Overall mAP change: Increased from 87.9% to 89.3% (an improvement of 1.4%).  

Key Findings from Single Improvement Strategy Analysis (Experiments 1–4) 

 Overall mAP improvement: All three single improvement strategies outperformed the original YOLOv8 

model in terms of overall mAP, confirming their effectiveness in enhancing general detection performance.  

 Category-specific AP declines: Despite overall improvements, each strategy caused AP decreases for 

certain individual pest categories.  

 Consistent decline in wireworm AP: Notably, all three strategies led to a decrease in wireworm AP-this 

suggests potential challenges in adapting these strategies to wireworm detection (e.g., wireworm’s small 

size or low contrast with corn plants may conflict with the strategies’ feature extraction logic).  

 

The mAP values of Experiments 1, 2, 3, and 4 are illustrated in Figure 10.  

  

 

a）YOLOv8 b）YOLO+DAtt 
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c）YOLO+SCConv d）YOLO+ASFF 

Fig. 10 - mAP Curve for Single Improvement Strategies 

 

 Analysis of mAP for Random Combinations of Two Improvement Strategies. Experiments 5, 6, and 7 

were designed to test random combinations of two improvement strategies. Below is their mAP (mean Average 

Precision) performance analysis, including comparisons with the original YOLOv8 model and the single-

strategy experiments (Experiments 2–4): 

Comparison with the Original YOLOv8 Model 

 

 When compared to the original YOLOv8 model (baseline), all two-strategy combinations showed mAP 

improvements: 

 Experiment 5: mAP increased by 2.1%.  

 Experiment 6: mAP increased by 2.5%.  

 Experiment 7: mAP increased by 2.5%.  

 

Comparison with Single-Strategy Experiments (Experiments 2–4) 

1. Experiment 5 (DAttention + C2f_SCConv) 

Experiment 5 combines the DAttention mechanism and C2f_SCConv convolution module. Its performance 

relative to the corresponding single-strategy experiments is as follows: 

 Compared with Experiment 2 (DAttention alone):  

Overall mAP increased by 1.2%.  

For category-specific AP: 

  Decrease: mole cricket (-0.2%); 

 Increases: wireworm (+2%), cotton bollworm (+0.2%), corn borer (+4.6%), aphids (+1.0%).  

 Compared with Experiment 3 (C2f_SCConv alone):  

 AP of all 5 pest categories increased (no specific declines reported).  

 

2. Experiment 6 (DAttention + ASFF) 

 Experiment 6 combines the DAttention mechanism and ASFF (Adaptive Spatial Feature Fusion) 

adaptive detection head. Its performance relative to the corresponding single-strategy experiments is as 

follows: 

 Compared with Experiment 2 (DAttention alone):  

For category-specific AP: 

Decrease: mole cricket (no specific value reported);  

Increases: wireworm (+3.0%), cotton bollworm (+1.3%), corn borer (+2.3%), aphids (+1.8%).  

 Compared with Experiment 4 (ASFF alone):  

For category-specific AP:  

Decrease: mole cricket (no specific value reported);  

Increases: wireworm (+3.4%), cotton bollworm (+1.4%), corn borer (+0.6%), aphids (+4.9%).  

 

3. Experiment 7 (C2f_SCConv + ASFF) 

 Experiment 7 combines the C2f_SCConv convolution module and ASFF adaptive detection head. Its 

performance relative to the corresponding single-strategy experiments is as follows: 

 Compared with Experiment 3 (C2f_SCConv alone):  

AP of all 5 pest categories increased, with gains of +1.7% (mole cricket), +1.6% (wireworm), +3.1% 

(cotton bollworm), +0.6% (corn borer), and +0.2% (aphids).  
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 Compared with Experiment 4 (ASFF alone):  

For category-specific AP:  

Decreases: cotton bollworm (no specific value reported), corn borer (no specific value reported); 

Increases: mole cricket (+0.6%), wireworm (+3.3%), aphids (+4.3%).  

 While random combinations of two improvement strategies achieved overall mAP gains compared to 

single-strategy experiments, they still resulted in AP declines for certain individual pest categories. This 

indicates that even combined strategies cannot guarantee AP improvements for all categories.  

The mAP values of Experiments 5, 6, and 7 are illustrated in Figure 11(a), (b), and (c), respectively.  
 

  

 

a）DA+SCConv b）DA+ASFF 

  
c）SCC+ASFF d)YOLOv8-DSFF 

Fig. 11 - mAP Curves for Random Combinations of Two Improvement Strategies 

 

 Experiment 8 evaluates the YOLOv8-DSFF model, with its performance compared against 

Experiments 1–7 (covering the original model, single improvement strategies, and random two-strategy 

combinations). The results are as follows: 

1. Comparison with Experiment 1 (Original YOLOv8 Model) 

 Overall mAP: Increased by 5.9% compared to Experiment 1.  

 Category-specific AP: All five pest categories showed AP improvements, with gains of 1.3%, 4.5%, 6. 5%, 

6.3%, and 6.7% respectively (corresponding to mole cricket, wireworm, cotton bollworm, corn borer, and 

aphids).  

2. Comparison with Single Improvement Strategy Experiments (Experiments 2–4) 

 Compared to Experiments 2–4 (each with one single improvement strategy): 

 Overall mAP: The YOLOv8-DSFF model (Experiment 8) achieved mAP increases of 5%, 4.9%, and 4.5% 

respectively.  

 Category-specific AP: All pest categories in Experiment 8 showed higher AP than those in Experiments 

2–4 (no category-specific declines were observed).  

3. Comparison with Random Two-Strategy Combination Experiments (Experiments 5–7) 

 Compared to Experiments 5–7 (random combinations of two improvement strategies): 

 Overall mAP: The YOLOv8-DSFF model (Experiment 8) achieved mAP increases of 3.8%, 3.4%, and 

3.4% respectively.  

 The mAP value of the YOLOv8-DSFF model (Experiment 8) is illustrated in Figure 11(d).  

 To summarize, after integrating the three strategies, the Precision reaches 93.8% (a 10.9% increase 

compared to the baseline), and the mAP (mean Average Precision) reaches 93.8% (a 5.9% increase compared 

to the baseline). The AP (Average Precision) of all 5 pest categories has improved: the AP of aphids rises from 

78.9% to 86.6%, and the AP of corn borers rises from 85.4% to 95.0%. There is no precision decline at the 

category level, which verifies the effectiveness of the multi-strategy synergy. The recognition effect of the 

model is shown in Figure 12.  
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a）Cotton Bollworm b）Wireworm c）Mole Cricket d) Aphids 

Fig. 12 - Recognition effect of the model 

 

Mobile Deployment of Lightweight Models 

Optimization and Format Conversion of the YOLOv8-CSPPC Model 

 To deploy the YOLOv8-CSPPC model on mobile devices via NCNN, model quantization and format 

conversion are essential, as detailed below: 

1. Convert. pt Format to ONNX Format 

 The original YOLOv8-CSPPC model is typically saved in PyTorch’s .pt format. Converting it to the 

ONNX (Open Neural Network Exchange) format improves cross-platform compatibility and optimizes inference 

speed. The conversion steps are: 

 Use the ultralytics library to load the pre-trained .pt model.  

 Call the export method and specify the output format as ONNX.  

 Verify the converted ONNX model using ONNXRuntime to ensure its functionality and correctness (e.g.,  

checking if inference results match the original .pt model).  

2. Quantize FP32 Model to INT8 Format 

 The original YOLOv8-CSPPC model uses FP32 (32-bit floating-point) precision, which results in large 

model size and high computational complexity—making it incompatible with resource-constrained Android 

devices. To address this, NCNN’s ncnnoptimize tool is used to quantize the model to INT8 (8-bit integer) 

precision. This quantization: 

 Reduces model storage requirements (e.g., cutting the model size by approximately 75% compared to 

FP32).  

 Lowers computational demands, significantly improving inference speed on CPU-only mobile hardware.  

 Reduces power consumption, which is critical for prolonged use of mobile or battery-powered devices 

(e.g.,  field pest detection with smartphones).  

Mobile Deployment and Testing on Android Devices 

 Deployment Steps: Import the NCNN-compatible model files (the .param file containing the network 

structure and the .bin file containing the quantized weights) into the target Android app project.  Enable USB 

Debugging on the Android device to facilitate app installation and testing.  

 Testing and Results: When the app is run on the Android device,  it provides the following real-time 

information: Live video feed from the device’s camera; Overlaid detection results (bounding boxes around 

detected pests); Metadata including the deployed model name (YOLOv8-CSPPC),  inference frame rate (FPS),  

and target confidence scores.  

 The detection performance is visualized in Figure 13.  

 

 
Fig. 13 - Mobile Device Detection Test 
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CONCLUSIONS 

 This paper proposes a real-time corn pest detection method based on the CSPPC lightweight module 

and the Wise-IoU loss function. By introducing the CSPPC lightweight module to replace the original C2f 

convolution module, the model's parameter count is significantly reduced by 85.6%. At the same time, the 

Wise-IoU loss function is used to optimize the model's small target detection performance, increasing the small 

target detection accuracy by 3.2%. Experimental results show that the proposed YOLOv8-CSPPC model 

outperforms the YOLOv8 and YOLOv8-DSFF models in metrics such as parameter count, GFLOPs, and 

detection time. Moreover, its average detection accuracy reaches 90.8%, which is 1.9% higher than that of the 

YOLOv8 model and only 3% lower than that of the YOLOv8-DSFF model. In addition, after model quantization 

implemented through the NCNN framework, the model size is reduced by 75%, and the model is successfully 

deployed on mobile devices, providing an effective solution for real-time monitoring of corn pests in the field.  
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