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ABSTRACT

Currently, research on cherry detection and recognition is relatively limited, and existing methods for
agricultural product inspection often suffer from slow speed and low classification accuracy. To address these
issues, this paper introduces an improved YOLOv11n-based model for detecting cherry ripeness, designed to
enhance both the accuracy and efficiency of identifying cherries at different maturity stages. First,
improvements were made to the backbone network of the YOLOv11n model by replacing the original backbone
with ConvNeXtv2. This replacement achieved a broader global receptive field and enhanced multi-scale
learning, which helped reduce computational costs and significantly improve efficiency while maintaining high
performance. Second, a DCNv4 convolution module—an advanced convolutional layer with adaptive receptive
fields—was added to the neck of the model. The neck is an intermediate stage that combines features from
different layers, and the DCNv4 adapts the receptive field to help accurately locate occluded cherries of any
shape and scale. This improves detection performance for small cherries without increasing computational
complexity. Finally, the convolutional attention module CBAM was introduced. CBAM adaptively focuses on
important image features while suppressing irrelevant background by using both channel and spatial attention
mechanisms. Together, these additions significantly improve cherry detection accuracy and robustness. Our
experimental results show that the improved M-YOLOv11n algorithm achieved a 4.84% increase in mAP@50
compared to the original YOLOv11n model. Precision and recall also improved by 1.25% and 0.4%,
respectively. Overall, the enhanced model outperformed not only its base version but also the YOLOvb5n and
YOLOv8n models. Compared to multi-stage models, the proposed model demonstrates superior accuracy,
speed, and reduced computational requirements. This improvement enables more efficient and precise
identification of cherry ripeness, thereby enhancing the efficiency of cherry harvesting and facilitating optimal
harvest timing. These advancements support the optimization of storage and transportation conditions for
cherries and provide robust technical support for intelligent orchard management and the advancement of
automated fruit sorting systems.
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INTRODUCTION

Anthocyanins, vitamin C, potassium, and dietary fiber are all abundant in cherries, sometimes referred
to as bird cherries, sweet cherries, or cherries. They are praised as the "diamond of fruits" due to their great
nutritional content. The demand for cherries on the market is still rising as a result of improvements in
consumption and the growth of international trade. China is now one of the world's biggest markets for cherry
consumption, and the Food and Agriculture Organization of the United Nations (FAO) reports that worldwide
cherry output has grown by about 35% in the last ten years (Wang et al., 2025). Large-scale cherry cultivation
enterprises have developed concurrently in areas like Shandong, Liaoning, Shaanxi, Gansu, and Sichuan,
progressively moving toward precision and intelligent farming methods. As non-climacteric fruits, cherries'
flavor and quality are mostly established when they are ripening on the tree. Therefore, it is crucial to make an
accurate assessment of the optimal time to harvest. Cherry skins have a brief ripening time and are fragile and
easily damaged. Conventional hand inspection techniques are expensive and ineffective, which makes them
inappropriate for the demands of commercial harvesting on a wide scale. The assessment of ripeness is further
complicated by the fact that variables, including variety, climate, and production methods, affect maturity
indications like sugar content, hardness, and pigmentation. Therefore, improving harvesting efficiency, cutting
losses, and guaranteeing fruit quality all depend on the development of intelligent cherry maturity detecting technology.

Many automated fruit and vegetable ripeness detection studies have surfaced worldwide as a result of
the quick development of deep learning and computer vision technology. Although their ablation tests produced
less than ideal results, Albarrak Khalied et al. used transfer learning based on the MobileNetV2 architecture
to classify eight distinct data types with 99% accuracy (Albarrak et al., 2022). Farjana Sultana Mim et al.
created an automated classification system employing the HIS model by performing global threshold
segmentation on mango photos using digital image processing techniques. However, poor model resilience
and recognition mistakes resulted from the tiny dataset size (Mim et al., 2018). Deep transfer learning was
used by DANH et al. to classify tomatoes. According to experimental results, the VGG19 model detected the
maturity of cherry tomatoes with an accuracy of 94.14% (Danh et al., 2021). Chen et al. proposed a method
that detects the ripeness of citrus fruits by combining visual saliency with convolutional neural networks to
identify three levels of maturity (Chen et al., 2022). Wu et al. proposed a DeeplLabV3-based method to achieve
rapid segmentation and recognition of cherries in complex orchard environments, including front light, backlight,
rainy weather, single fruits, multiple fruits, fruit overlap, and branch/leaf shading (Wu et al., 2024). Gai and
colleagues developed an improved version of the YOLO-V4 deep learning algorithm that can effectively detect
small cherry fruits in images (Gai et al., 2023).

The YOLO (You Only Look Once) series of algorithms has demonstrated remarkable performance in
real-time fruit and vegetable ripeness detection, owing to their high efficiency and accuracy. For instance,
Wang Lishu et al. developed an improved YOLOv4-Tiny network, which achieved an average precision of
96.24% in classifying unripe, underripe, and ripe blueberries under challenging conditions such as occlusion
and uneven lighting, with an average detection time of only 5.723 ms. This result satisfies both accuracy and
speed requirements for practical blueberry recognition (Wang et al., 2021). In another study, MACEACHERN
et al. applied YOLOvV4 to blueberry ripeness detection and reported high accuracy; However, the substantial
computational cost of YOLOV4 led to a significant decrease in inference speed when deployed on resource-
constrained embedded devices (Maceachern et al., 2023). To address similar challenges in other fruit
detection tasks, Liang Ao et al. introduced YOLOv5s-SCS, a real-time strawberry ripeness detection algorithm
based on YOLOv5s. This method enhances detection performance in the presence of high fruit density, small
target size, occlusion, overlap, and crowding by mitigating false positives and false negatives, thereby
improving both detection accuracy and speed (Liang et al., 2024). Similarly, Li Ying et al. proposed an improved
YOLOv8s-based approach for citrus ripeness detection. By integrating a Hybrid Attention Transformer (HAT)
module and an Adaptive Spatial Feature Fusion (FASFF) detection head, the model's ability to discern citrus
ripeness was significantly strengthened (Li et al., 2024). Furthermore, Tian Ronghui et al. developed an
enhanced YOLOv7-ST-ASFF model for apple ripeness detection in complex orchard environments, where it
exhibited outstanding performance, particularly in scenes containing multiple ripe apples and backlit unripe
fruits (Tian et al., 2022).

Traditional deep learning models are often plagued by high computational complexity, excessive
parameters, and slow inference speeds, making them impractical for real-time detection and mobile
deployment in agricultural environments. Consequently, developing lightweight versions of YOLO-series
algorithms is of considerable practical significance. Recent years have witnessed progressive improvements
in the YOLO family.
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In 2024, YOLOV9 was introduced to enhance detection accuracy in complex scenarios through
strengthened multi-scale feature fusion. It incorporates novel efficient convolutional layers that substantially
reduce latency and hardware dependency, while a dynamic parameter adjustment mechanism enables real-
time optimization, improving efficiency without sacrificing precision (Li et al., 2024). Building on this, YOLOv10
employs adaptive feature enhancement to selectively accentuate critical regions, accelerates inference via a
multi-branch parallel architecture, and minimizes redundancy through lightweight module design. These
innovations allow it to achieve a more favorable accuracy-speed trade-off, particularly in mobile and real-time
settings (Gao et al., 2025). YOLOv11 further leverages the use of separable convolutions and enhances multi-
scale representation learning, thereby reducing computational overhead while strengthening robustness to
occluded and challenging targets. It also introduces a hierarchical feature fusion network that integrates both
fine-grained details and rich semantic information. By combining dynamic kernel adaptation with learnable
feature selection, YOLOv11 actively adjusts to varying contexts, resulting in synergistic gains in detection
performance, inference speed, and generalization ability (Wang et al., 2025).

Despite these advances, mainstream detection networks still face challenges in applications such as
cherry detection, where targets are small, densely distributed, and frequently overlapping. Their high
computational and parametric costs also limit deployment in resource-constrained scenarios. To address these
issues, this study proposes a lightweight cherry ripeness detection model that integrates a ConvNeXtv2
backbone (Xu et al., 2024), a DCNv4 convolution module (Han et al., 2025), and a CBAM attention mechanism
(Hi et al., 2023). The proposed system not only delivers strong recognition and localization performance but
also enables accurate maturity classification under challenging conditions such as leafy occlusion and fruit
overlap—all while maintaining high inference efficiency. This research is expected to offer valuable technical
support for automated cherry harvesting, yield prediction, and intelligent quality grading, thereby contributing
to the transition toward smart and precision-oriented cherry cultivation.

MATERIALS AND METHODS
Image Data Acquisition

A custom cherry image dataset was constructed by collecting photographs at Juxin Cherry Farm in
Taigu, Jinzhong, Shanxi Province, China. In collaboration with horticultural specialists, healthy 'Sam' cultivar
cherries were selected for imaging. A Huawei Mate 60 smartphone was used to photograph fruit of various
sizes and shapes. The dataset comprises 1,085 JPG images, each with a resolution of 4,096 x 3,072 pixels.
To capture ecological and morphological diversity, images were taken under a range of conditions, including
isolated and grouped cherries, direct sunlight, backlighting, and partial occlusion by branches or leaves. Figure
1 presents examples that illustrate the variety of conditions represented in the dataset. This variation facilitates
robust tralnlng of visual recognltlon models for accurate cherry detection in diverse real -world environments.

(d) Multiple objecté, occlusion, baci(lighting (e) Multlple (small) targets occlusion
Fig. 1 - Images of cherries in different scenarios

Image Preprocessing
The imgaug library was used to perform random combinations of cropping, rotation, flipping, scaling,
and translation to increase the diversity of the training samples, ultimately generating 6,579 enhanced images.
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3,255 of these images were randomly selected and divided into ten equal parts, with a ratio of 8:2 between the
training and validation sets. Cherry fruit maturity was categorized into four categories: unripe (green fruit),
semi-ripe (green with red), ripe (red or purple), and overripe (shriveled and gray). The data were annotated
using I, S, M, and L to represent the four stages of cherry: unripe, semi-ripe, ripe, and lesion, respectively, as
shown in Figure 2.
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YOLOv11n model architecture

YOLOv11n is a next-generation object detection model based on the YOLO family of architectures,
developed by a cutting-edge research team. YOLOv11n introduces depth-wise separable convolutions. The
interaction Mechanism with Multi-Scale Features, Hierarchical Feature Fusion Network, and a joint
optimization strategy of dynamic convolution and adaptive feature selection significantly improve the model's
detection robustness and efficiency in complex scenarios (Chen et al., 2020). Considering the accuracy and
speed requirements for cherry detection in real-world scenarios, YOLOv8n, a derivative of YOLOv11n, was
selected as the baseline model for improvement.
Improvements to the YOLOv11n Model

First, the backbone network of the YOLOv11n model was optimized by replacing the original backbone
structure with ConvNeXtv2. ConvNeXtv2 cleverly combines the local feature extraction capabilities of
convolutional neural networks (CNNs) with the global context modeling advantages of transformers,
significantly improving the model's feature representation capabilities and computational efficiency, thereby
enhancing cherry detection accuracy. Second, the DCNv4 convolutional module was incorporated into the
model backbone. By dynamically adjusting the receptive field, it accurately captures the features of fruits of
varying shapes, occlusions, and scales, significantly improving detection accuracy and robustness in complex
environments. To enhance the performance of the cherry maturity detection model in complex agricultural
environments, this study introduced a convolutional block attention module (CBAM), further enhancing the
detection accuracy, as shown in Figure 3.
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Fig. 3 - M-YOLOv11n Model Structure
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ConvNeXtv2

ConvNeXtv2 comprises a unified macro-architecture with a fully convolutional block as its core module.
It achieves feature recalibration through the synergy of global response normalization (GRN) and channel-
wise FFN. Compared to traditional convolutional neural networks (CNNs), ConvNeXtv2 incorporates a GRN
mechanism into the feature feedforward process, which not only enhances the feature selectivity and
representation stability of the model but also promotes a diversified representation of features across different
channels (Fu et al., 2025). This enhances the model's generalization and performance. To further tap the
model's potential, ConvNeXtv2 embeds the GRN into the identity branch of the FFN, effectively fusing and
enhancing the convolutional features with global statistical information (Ma et al., 2025). Finally, through
convolutional layers and skip connections, the features are transformed and transferred, resulting in a highly
expressive and robust feature representation, as shown in Figure 4.
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Fig. 4 - ConvNeXtv2 Network Structure Diagram

After the cherry feature map X enters the ConvNeXtV2 module, it undergoes a 7x7 depthwise
convolution to extract deep semantic information from the images. Grouped convolution is also used to ensure
that each input channel uses only its own convolution kernel, thereby reducing computational complexity and
parameter requirements. The extracted feature map is then fed into a Layer Normalization (LN) layer for
normalization and a nonlinear transformation using the GELU activation function. To further enhance the
model's feature representation capabilities, a Global Response Normalization (GRN) layer was introduced.
The GRN layer effectively enhances competition between feature channels through global feature aggregation
(GX), feature normalization (NX), and feature calibration operations, thereby improving the model's
expressiveness. The execution process of GX is illustrated in Equation (1), which indicates that each channel
feature is spatially aggregated in the height H and width W dimensions using the L2 norm.

GO0 = II%ll, = [ ZHod T Xich w2 (1)
Finally, the feature map processed by the GRN layer was input into the linear layer and added to the

input feature map X to enhance the robustness of the YOLOv11n model. The calculation formula is given by
Equation (2).

N(G(X);) = moallz (2)

L X112
YOLOv11n's C3k2 module was replaced with the donv]NeXtVZ module, which significantly enhanced
the model's ability to extract cherry features while reducing the model complexity. The introduction of this
module enables the model to demonstrate excellent performance in complex environments, accurately and
efficiently identifying cherries of varying ripeness, and reducing the environmental requirements for system
deployment.

DCNv4

DCNv4, a next-generation deformable convolution operator, is built on a core architecture that combines
dynamic sparse sampling and hardware-aware optimization. Compared with traditional static convolution
kernels, DCNv4 achieves adaptive receptive field adjustment through predicted offsets.
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This not only enables the accurate capture of irregular objects and long-range dependent features but
also significantly improves computational efficiency through kernel-level rewriting and memory optimization.
This significantly reduces computational latency and memory usage while enhancing the geometric modeling
capabilities of the model (Liu et al., 2025). To fully exploit the potential of hardware computing power, DCNv4
employs a tiling implementation and gradient-aware weight distribution mechanism to achieve efficient
alignment and fusion of sample points and feature maps. Ultimately, through sub-thread parallelization and
CUDA graph optimization techniques, it achieves a near-linear speedup on modern GPU architectures,
becoming a next-generation fundamental computing unit to replace standard convolution and self-attention,

as shown in Figure 5.
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Fig. 5 - DCNv4 Network Structure Diagram

The core operator of DCNv4 is an advanced deformable convolution unit. For any position p on the

output feature map, its output value is transformed and calculated using the following formula (3):
y(p) = Zit=y Wi X(p + pi + Apy) 3)

where the notations are defined as below:

y(p)ERCeut represents the output eigenvector at position p; x( )€RCin is the input feature map, which
samples the input features at a specified coordinate (possibly non integer); K is the total number of sampling
points; pk is a predefined fixed offset used to determine the sampling grid of the regular convolution kernel;
ApER? is a dynamic offset predicted by a lightweight quantum network (usually a lightweight convolutional
layer) based on input features, allowing the model to adaptively adjust the position of each sampling point
according to the input content, thereby focusing the receptive field on areas with richer information;

wkERcoutXRci“ is the learnable weight matrix corresponding to the k-th sampling position, which is shared
among different spatial positions and consistent with standard convolution.

CBAM Attention Mechanism

The attention mechanism selectively ignores invalid information in the image, focusing on valid
information and reducing resource consumption in invalid areas. This improves network utilization and
enhances object detection capabilities. Therefore, the CBAM attention mechanism was integrated into the
feature extraction network, combining the channel and spatial attention mechanisms to form a simple yet
effective attention module, as shown in Figure 6.
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Fig. 6 - CBAM Attention Mechanism Structure Diagram
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In the channel attention module, global average pooling and max pooling are applied to the same input
feature space to extract the spatial information from the feature map. The obtained feature space information
is then input into the next-layer multi-layer perception mechanism module for dimensionality reduction and
increase. The weights of the two shared convolutional layers in the multilayer perception network were shared.
The features output by the perception network were then added and processed using the sigmoid activation
function to obtain channel attention. The calculation formula is given by Equation (4).

Mc(F) = e[MLP(FSyg) + MLP(F§ya)] (4)
where Mc is the channel attention module calculation factor, € is the sigmoid activation function, MLP is the
multilayer perceptron, and F is the feature vector. Spatial attention features complement the channel attention
and reflect the importance of the input value in the spatial dimension. The calculation formula is given by
Equation (5). First, global average pooling and global maximum pooling are performed on the channel
dimension of the feature map. The two features were then concatenated. Finally, the sigmoid function was
used to reduce the dimension to 1 x 7 x 7 convolution. A spatial attention feature map was generated after
processing the channels. The calculation formula is given by Equation (5).

Ms(F) = &{conv,y; [unit(FSyg, Fihax)]} (5)

where: Ms is the spatial attention module calculation factor, € is the sigmoid activation function, MLP is the
multi-layer perceptron, F is the feature vector, unit is the channel combination, and conv represents the
convolution operation.

To facilitate the use of pre-trained models in the experiment, the CBAM was not embedded in all
convolutional residual blocks. It only takes effect after the different convolutional layers.

RESULTS
Parameter Configuration and Evaluation Indicators

The experimental hardware configuration consisted of a GeForce RTX 4060 D GPU, an Intel(R) Xeon(R)
Platinum 8270 CPU @ 2.70 GHz (2 processors), and 128GB of RAM. The software configuration comprised
Windows 11 Professional Workstation Edition, Python 3.11.9, and CUDA 12.0. YOLOv11 and its improved
versions are run on the PyTorch deep learning framework.

The model training parameters were as follows: input image resolution (image_size) of 640 x 640 pixels,
initial learning rate (learning_rate) set to 0.01, batch size (batch_size) set to 64, and number of epochs (epochs)
set to 500.

This study evaluated the model's performance using accuracy (Precision, P), mean average precision
(mAP), model parameter size (parameters), and model computational effort (GFLOPS).

The calculation formula for each metric is as follows.

b TP
" TP + FP

R TP
" TP + FN

AP = ij(R)dr
0

n
1
mAP = —z AP,
n n
i=1

where TP is the number of correctly detected cherries, FP is the number of background impurities that are
incorrectly detected as cherries, FN is the number of cherries identified as impurities, R is the recall value at
the current accuracy, which refers to the proportion of cherries detected by the model to all actual cherries,
and the area under the PR curve drawn with precision P and recall R represents the average precision AP
value of the category. The higher the AP value, the better the detection performance of the algorithm.

Backbone Network Comparison Test

To evaluate the advantages of using ConvNeXtv2 as a backbone alternative, three lightweight models
(C2f_RepLKBlock, C2f QARep, C2f LSK, and ConvNeXtv2) were selected as the backbone networks of the
original YOLOv11n model for comparative experiments. The experimental results are presented in Table 1.
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Table 1
Comparison Test of Different Backbone Networks
Model Parameters/k R/% P/% mAP50/%
YOLOv11n 2590620 76.44 87.05 83.96
YOLOv11n+C2f_RepLKBlock 2644044 75.70 84.80 82.80
YOLOv11n+C2f_QARep 2629964 74.20 88.60 82.80
YOLOv11n+C2f_LSK 2699940 72.20 82.30 77.40
YOLOv11n+ConvNeXtv2 2539340 81.70 88.90 88.89

The experimental data in Table 1 indicate that replacing the backbone network of YOLOv11n has a
significant impact on the model's performance. Among the many improved solutions, ConvNeXtv2 performed
the best, significantly improving the overall detection performance of the model while maintaining a minimum
number of parameters. Compared to the YOLOv11n baseline model, ConvNeXtv2 achieved a significant
improvement of 4.93 pp in mAP50 (from 83.96% to 88.89%), while reducing the number of parameters by
2.02%. Furthermore, the recall (R) increased significantly by 5.26 percentage points, and the precision (P)
increased by 1.85 percentage points, surpassing all other compared solutions. In summary, ConvNeXtv2's
unique architectural design achieves dual optimization of parameter count and precision, maintaining high
accuracy while reducing model complexity, making it ideal for deployment on mobile and edge computing
devices.

Comparison Experiment of Different Convolutional Networks

Analysis of the experimental data showed that introducing different convolutional operations to the
ConvNeXtv2 backbone network had a significant impact on the model performance. Among the many
improved solutions, the ConvNeXtv2 + DCNv4 combination performed the best, achieving a comprehensive
improvement in the detection performance with only a 0.89% increase in the parameters. Compared to the
baseline ConvNeXtv2 model, the DCNv4 version improved mAP50 by 0.16 percentage points (reaching
89.05%), while also increasing recall (R) by 0.67 percentage points and precision (P) by a significant 2.95
percentage points, demonstrating an optimal precision-efficiency balance. Notably, this solution achieved a
precision of 90.80% while maintaining a high recall, demonstrating its exceptional ability to reduce false
detections. In summary, DCNv4, with its dynamic receptive field and hardware optimization features,
complements ConvNeXtv2 well, achieving overall performance improvements with a slight increase in the
number of parameters, thereby making it the most effective performance enhancement for ConvNeXtv2.
Although ShiftConv performed well for some metrics, its overall stability was inferior to that of the DCNv4
solution. The remaining convolutional schemes failed to surpass the overall performance of DCNv4, either
because of limited improvement or compatibility issues. The experimental results are presented in Table 2.

Table 2
Comparison Test of Different Convolutional Networks
Model Parameters/k R/% P/% mAP50/%

YOLOv11n+ConvNeXtv2+ARconv 2554893 81.20 87.85 87.53
YOLOv11n+ConvNeXtv2+DCNv4 2578076 81.87 90.80 89.05
YOLOv11n+ConvNeXtv2+shiftconv 2552940 83.92 92.10 88.37
YOLOv11n+ConvNeXtv2+pinwheelconv 2542716 79.90 85.50 86.50
YOLOv11n+ConvNeXtv2+scconv 4370636 77.60 87.30 85.70

Comparison Experiment of Attention Mechanisms

To further enhance the robustness of the model, the attention modules CBAM, EMA, SimAM, SA, and
SK were introduced into the model. As shown in Table 3, the SK attention module significantly increases the
model parameter size to 13.67 MB, a 430% increase, which severely impacts the model's parameter efficiency.
The SimAM attention module maintained a parameter size similar to the baseline but failed to improve
performance. The parameter size increase for the remaining modules was maintained within 2%,
demonstrating good parameter efficiency. The comprehensive mAP50 metric showed that the CBAM attention
module led with a score of 88.80%, followed closely by the SA attention module with a score of 88.51%.
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Both modules achieved a good balance between performance improvement and parameter efficiency.
Although the EMA and SK attention modules excel in certain individual metrics, their overall performance does
not significantly surpass the baseline.

The CBAM attention mechanism effectively addresses the primary challenges encountered in cherry
maturity detection within complex agricultural environments through its dual-dimensional feature optimization,
illumination adaptability, and nuanced feature resolution capabilities, thereby providing an efficient and reliable
solution for agricultural visual inspection tasks. The experimental results are presented in Table 3.

Table 3

Comparison Test of Different Attention Mechanisms

Model Parameters/k R/% P/% mAP50/%
YOLOv11n+ConvNeXtv2+DCNv4+CBAM 2622178 82.10 88.30 88.80
YOLOv11n+ConvNeXtv2+DCNv4+EMA 2736636 90.51 79.25 87.89
YOLOv11n+ConvNeXtv2+DCNv4+SimAM 2578076 81.19 87.75 87.04
YOLOv11n+ConvNeXtv2+DCNv4+SA 2572476 80.93 89.94 88.51
YOLOv11n+ConvNeXtv2+DCNv4+SK 13672508 79.31 91.93 87.38

Comparison of Different Models

To further verify the superiority of the proposed M-YOLOv11 model (i.e., the combined model of
YOLOv11n, ConvNeXt, DCNv4, and CBAM) for detecting cherries of varying ripeness, the improved model
was compared with YOLOv5n, YOLOv8n, YOLOv11n, and Faster R-CNN models. The final comparison results
are presented in Table 4. The experimental results show that the accuracy, recall, and mAP50 values for each
model were relatively close. The improved model, M-YOLOv11, achieved an accuracy of 88.30% while
maintaining a reasonable number of parameters. Compared to the original model, the improved model, M-
YOLOv11n, increases precision by 1.25 percentage points, recall by 5.66 percentage points, and mAP by 4.84
percentage points, while also incurring a 1.21% increase in parameters. Compared with YOLOv5n, YOLOv8n,
YOLOv11n, and Faster R-CNN, M-YOLOv11n achieved the best combined precision, recall, and mAP, with a
minimal increase in the parameters. The experimental results are presented in Table 4.

Table 4
Comparison Test of Different Models

Model Parameters/k R/% P/% mAP50/%
YOLOvV5n 2182444 77.50 88.10 84.44
YOLOvV8n 2685148 75.60 87.50 83.40
YOLOv11n 2590620 76.44 87.05 83.96

Faster R-CNN 138357544 87.13 62.38 85.25
M-YOLOv11n 2622178 82.10 88.30 88.80

Cherry Ripeness Detection System
In this study, a cherry maturity detection system was developed based on M-YOLOv11n. The main
functional interface of the system is the cherry maturity detection interface.

Cherry Ripeness Detection

The purpose of this interface is to provide a convenient tool for effectively detecting cherry ripeness in
preparation for the construction of a cherry-picking robot. Users can use the interface to select locally stored
cherry images or video files and upload them to the system, or take photos on site and upload them for
automatic recognition. The system utilizes deep learning algorithms to automatically identify and label cherries
in images, displaying the labeled images in real-time on the interface. Users can also choose to save labeled
images locally as shown in Figure 7.
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Fig. 7 - System Detection Interface

CONCLUSIONS

This study proposes a lightweight ConvNeXtv2 network to replace the backbone network, introduces
DCNv4, and incorporates an attention mechanism. Comparative experiments verified that the improved model,
M-YOLOv11n, achieved a 4.84 percentage point increase in mAP@50, 1.25 percentage points in precision,
and 0.4 percentage points in recall, compared with the original YOLOv11n model, while maintaining high
detection accuracy. The improved model had an mAP50 value of 88.80%, a P value of 88.30%, and an R
value of 82.10%. Compared with the mainstream target detection networks, the M-YOLOv11n model proposed
in this study has certain advantages in terms of detection accuracy and model lightweight in complex
environments.

This research enables the non-contact, high-precision, real-time detection of cherry maturity, a key step
in the full mechanization of post-harvest agricultural product processing. Automated detection systems can
effectively replace repetitive manual labor, overcome the limitations of manual sorting, such as low efficiency,
inconsistent standards, and susceptibility to fatigue, and provide core technical support for building smart
orchard production management systems.

Future work will focus on exploring more advanced lightweight techniques and optimization strategies
to further improve the model’s detection performance and practicality, thereby promoting the continued
development and application of intelligent technologies in agriculture.
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