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ABSTRACT 

Currently, research on cherry detection and recognition is relatively limited, and existing methods for 

agricultural product inspection often suffer from slow speed and low classification accuracy. To address these 

issues, this paper introduces an improved YOLOv11n-based model for detecting cherry ripeness, designed to 

enhance both the accuracy and efficiency of identifying cherries at different maturity stages. First, 

improvements were made to the backbone network of the YOLOv11n model by replacing the original backbone 

with ConvNeXtv2. This replacement achieved a broader global receptive field and enhanced multi-scale 

learning, which helped reduce computational costs and significantly improve efficiency while maintaining high 

performance. Second, a DCNv4 convolution module—an advanced convolutional layer with adaptive receptive 

fields—was added to the neck of the model. The neck is an intermediate stage that combines features from 

different layers, and the DCNv4 adapts the receptive field to help accurately locate occluded cherries of any 

shape and scale. This improves detection performance for small cherries without increasing computational 

complexity. Finally, the convolutional attention module CBAM was introduced. CBAM adaptively focuses on 

important image features while suppressing irrelevant background by using both channel and spatial attention 

mechanisms. Together, these additions significantly improve cherry detection accuracy and robustness. Our 

experimental results show that the improved M-YOLOv11n algorithm achieved a 4.84% increase in mAP@50 

compared to the original YOLOv11n model. Precision and recall also improved by 1.25% and 0.4%, 

respectively. Overall, the enhanced model outperformed not only its base version but also the YOLOv5n and 

YOLOv8n models. Compared to multi-stage models, the proposed model demonstrates superior accuracy, 

speed, and reduced computational requirements. This improvement enables more efficient and precise 

identification of cherry ripeness, thereby enhancing the efficiency of cherry harvesting and facilitating optimal 

harvest timing. These advancements support the optimization of storage and transportation conditions for 

cherries and provide robust technical support for intelligent orchard management and the advancement of 

automated fruit sorting systems. 

 

摘要   
针对当前樱桃检测与识别研究较少，农产品检测与识别速度慢、分类精度低等问题，本文提出了一种基于改进

YOLOv11n的樱桃成熟度检测模型，旨在提高不同成熟度的樱桃检测的准确性和效率。首先，针对YOLOv11n

模型的主干网络进行了改进，将原有的主干网络替换为 ConvNeXtv2，通过替换主干网络 CSPDarknet11实现

全局的感受野和多尺度学习，有助于降低计算成本，在保持高性能的同时，显著提高了计算效率。其次，在模

型的颈部添加了 DCNv4 卷积模块，通过自适应地调整膨胀卷积的感受野，精准定位任意形状、任意尺度被遮

挡的樱桃，在不增加额外计算量的同时改善小目标的检测效果。最后，引入卷积注意力模块 CBAM，通过协同

利用通道与空间注意力机制，自适应地聚焦关键特征并抑制背景干扰，从而显著提升模型对樱桃的检测精度与

鲁棒性。实验结果表明，改进后的算法 M-YOLOv11n 相比原 YOLOv11n 模型 mAP@50 提高了 4.84 个百分

点，精确率和召回率分别提高了 1.25个百分点和 0.4 个百分点，均优于 YOLOv5n、YOLOv8n和 YOLOv11n

模型。此外,与多阶段模型相比,该模型在平均精度、效率和计算负载方面均表现优越。由此可见,改进后的模型

能够更加高效、精准地进行樱桃成熟度识别，这不仅提高了樱桃采摘效率，还精确控制了采摘时间，进而优化

了果实的储存和运输条件，为果园智能化管理及水果自动分拣装备的开发提供了有效的技术支撑。 
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INTRODUCTION 

Anthocyanins, vitamin C, potassium, and dietary fiber are all abundant in cherries, sometimes referred 

to as bird cherries, sweet cherries, or cherries. They are praised as the "diamond of fruits" due to their great 

nutritional content. The demand for cherries on the market is still rising as a result of improvements in 

consumption and the growth of international trade. China is now one of the world's biggest markets for cherry 

consumption, and the Food and Agriculture Organization of the United Nations (FAO) reports that worldwide 

cherry output has grown by about 35% in the last ten years (Wang et al., 2025). Large-scale cherry cultivation 

enterprises have developed concurrently in areas like Shandong, Liaoning, Shaanxi, Gansu, and Sichuan, 

progressively moving toward precision and intelligent farming methods. As non-climacteric fruits, cherries' 

flavor and quality are mostly established when they are ripening on the tree. Therefore, it is crucial to make an 

accurate assessment of the optimal time to harvest. Cherry skins have a brief ripening time and are fragile and 

easily damaged. Conventional hand inspection techniques are expensive and ineffective, which makes them 

inappropriate for the demands of commercial harvesting on a wide scale. The assessment of ripeness is further 

complicated by the fact that variables, including variety, climate, and production methods, affect maturity 

indications like sugar content, hardness, and pigmentation. Therefore, improving harvesting efficiency, cutting 

losses, and guaranteeing fruit quality all depend on the development of intelligent cherry maturity detecting technology.  

Many automated fruit and vegetable ripeness detection studies have surfaced worldwide as a result of 

the quick development of deep learning and computer vision technology. Although their ablation tests produced 

less than ideal results, Albarrak Khalied et al. used transfer learning based on the MobileNetV2 architecture 

to classify eight distinct data types with 99% accuracy (Albarrak et al., 2022). Farjana Sultana Mim et al. 

created an automated classification system employing the HIS model by performing global threshold 

segmentation on mango photos using digital image processing techniques. However, poor model resilience 

and recognition mistakes resulted from the tiny dataset size (Mim et al., 2018). Deep transfer learning was 

used by DANH et al. to classify tomatoes. According to experimental results, the VGG19 model detected the 

maturity of cherry tomatoes with an accuracy of 94.14% (Danh et al., 2021). Chen et al. proposed a method 

that detects the ripeness of citrus fruits by combining visual saliency with convolutional neural networks to 

identify three levels of maturity (Chen et al., 2022). Wu et al. proposed a DeepLabV3-based method to achieve 

rapid segmentation and recognition of cherries in complex orchard environments, including front light, backlight, 

rainy weather, single fruits, multiple fruits, fruit overlap, and branch/leaf shading (Wu et al., 2024). Gai and 

colleagues developed an improved version of the YOLO-V4 deep learning algorithm that can effectively detect 

small cherry fruits in images (Gai et al., 2023). 

The YOLO (You Only Look Once) series of algorithms has demonstrated remarkable performance in 

real-time fruit and vegetable ripeness detection, owing to their high efficiency and accuracy. For instance, 

Wang Lishu et al. developed an improved YOLOv4-Tiny network, which achieved an average precision of 

96.24% in classifying unripe, underripe, and ripe blueberries under challenging conditions such as occlusion 

and uneven lighting, with an average detection time of only 5.723 ms. This result satisfies both accuracy and 

speed requirements for practical blueberry recognition (Wang et al., 2021). In another study, MACEACHERN 

et al. applied YOLOv4 to blueberry ripeness detection and reported high accuracy; However, the substantial 

computational cost of YOLOv4 led to a significant decrease in inference speed when deployed on resource-

constrained embedded devices (Maceachern et al., 2023). To address similar challenges in other fruit 

detection tasks, Liang Ao et al. introduced YOLOv5s-SCS, a real-time strawberry ripeness detection algorithm 

based on YOLOv5s. This method enhances detection performance in the presence of high fruit density, small 

target size, occlusion, overlap, and crowding by mitigating false positives and false negatives, thereby 

improving both detection accuracy and speed (Liang et al., 2024). Similarly, Li Ying et al. proposed an improved 

YOLOv8s-based approach for citrus ripeness detection. By integrating a Hybrid Attention Transformer (HAT) 

module and an Adaptive Spatial Feature Fusion (FASFF) detection head, the model's ability to discern citrus 

ripeness was significantly strengthened (Li et al., 2024). Furthermore, Tian Ronghui et al. developed an 

enhanced YOLOv7-ST-ASFF model for apple ripeness detection in complex orchard environments, where it 

exhibited outstanding performance, particularly in scenes containing multiple ripe apples and backlit unripe 

fruits (Tian et al., 2022).  

Traditional deep learning models are often plagued by high computational complexity, excessive 

parameters, and slow inference speeds, making them impractical for real-time detection and mobile 

deployment in agricultural environments. Consequently, developing lightweight versions of YOLO-series 

algorithms is of considerable practical significance. Recent years have witnessed progressive improvements 

in the YOLO family.  
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In 2024, YOLOv9 was introduced to enhance detection accuracy in complex scenarios through 

strengthened multi-scale feature fusion. It incorporates novel efficient convolutional layers that substantially 

reduce latency and hardware dependency, while a dynamic parameter adjustment mechanism enables real-

time optimization, improving efficiency without sacrificing precision (Li et al., 2024). Building on this, YOLOv10 

employs adaptive feature enhancement to selectively accentuate critical regions, accelerates inference via a 

multi-branch parallel architecture, and minimizes redundancy through lightweight module design. These 

innovations allow it to achieve a more favorable accuracy-speed trade-off, particularly in mobile and real-time 

settings (Gao et al., 2025). YOLOv11 further leverages the use of separable convolutions and enhances multi-

scale representation learning, thereby reducing computational overhead while strengthening robustness to 

occluded and challenging targets. It also introduces a hierarchical feature fusion network that integrates both 

fine-grained details and rich semantic information. By combining dynamic kernel adaptation with learnable 

feature selection, YOLOv11 actively adjusts to varying contexts, resulting in synergistic gains in detection 

performance, inference speed, and generalization ability (Wang et al., 2025).  

Despite these advances, mainstream detection networks still face challenges in applications such as 

cherry detection, where targets are small, densely distributed, and frequently overlapping. Their high 

computational and parametric costs also limit deployment in resource-constrained scenarios. To address these 

issues, this study proposes a lightweight cherry ripeness detection model that integrates a ConvNeXtv2 

backbone (Xu et al., 2024), a DCNv4 convolution module (Han et al., 2025), and a CBAM attention mechanism 

(Hi et al., 2023). The proposed system not only delivers strong recognition and localization performance but 

also enables accurate maturity classification under challenging conditions such as leafy occlusion and fruit 

overlap—all while maintaining high inference efficiency. This research is expected to offer valuable technical 

support for automated cherry harvesting, yield prediction, and intelligent quality grading, thereby contributing 

to the transition toward smart and precision-oriented cherry cultivation. 

 

MATERIALS AND METHODS 

Image Data Acquisition 

A custom cherry image dataset was constructed by collecting photographs at Juxin Cherry Farm in 

Taigu, Jinzhong, Shanxi Province, China. In collaboration with horticultural specialists, healthy 'Sam' cultivar 

cherries were selected for imaging. A Huawei Mate 60 smartphone was used to photograph fruit of various 

sizes and shapes. The dataset comprises 1,085 JPG images, each with a resolution of 4,096 × 3,072 pixels. 

To capture ecological and morphological diversity, images were taken under a range of conditions, including 

isolated and grouped cherries, direct sunlight, backlighting, and partial occlusion by branches or leaves. Figure 

1 presents examples that illustrate the variety of conditions represented in the dataset. This variation facilitates 

robust training of visual recognition models for accurate cherry detection in diverse real-world environments. 

                                                                          
（a）Single target                            （b）Single target, occlusion             （c）Multiple targets, occlusion 

                                                                                 
                       （d）Multiple objects, occlusion, backlighting        （e）Multiple (small) targets, occlusion 

Fig. 1 - Images of cherries in different scenarios 

Image Preprocessing 

The imgaug library was used to perform random combinations of cropping, rotation, flipping, scaling, 

and translation to increase the diversity of the training samples, ultimately generating 6,579 enhanced images. 
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3,255 of these images were randomly selected and divided into ten equal parts, with a ratio of 8:2 between the 

training and validation sets. Cherry fruit maturity was categorized into four categories: unripe (green fruit), 

semi-ripe (green with red), ripe (red or purple), and overripe (shriveled and gray). The data were annotated 

using I, S, M, and L to represent the four stages of cherry: unripe, semi-ripe, ripe, and lesion, respectively, as 

shown in Figure 2. 

 
Fig. 2 - Image Processing Process 

YOLOv11n model architecture 

YOLOv11n is a next-generation object detection model based on the YOLO family of architectures, 

developed by a cutting-edge research team. YOLOv11n introduces depth-wise separable convolutions. The 

interaction Mechanism with Multi-Scale Features, Hierarchical Feature Fusion Network, and a joint 

optimization strategy of dynamic convolution and adaptive feature selection significantly improve the model's 

detection robustness and efficiency in complex scenarios (Chen et al., 2020). Considering the accuracy and 

speed requirements for cherry detection in real-world scenarios, YOLOv8n, a derivative of YOLOv11n, was 

selected as the baseline model for improvement. 

Improvements to the YOLOv11n Model 

First, the backbone network of the YOLOv11n model was optimized by replacing the original backbone 

structure with ConvNeXtv2. ConvNeXtv2 cleverly combines the local feature extraction capabilities of 

convolutional neural networks (CNNs) with the global context modeling advantages of transformers, 

significantly improving the model's feature representation capabilities and computational efficiency, thereby 

enhancing cherry detection accuracy. Second, the DCNv4 convolutional module was incorporated into the 

model backbone. By dynamically adjusting the receptive field, it accurately captures the features of fruits of 

varying shapes, occlusions, and scales, significantly improving detection accuracy and robustness in complex 

environments. To enhance the performance of the cherry maturity detection model in complex agricultural 

environments, this study introduced a convolutional block attention module (CBAM), further enhancing the 

detection accuracy, as shown in Figure 3. 

 
Fig. 3 - M-YOLOv11n Model Structure 
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ConvNeXtv2 
ConvNeXtv2 comprises a unified macro-architecture with a fully convolutional block as its core module. 

It achieves feature recalibration through the synergy of global response normalization (GRN) and channel-

wise FFN. Compared to traditional convolutional neural networks (CNNs), ConvNeXtv2 incorporates a GRN 

mechanism into the feature feedforward process, which not only enhances the feature selectivity and 

representation stability of the model but also promotes a diversified representation of features across different 

channels (Fu et al., 2025). This enhances the model's generalization and performance. To further tap the 

model's potential, ConvNeXtv2 embeds the GRN into the identity branch of the FFN, effectively fusing and 

enhancing the convolutional features with global statistical information (Ma et al., 2025). Finally, through 

convolutional layers and skip connections, the features are transformed and transferred, resulting in a highly 

expressive and robust feature representation, as shown in Figure 4. 

 
Fig. 4 - ConvNeXtv2 Network Structure Diagram 

 
After the cherry feature map X enters the ConvNeXtV2 module, it undergoes a 7×7 depthwise 

convolution to extract deep semantic information from the images. Grouped convolution is also used to ensure 

that each input channel uses only its own convolution kernel, thereby reducing computational complexity and 

parameter requirements. The extracted feature map is then fed into a Layer Normalization (LN) layer for 

normalization and a nonlinear transformation using the GELU activation function. To further enhance the 

model's feature representation capabilities, a Global Response Normalization (GRN) layer was introduced. 

The GRN layer effectively enhances competition between feature channels through global feature aggregation 

(GX), feature normalization (NX), and feature calibration operations, thereby improving the model's 

expressiveness. The execution process of GX is illustrated in Equation (1), which indicates that each channel 

feature is spatially aggregated in the height H and width W dimensions using the L2 norm. 

                  G(X)i = ||Xi||2 = √∑ ∑ Xi(h, w)
2W−1

w=0
H−1
h=0                                                 (1) 

 Finally, the feature map processed by the GRN layer was input into the linear layer and added to the 

input feature map X to enhance the robustness of the YOLOv11n model. The calculation formula is given by 

Equation (2). 

         N(G(X)i) =
||Xi||2

∑ ||Xj||2
C
j=1

                                                             (2) 

 YOLOv11n's C3k2 module was replaced with the ConvNeXtV2 module, which significantly enhanced 

the model's ability to extract cherry features while reducing the model complexity. The introduction of this 

module enables the model to demonstrate excellent performance in complex environments, accurately and 

efficiently identifying cherries of varying ripeness, and reducing the environmental requirements for system 

deployment. 

DCNv4 
 DCNv4, a next-generation deformable convolution operator, is built on a core architecture that combines 

dynamic sparse sampling and hardware-aware optimization. Compared with traditional static convolution 

kernels, DCNv4 achieves adaptive receptive field adjustment through predicted offsets.  
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 This not only enables the accurate capture of irregular objects and long-range dependent features but 

also significantly improves computational efficiency through kernel-level rewriting and memory optimization. 

This significantly reduces computational latency and memory usage while enhancing the geometric modeling 

capabilities of the model (Liu et al., 2025). To fully exploit the potential of hardware computing power, DCNv4 

employs a tiling implementation and gradient-aware weight distribution mechanism to achieve efficient 

alignment and fusion of sample points and feature maps. Ultimately, through sub-thread parallelization and 

CUDA graph optimization techniques, it achieves a near-linear speedup on modern GPU architectures, 

becoming a next-generation fundamental computing unit to replace standard convolution and self-attention, 

as shown in Figure 5. 

 
Fig. 5 - DCNv4 Network Structure Diagram  

 

 The core operator of DCNv4 is an advanced deformable convolution unit. For any position p on the 

output feature map, its output value is transformed and calculated using the following formula (3):    
                                   y(p) = ∑ wk ∙ x(p + pk + Δpk)

k
k=1                                                            (3) 

where the notations are defined as below: 

y(p)∈RCout represents the output eigenvector at position p; x( )∈RCin is the input feature map, which 

samples the input features at a specified coordinate (possibly non integer); K is the total number of sampling 

points; pk is a predefined fixed offset used to determine the sampling grid of the regular convolution kernel; 

Δpk∈R
2 is a dynamic offset predicted by a lightweight quantum network (usually a lightweight convolutional 

layer) based on input features, allowing the model to adaptively adjust the position of each sampling point 

according to the input content, thereby focusing the receptive field on areas with richer information; 

wk∈R
Cout×R

Cin  is the learnable weight matrix corresponding to the k-th sampling position, which is shared 

among different spatial positions and consistent with standard convolution. 

 
CBAM Attention Mechanism  

The attention mechanism selectively ignores invalid information in the image, focusing on valid 

information and reducing resource consumption in invalid areas. This improves network utilization and 

enhances object detection capabilities. Therefore, the CBAM attention mechanism was integrated into the 

feature extraction network, combining the channel and spatial attention mechanisms to form a simple yet 

effective attention module, as shown in Figure 6. 
 

 
Fig. 6 - CBAM Attention Mechanism Structure Diagram 
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In the channel attention module, global average pooling and max pooling are applied to the same input 

feature space to extract the spatial information from the feature map. The obtained feature space information 

is then input into the next-layer multi-layer perception mechanism module for dimensionality reduction and 

increase. The weights of the two shared convolutional layers in the multilayer perception network were shared. 

The features output by the perception network were then added and processed using the sigmoid activation 

function to obtain channel attention. The calculation formula is given by Equation (4). 

Mc(F) = ε[MLP(Favg
c ) + MLP(Fmax

c )]                                                       (4) 

where Mc is the channel attention module calculation factor, ε is the sigmoid activation function, MLP is the 

multilayer perceptron, and F is the feature vector. Spatial attention features complement the channel attention 

and reflect the importance of the input value in the spatial dimension. The calculation formula is given by 

Equation (5). First, global average pooling and global maximum pooling are performed on the channel 

dimension of the feature map. The two features were then concatenated. Finally, the sigmoid function was 

used to reduce the dimension to 1 × 7 × 7 convolution. A spatial attention feature map was generated after 

processing the channels. The calculation formula is given by Equation (5).      

              Ms(F) = ε{conv7×7[unit(Favg
s ，Fmax

s )]}                                                       (5) 

where: Ms is the spatial attention module calculation factor, ε is the sigmoid activation function, MLP is the 

multi-layer perceptron, F is the feature vector, unit is the channel combination, and conv represents the 

convolution operation. 

To facilitate the use of pre-trained models in the experiment, the CBAM was not embedded in all 

convolutional residual blocks. It only takes effect after the different convolutional layers. 

 
RESULTS 

Parameter Configuration and Evaluation Indicators 

The experimental hardware configuration consisted of a GeForce RTX 4060 D GPU, an Intel(R) Xeon(R) 

Platinum 8270 CPU @ 2.70 GHz (2 processors), and 128GB of RAM. The software configuration comprised 

Windows 11 Professional Workstation Edition, Python 3.11.9, and CUDA 12.0. YOLOv11 and its improved 

versions are run on the PyTorch deep learning framework. 

The model training parameters were as follows: input image resolution (image_size) of 640 × 640 pixels, 

initial learning rate (learning_rate) set to 0.01, batch size (batch_size) set to 64, and number of epochs (epochs) 

set to 500. 

This study evaluated the model's performance using accuracy (Precision, P), mean average precision 

(mAP), model parameter size (parameters), and model computational effort (GFLOPS). 

 

The calculation formula for each metric is as follows. 

P =
TP

TP + FP
 

R =
TP

TP + FN
 

𝐴P = ∫ P(R)dr
1

0

 

mAP =
1

n
∑APi

n

i=1

 

(6) 

where TP is the number of correctly detected cherries, FP is the number of background impurities that are 

incorrectly detected as cherries, FN is the number of cherries identified as impurities, R is the recall value at 

the current accuracy, which refers to the proportion of cherries detected by the model to all actual cherries, 

and the area under the PR curve drawn with precision P and recall R represents the average precision AP 

value of the category. The higher the AP value, the better the detection performance of the algorithm. 
 

Backbone Network Comparison Test 

To evaluate the advantages of using ConvNeXtv2 as a backbone alternative, three lightweight models 

(C2f_RepLKBlock, C2f_QARep, C2f_LSK, and ConvNeXtv2) were selected as the backbone networks of the 

original YOLOv11n model for comparative experiments. The experimental results are presented in Table 1. 
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Table 1 
Comparison Test of Different Backbone Networks 

Model Parameters/k R/% P/% mAP50/% 

YOLOv11n 2590620 76.44 87.05 83.96 

YOLOv11n+C2f_RepLKBlock 2644044 75.70 84.80 82.80 

YOLOv11n+C2f_QARep 2629964 74.20 88.60 82.80 

YOLOv11n+C2f_LSK 2699940 72.20 82.30 77.40 

YOLOv11n+ConvNeXtv2 2539340 81.70 88.90 88.89 

 
The experimental data in Table 1 indicate that replacing the backbone network of YOLOv11n has a 

significant impact on the model's performance. Among the many improved solutions, ConvNeXtv2 performed 

the best, significantly improving the overall detection performance of the model while maintaining a minimum 

number of parameters. Compared to the YOLOv11n baseline model, ConvNeXtv2 achieved a significant 

improvement of 4.93 pp in mAP50 (from 83.96% to 88.89%), while reducing the number of parameters by 

2.02%. Furthermore, the recall (R) increased significantly by 5.26 percentage points, and the precision (P) 

increased by 1.85 percentage points, surpassing all other compared solutions. In summary, ConvNeXtv2's 

unique architectural design achieves dual optimization of parameter count and precision, maintaining high 

accuracy while reducing model complexity, making it ideal for deployment on mobile and edge computing 

devices. 

Comparison Experiment of Different Convolutional Networks 

Analysis of the experimental data showed that introducing different convolutional operations to the 

ConvNeXtv2 backbone network had a significant impact on the model performance. Among the many 

improved solutions, the ConvNeXtv2 + DCNv4 combination performed the best, achieving a comprehensive 

improvement in the detection performance with only a 0.89% increase in the parameters. Compared to the 

baseline ConvNeXtv2 model, the DCNv4 version improved mAP50 by 0.16 percentage points (reaching 

89.05%), while also increasing recall (R) by 0.67 percentage points and precision (P) by a significant 2.95 

percentage points, demonstrating an optimal precision-efficiency balance. Notably, this solution achieved a 

precision of 90.80% while maintaining a high recall, demonstrating its exceptional ability to reduce false 

detections. In summary, DCNv4, with its dynamic receptive field and hardware optimization features, 

complements ConvNeXtv2 well, achieving overall performance improvements with a slight increase in the 

number of parameters, thereby making it the most effective performance enhancement for ConvNeXtv2. 

Although ShiftConv performed well for some metrics, its overall stability was inferior to that of the DCNv4 

solution. The remaining convolutional schemes failed to surpass the overall performance of DCNv4, either 

because of limited improvement or compatibility issues. The experimental results are presented in Table 2. 

 
Table 2  

 

Comparison Experiment of Attention Mechanisms 

To further enhance the robustness of the model, the attention modules CBAM, EMA, SimAM, SA, and 

SK were introduced into the model. As shown in Table 3, the SK attention module significantly increases the 

model parameter size to 13.67 MB, a 430% increase, which severely impacts the model's parameter efficiency. 

The SimAM attention module maintained a parameter size similar to the baseline but failed to improve 

performance. The parameter size increase for the remaining modules was maintained within 2%, 

demonstrating good parameter efficiency. The comprehensive mAP50 metric showed that the CBAM attention 

module led with a score of 88.80%, followed closely by the SA attention module with a score of 88.51%.  

Comparison Test of Different Convolutional Networks 

Model Parameters/k R/% P/% mAP50/% 

YOLOv11n+ConvNeXtv2+ARconv 2554893 81.20 87.85 87.53 

YOLOv11n+ConvNeXtv2+DCNv4 2578076 81.87 90.80 89.05 

YOLOv11n+ConvNeXtv2+shiftconv 2552940 83.92 92.10 88.37 

YOLOv11n+ConvNeXtv2+pinwheelconv 2542716 79.90 85.50 86.50 

YOLOv11n+ConvNeXtv2+scconv 4370636 77.60 87.30 85.70 
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Both modules achieved a good balance between performance improvement and parameter efficiency. 

Although the EMA and SK attention modules excel in certain individual metrics, their overall performance does 

not significantly surpass the baseline.  

The CBAM attention mechanism effectively addresses the primary challenges encountered in cherry 

maturity detection within complex agricultural environments through its dual-dimensional feature optimization, 

illumination adaptability, and nuanced feature resolution capabilities, thereby providing an efficient and reliable 

solution for agricultural visual inspection tasks. The experimental results are presented in Table 3. 

 
Table 3  

 

Comparison of Different Models 

To further verify the superiority of the proposed M-YOLOv11 model (i.e., the combined model of 

YOLOv11n, ConvNeXt, DCNv4, and CBAM) for detecting cherries of varying ripeness, the improved model 

was compared with YOLOv5n, YOLOv8n, YOLOv11n, and Faster R-CNN models. The final comparison results 

are presented in Table 4. The experimental results show that the accuracy, recall, and mAP50 values for each 

model were relatively close. The improved model, M-YOLOv11, achieved an accuracy of 88.30% while 

maintaining a reasonable number of parameters. Compared to the original model, the improved model, M-

YOLOv11n, increases precision by 1.25 percentage points, recall by 5.66 percentage points, and mAP by 4.84 

percentage points, while also incurring a 1.21% increase in parameters. Compared with YOLOv5n, YOLOv8n, 

YOLOv11n, and Faster R-CNN, M-YOLOv11n achieved the best combined precision, recall, and mAP, with a 

minimal increase in the parameters. The experimental results are presented in Table 4. 

Table 4  
Comparison Test of Different Models 

Model Parameters/k R/% P/% mAP50/% 

YOLOv5n 2182444 77.50 88.10 84.44 

YOLOv8n 2685148 75.60 87.50 83.40 

YOLOv11n 2590620 76.44 87.05 83.96 

Faster R-CNN 138357544 87.13 62.38 85.25 

M-YOLOv11n 2622178 82.10 88.30 88.80 

 

Cherry Ripeness Detection System 

In this study, a cherry maturity detection system was developed based on M-YOLOv11n. The main 

functional interface of the system is the cherry maturity detection interface. 
 

Cherry Ripeness Detection 

The purpose of this interface is to provide a convenient tool for effectively detecting cherry ripeness in 

preparation for the construction of a cherry-picking robot. Users can use the interface to select locally stored 

cherry images or video files and upload them to the system, or take photos on site and upload them for 

automatic recognition. The system utilizes deep learning algorithms to automatically identify and label cherries 

in images, displaying the labeled images in real-time on the interface. Users can also choose to save labeled 

images locally as shown in Figure 7. 

Comparison Test of Different Attention Mechanisms 

Model Parameters/k R/% P/% mAP50/% 

YOLOv11n+ConvNeXtv2+DCNv4+CBAM 2622178 82.10 88.30 88.80 

YOLOv11n+ConvNeXtv2+DCNv4+EMA 2736636 90.51 79.25 87.89 

YOLOv11n+ConvNeXtv2+DCNv4+SimAM 2578076 81.19 87.75 87.04 

YOLOv11n+ConvNeXtv2+DCNv4+SA 2572476 80.93 89.94 88.51 

YOLOv11n+ConvNeXtv2+DCNv4+SK 13672508 79.31 91.93 87.38 
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Fig. 7 - System Detection Interface 

 
CONCLUSIONS 

 This study proposes a lightweight ConvNeXtv2 network to replace the backbone network, introduces 

DCNv4, and incorporates an attention mechanism. Comparative experiments verified that the improved model, 

M-YOLOv11n, achieved a 4.84 percentage point increase in mAP@50, 1.25 percentage points in precision, 

and 0.4 percentage points in recall, compared with the original YOLOv11n model, while maintaining high 

detection accuracy. The improved model had an mAP50 value of 88.80%, a P value of 88.30%, and an R 

value of 82.10%. Compared with the mainstream target detection networks, the M-YOLOv11n model proposed 

in this study has certain advantages in terms of detection accuracy and model lightweight in complex 

environments. 

 This research enables the non-contact, high-precision, real-time detection of cherry maturity, a key step 

in the full mechanization of post-harvest agricultural product processing. Automated detection systems can 

effectively replace repetitive manual labor, overcome the limitations of manual sorting, such as low efficiency, 

inconsistent standards, and susceptibility to fatigue, and provide core technical support for building smart 

orchard production management systems. 

 Future work will focus on exploring more advanced lightweight techniques and optimization strategies 

to further improve the model’s detection performance and practicality, thereby promoting the continued 

development and application of intelligent technologies in agriculture. 
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