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ABSTRACT 

To address the problems of slow path planning speed, high path cost, and visual positioning errors encountered 

by grain harvesters during field operations, this study proposes an improved rapidly-exploring random tree 

algorithm integrated with visual servoing (VS-IRRT). By employing visual servoing technology to acquire 

environmental information in real time, the algorithm enables accurate positioning and attitude correction of 

the harvester. On this basis, heuristic sampling strategies and a path optimization function are introduced to 

enhance node expansion efficiency and accelerate the convergence of the search tree. To further reduce path 

cost, a path evaluation model incorporating environmental feature costs is established, which comprehensively 

considers terrain complexity, crop distribution density, and the machine’s turning radius. This model 

dynamically adjusts the search direction and improves path smoothness. Simulation and field navigation 

experiment results indicate that the VS-IRRT algorithm reduces path planning time by approximately 32% 

compared to the traditional RRT algorithm, decreases the average yaw error by 42%, reduces the path 

curvature variation rate by 33%, and lowers turning frequency by 21%. The algorithm also maintains high 

robustness and planning accuracy under visual noise and positioning disturbances. Overall, this study provides 

an effective path planning approach and technical support for autonomous navigation and efficient operation 

of grain harvesters in complex agricultural environments. 

 

摘要 

针对谷物收割机在田间工作过程中存在的路径规划速度慢、路径成本高以及视觉定位误差等问题，提出结合视

觉伺服的改进随机快速搜索树算法 (Improved rapidly-exploring random tree with visual servoing, VS-IRRT)过

视觉伺服技术实时获取作业环境信息，实现收割机的精准定位与姿态修正；在此基础上，引入启发式采样策略

和路径优化函数，提高随机快速搜索树的节点扩展效率与收敛速度。为降低路径成本，设计基于环境特征代价

的路径评估模型，综合考虑地形复杂度、作物分布密度及机器转向半径等因素，动态调整搜索方向并优化路径

平滑性。仿真与田间的导航试验结果表明，VS-IRRT 算法在路径规划时间上较传统 RRT 缩短约 32%，平均偏

航误差降低 42%，路径曲率变化率降低 33%，转向次数减少 21%。且在存在视觉噪声与定位偏差的情况下仍能

保持较高的鲁棒性与规划精度。该研究为谷物收割机在复杂农田环境下的自主导航与高效作业提供了有效的路

径规划方法与技术支撑。 

 

INTRODUCTION 

Grain harvesters are among the most critical agricultural machinery in modern farming. They not only 

significantly reduce manual labor intensity and shorten harvesting cycles, but also effectively minimize grain 

loss rates, ensuring efficient and stable grain production (Lin et al, 2025; Yue et al., 2024; Chen, et al., 2025a). 

However, due to complex farmland environments and uneven crop distribution, grain harvesters still face 

challenges such as inefficient path planning, high operational costs, and insufficient positioning accuracy 

during operations. 

Traditional path planning methods primarily include A* algorithm based on grid maps, Dijkstra algorithm 

for graph search, and Bezier curve and B-spline path planning using curve fitting (Zhang et al.; 2021, Silva et 

al., 2024). While these methods can generate optimal paths in regular, static environments, they exhibit the 

following limitations when applied to dynamic, unstructured agricultural scenarios: (1) High computational 
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complexity that hinders real-time implementation; (2) Failure to account for mechanical kinematic constraints, 

resulting in paths unsuitable for actual harvester operations; (3) Insufficient integration with environmental 

perception data, making it difficult to handle field-specific challenges like uneven crop distribution and random 

obstacle emergence. 

In recent years, Rapid-Exploring Random Tree (RRT) and their improved algorithms have been widely 

adopted in mobile robotics and autonomous driving due to their rapid search capabilities and adaptability to 

high-dimensional spaces. For example, by introducing a path reconnection mechanism using the RRT * 

algorithm, path search can be achieved in the asymptotic optimal sense, which has been widely used in 

navigation systems for autonomous vehicles and drones (Wang et al., 2018). Visual SLAM can also be 

combined with RRT algorithm to achieve autonomous path planning in complex outdoor environments (Xun et 

al., 2023). Additionally, international researchers have explored deep learning-based perception and sampling 

strategy optimization. Examples include using convolutional neural networks to predict environmental cost 

distributions that guide RRT sampling directions, thereby significantly improving path quality and planning 

efficiency. Other studies combined Global Navigation Satellite System (GNSS), LiDAR, and visual sensors 

(Shen et al., 2025; Hu et al., 2025; Eiffert et al., 2022) to precisely identify field obstacles and crop row spacing, 

subsequently optimizing harvester trajectories (Xie and Hong, 2024; Wang et al., 2025). However, most of 

these methods rely on high-precision sensors or offline planning, demonstrating insufficient real-time 

performance and visual servo-based positioning accuracy. They fail to meet operational demands in complex 

field environments and often exhibit deviations between planned paths and actual working scenarios due to 

inadequate visual positioning support. 

To address these challenges, this paper proposes an improved rapidly-exploring random tree algorithm 

integrated with visual servoing (VS-IRRT). By integrating visual servoing technology, the system achieves 

precise positioning and attitude correction for combine harvesters during operations. The proposed approach 

incorporates heuristic sampling strategies and path optimization functions to improve path planning efficiency 

and trajectory smoothness, thereby enhancing autonomous navigation and operational capabilities of grain 

harvesters in complex agricultural environments. 

 

MATERIALS AND METHODS 

Space environment modeling 

Spatial characteristics of farmland operation 

The working environment of grain harvesters is a typical semi-structured space characterized by uneven 

row spacing, undulating terrain, and randomly distributed obstacles. To achieve efficient path planning, the 

farmland environment needs to be abstracted into a mathematical model suitable for algorithmic operations. 

The farmland space can be represented as a three-dimensional plane (Fig. 1), defined as: 

),,,( COYXE =                                        (1) 

where: 

X and Y— represent the coordinate boundary of farmland operation area, m; 

O — Collection of obstacles, such as field boundaries, ridges, trees or temporary obstacles; 

C — Crop distribution and terrain cost information, which is used to guide path sampling and planning. 

  
Fig. 1 - Characteristics of farmland operation space 
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Visual servo perception and map construction 

The vision servo system acquires crop row spacing, boundary lines, and obstacle information through 

front-end cameras and image processing. By fusing GNSS and IMU data for positioning, it generates real-time 

environmental maps using a grid occupancy model. This model discretizes farmland into grids of specified 

sizes d , with each grid recording accessibility probability and environmental value (Huo et al., 2024). 

(1) Occupancy probability Pocc: According to visual detection and sensor data, it is determined whether 

the grid is passable, impassable or unknown; 

(2) Environmental surrogate value Cenv: used to guide path optimization by comprehensively considering 

factors such as crop density, terrain slope and distance of obstacles; 

(3) Dynamic status label: dynamically mark the temporary obstacles and support local path re-planning. 

Finally, the vision servo perception and map construction module generates a high-resolution and real-

time updated farmland operation environment map as the calculation basis of the VS-IRRT algorithm path 

planning. 

 

Composition of VS-IRRT algorithm 

To address challenges in field operations such as slow path planning speed, high path cost, and visual 

positioning errors in grain harvesters, this paper proposes an improved rapidly-exploring random tree algorithm 

integrated with visual servoing (VS-IRRT). The proposed system consists of three core components: (1) a 

visual servo-based perception and localization module, (2) an enhanced RRT path planning module, and (3) 

a path optimization and execution module. 

The visual servo perception and positioning module utilizes front-end cameras, GNSS receivers, and 

IMU sensors to acquire environmental information and pose data. This paper selects the Basler acA1920-40gc 

high-definition Gigabit network camera and Trimble BD940 GNSS module for capturing agricultural operation 

environment images. Additionally, the Xsens MTi-300 inertial measurement unit is employed in conjunction 

with Kalman filtering for short-term high-precision attitude estimation. 

The algorithm is partially implemented on an Industrial Control Computer (IPC) with Advantech IPC-

610H hardware platform. The system features an Intel Core i7-9700 CPU (3.0 GHz, 8-core), 16 GB of RAM, 

and NVIDIA GeForce RTX 2060 GPU with 6 GB of video memory. Developed using the ROS (Robot Operating 

System) framework, the algorithm utilizes C++ to implement core path planning algorithms and Python for 

visual servoing and data fusion processing (Yan et al., 2025). 

Path tracking and optimization control are executed by PLC and electro-hydraulic proportional control 

system. The whole machine adopts Siemens S7-1200 PLC to be responsible for path tracking and execution 

control signal output, and selects Danfoss PVG 32 electro-hydraulic proportional valve to realize the 

adjustment of harvester steering Angle by combining control signal. 

 

Improve the RRT path planning module 

Design of environmental cost function 

(1) Basic form of cost function 

In the path planning process of grain harvesters, environmental complexity directly impacts the feasibility 

and operational efficiency of route generation. To address this, this paper develops an environment-aware 

comprehensive cost function within the VS-IRRT algorithm. This cost function guides sampling point generation, 

path expansion direction selection, and final route optimization. Specifically, an environment-based 

comprehensive cost function (Fcost) is constructed, which holistically incorporates terrain complexity, crop 

density, and obstacle distance factors, and is defined as: 

safeenv SELF +++= cost                                (2) 

where: L—Path length cost, used to measure the total distance of the path. The shorter the path, the lower the 

cost, m; 

θ —Turning cost, which represents the cumulative size of turning angles in the path, and is used to limit 

the adverse effects of frequent turning on the stability and energy consumption of the harvester; °; 

Eenv—environmental characteristic cost, reflecting the influence of crop density, terrain complexity (slope) 

and obstacle distribution on the path; 

Ssafe—safety cost, used to measure the distance between path nodes and obstacles and boundaries to 

ensure the safety of harvester operation, m; 
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α, β, γ, δ - The weight coefficient is determined by experiment and optimization according to the 

characteristics and priorities of the operation scenario (Russello et al., 2022). 

 

In grain harvesting operations, paths should prioritize extending along crop rows to enhance efficiency 

and prevent missed fields. The system employs visual servoing to acquire crop row position data and 

introduces a crop density cost (Ccrop) for path guidance. When a sampling point falls within the crop row area, 

its contribution value is calculated as the product of a proportional coefficient k1 and the perpendicular distance 

(drow) from the sampling point to the nearest crop row centerline. If the sampling point enters non-harvesting 

zones, its contribution value is set to infinity, ensuring forced avoidance during path optimization 

In grain harvesting operations, the path should preferably extend along the crop row direction to improve 

harvesting efficiency and avoid crop omission. This paper obtains the crop row position through visual servo 

and defines the crop density cost (Ccrop): 




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where: 

k1 —is the proportion coefficient, which ensures that the sampling points are concentrated near the crop 

row and avoids crossing the row or entering the non-operation area; 

rowd —the vertical distance from the nearest crop row centerline, m; 

∞—indicates that the value is infinite, that is, the path cannot pass through the point. 

(2) The safety cost of obstacle distance 

In order to avoid collisions, path nodes need to keep safed safed  a safeS  safe distance safeS  from 

obstacles. The safety cost function is defined as shown in Equation (4) (Wang et al., 2024): 
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where: 

dobs —the distance between the node and the nearest obstacle. When the path approaches the obstacle, 

the price rises sharply, so as to guide the path to avoid dangerous areas; m; 

safed —Preset safety distance threshold, when safedd obs , collision risk is considered to exist, m. 

In hilly or uneven terrain, path planning should avoid long distance and high slope driving to reduce 

energy consumption and skidding risk. Therefore, this chapter proposes the slope cost Cslope expression as 

shown in Equation (5):  

)tan(3 = kCslope                                     (5) 

where: 

φ—Slope Angle of the path section, °; 

k— is the weight coefficient. The higher the slope, the higher the cost, and the path is encouraged to 

choose a flat area. 

(3) The cost of complexity of steering 

Considering the restriction of the minimum turning radius Rmin of the harvester on the feasibility of the 

path, this paper introduces the steering Angle cost: 

 =  4kC                                      (6) 

where: 

 —The change of steering angle between consecutive path segments. By limiting the accumulation 

of steering angles, a smoother and more executable path is generated, °. 

Ultimately, the VS-IRRT algorithm evaluates candidate paths through a comprehensive cost function 

(Fcost) during each node expansion, prioritizing nodes with the lowest overall cost for tree expansion. By 

integrating these various cost constraints, the algorithm generates optimal routes that balance shortest path 

optimization, driving stability, obstacle avoidance safety, and operational efficiency. 
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Node expansion and reconnection optimization 

Traditional RRT algorithms generate excessive redundant nodes during node expansion and produce 

infrequently optimized paths with lengthy, high-turnover routes. To address these issues, this study introduces 

node expansion optimization and reconnection optimization (Rewire) strategies within the VS-IRRT framework. 

Specifically, during expansion processes, new nodes are prioritized to expand along target directions or low-

cost regions, thereby reducing redundant expansions and path redundancy (Lian et al., 2024). For each 

expansion iteration, the system calculates directional vectors 
goald


from current nodes (nnear) to target nodes 

(ngoal), goald


then applies weighted expansion directions based on environmental cost functions: 

costlowgoal ddd −+=


21exp                                   (7) 

expd


—The node expansion direction vector, which represents the final search direction of the current 

node during expansion, m; 

goald


—The direction vector from the current node to the target node, m; 

costlowd −


—The direction vector pointing to the region with low value of environmental cost function, m; 

ω1, ω2 —Weight factor, which enables the path to avoid high cost areas while approaching the target. 

 

Path feasibility screening based on kinematic constraints 

In practical operations, grain harvesters face kinematic constraints including vehicle dimensions, 

steering radius, speed, and acceleration. Therefore, path planning must not only ensure global accessibility 

but also needs to meet the kinematic feasibility of the harvester. To address this, this chapter introduces a path 

feasibility screening mechanism based on kinematic constraints within the VS-IRRT algorithm. The harvesters 

utilize a fully hydraulic steering system, with their steering limited by the minimum turning radius (Rmin). During 

the node expansion and optimization processes of path planning, it is essential to ensure that the path 

curvature meets the following requirements: 

min

2

R
a

v
R =

                                   （8） 

where: v— harvester speed, m/s; 

A—centripetal acceleration, m/s². 

Rmin—minimum turning radius allowed by harvester, m. 

If the curvature radius of the newly expanded path segment is less than Rmin, the segment should be 

discarded and the extended nodes resampled (Chen et al., 2025b) to prevent abrupt turns that the harvester 

cannot complete. During node expansion, the curvature radius is calculated based on the geometric 

relationship with adjacent path segments. If R < Rmin, the node is directly rejected or its expansion direction is 

adjusted to meet curvature constraints. Additionally, considering the physical limitations of the harvester's 

steering mechanism, the steering angle change   between adjacent nodes in the path should satisfy: 

max 
                                      （9） 

 
Fig. 2 - Schematic diagram of route feasibility screening 
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In the formula, θmax represents the maximum steering angle limit of the harvester. During path generation 

and reconnection processes, the steering angle is monitored in real-time. For paths exceeding θmax, smooth 

adjustments or resampling are applied to ensure path continuity, as illustrated in Fig. 2. The path connects the 

starting point to the target point, but contains two types of segments that violate the constraints: 

(1) Path segment violating curvature constraint: In a certain path segment, the radius of curvature is 

less than the minimum turning radius of the grain harvester (R < Rmin), and the harvester cannot complete such 

a sharp turn, so this path segment is deemed to be infeasible. 

(2) The path segment that violates the steering Angle constraint: Another path has a steering Angle 

change of too much (∆θ > θmax), which exceeds the limit Angle of the hydraulic steering system of the harvester. 

If it is directly executed, it will lead to steering difficulty or operation instability. 

 

Field test 

To validate the effectiveness and adaptability of the proposed VS-IRRT algorithm in real agricultural 

environments, this study conducted path planning and autonomous navigation experiments in actual field 

scenarios. The results were compared with traditional RRT algorithms. The system was equipped with a CAN 

bus interface and a full hydraulic steering system, utilizing a Basler acA1920-40gc industrial camera (40 fps) 

to capture images of crop rows and obstacles. The control system employed an Advantech IPC-610H industrial 

computer (Intel i7-9700 processor, 16 GB RAM) to execute the VS-IRRT algorithm, while a Siemens S7-1200 

PLC managed path tracking and hydraulic steering control (Mwitta and Rains, 2024). 

 

Test design and method 

The experimental plot measures 60 meters in length and 35 meters in width, featuring four parallel crop 

rows spaced 0.6 meters apart – mirroring standard grain cultivation patterns. The terrain exhibits gentle 

undulations with natural obstacles including stones, field ridges, and temporarily placed farming tools, creating 

a 5-10 cm elevation variation across the surface. This design incorporates small depressions and field ridge 

boundaries to simulate real-world agricultural environments. The system employs the VS-IRRT algorithm for 

path planning and navigation execution, incorporating path optimization and visual servo-based correction 

mechanisms. It is compared with traditional RRT algorithms for path planning and autonomous navigation 

implementation. 

During the trial, the grain harvester utilized Global Navigation Satellite System (GNSS) and visual 

servoing to complete field environment scanning, generating a grid map with crop row and obstacle positions 

annotated. The system then employed traditional RRT and VS-IRRT algorithms for global path planning, 

creating operational routes from start to finish. During path execution, the harvester autonomously navigated 

along the planned route, where the VS-IRRT algorithm combined real-time pose correction through visual 

servoing to enhance navigation accuracy. The trial recorded actual travel trajectories via GNSS and vision 

systems, measuring yaw errors, path execution time, and operational stability (Yuan et al., 2025; Ahmadi et 

al., 2022; Sangeetha et al., 2021). Post-trial analysis compared both algorithms in path planning time, path 

length, average yaw error, path smoothness, and operational efficiency. The evaluation methods for different 

metrics are detailed below (Liu et al., 2025). 

(1) Path planning time 

It refers to the total time from the completion of environmental mapping to path planning until the 

generation of executable paths, and the calculation method is shown in Equation (10): 

startendplan ttT −=
                                      (10) 

where: tstart —Path planning start time; 

tend —Path generation completion time. 

(2) Average yaw error 

It refers to the average deviation between the actual travel trajectory of the harvester and the planned 

path in the horizontal direction, which mainly measures the path tracking accuracy: 


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++ −+−=
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                         (11) 

where: xi, yi — are the coordinates of path nodes; 

n—Number of path nodes. 



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

 

602 

(3) Path smoothness 

The continuity and smoothness of the path are measured by the rate of change of path curvature. The 

path with high smoothness has fewer turns, which is conducive to reducing the load of hydraulic steering 

system and improving operation stability. The calculation formula is shown in Equation (12): 

 

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n

S 
                               (12) 

where: θi—is the turning Angle of the path node. 

 

RESULTS AND ANALYSIS 

Path planning time 

This study conducted comparative experiments on path planning time between traditional RRT and VS-

IRRT algorithms. The experiments were performed under identical field conditions (length 60 m, width 35 m, 4 

crop rows, slight terrain undulations, and natural obstacles). Each algorithm was tested 10 times, with 

parameters including average planning time, path length, and node count recorded. Results in Table 1 show 

that VS-IRRT achieved a path planning efficiency of 4.02 seconds, demonstrating approximately 32% 

reduction in average time compared to RRT, while decreasing node count by 27% and path length by 18.5%. 

This improvement primarily stems from the algorithm's environment-cost-based heuristic sampling and node 

reconnection optimization strategies. The environment-cost-based heuristic sampling reduces unnecessary 

searches, enhances path convergence speed through node expansion and reconnection optimization, and the 

kinematic constraint screening method proposed in Section 2.2.3 improves path feasibility. These combined 

approaches effectively minimize redundant searches and nodes, thereby enhancing search efficiency and 

generating shorter, smoother paths. 

Table 1 
Comparison of path planning times 

Algorithm type Average planning time/s Average path length/m Average number of nodes/total 

tradition RRT 5.92 62.8 154 

VS-RRT 4.02 51.2 112 

 

    
   (a) RRT                                                 (b) VS-RRT 

Fig. 3 - Comparison of RRT and VS-IRRT path trajectories 

 

Average yaw error 

The path execution performance of RRT and VS-IRRT is illustrated in Fig. 3. As shown in Fig. 3(a), the 

actual trajectory in the RRT algorithm deviates significantly from the planned path, particularly at path 

transitions where substantial yaw errors occur. This indicates that traditional RRT suffers from high path 

tracking errors during navigation execution, primarily due to insufficient path smoothing, frequent sharp turns, 

and the absence of visual servo correction, which leads to cumulative positioning errors. In contrast, the VS-

IRRT results (Fig.3 (b)) demonstrate high alignment between the actual trajectory and the planned path with 

markedly reduced yaw errors. Notably, it maintains consistent performance even on sections with significant 

curvature changes.  
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This improvement can be attributed to two key factors: first, the environment-cost-based heuristic 

sampling strategy reduces unnecessary expansions, making the planned path more aligned with the main 

direction of the operational area; second, real-time visual servo correction continuously compensates for pose 

deviations during navigation, effectively preventing cumulative yaw errors caused by GNSS inaccuracies and 

terrain disturbances. 

 

Path smoothness 

This study quantifies path smoothness by calculating the average change in turning angles across 

adjacent path segments. The comparison between RRT and VS-IRRT algorithms based on curvature rate 

variations is presented in Table 2. Results demonstrate that VS-IRRT achieves a curvature rate of only 3.15 °/m, 

a 33% reduction from traditional RRT's 4.72 °/m, while decreasing turn count by approximately 21% and 

minimizing maximum turning angles by 20%. The enhanced path smoothness primarily stems from 

implementing minimum turning radius constraints during expansion, which prevents excessively curved 

segments. Combined with node reconnection optimization, this approach improves local path structures by 

eliminating redundant nodes and shortening paths, thereby reducing the frequency of abrupt turns. 

 
Table 2  

Comparison of path smoothness 

Algorithm type 
Average curvature rate of 

change (°/m) 
No. of turns (revolutions per 

section) 
Maximum steering 

Angle (°) 

 tradition RRT 4.72 14 28.3 

VS-IRRT 3.15 11 22.6 

 

 

CONCLUSIONS 

This study addresses key challenges in the field operation of grain harvesters, including low path 

planning efficiency, high path cost, and visual positioning errors. To overcome these limitations, an improved 

rapidly-exploring random tree algorithm integrated with visual servoing (VS-IRRT) is proposed. The system 

achieves real-time environmental perception and pose correction through visual servo feedback, while 

introducing heuristic sampling, node reconnection optimization, and kinematic constraint filtering into the RRT 

framework. The main conclusions are as follows: 

(1) Field test results show that the average path planning time of VS-IRRT algorithm is 4.02 s, which is 

32% shorter than the traditional RRT, and the number of nodes is reduced by 27%. In the field environment 

with terrain undulation, natural obstacles and positioning noise, VS-IRRT can still maintain high navigation 

accuracy and path feasibility. 

(2) The path curvature generated by VS-IRRT has a rate of change of 3.15 °/m, which is 33% lower than 

RRT, with a reduction of 21% in steering cycles and 20% decrease in maximum steering angle. By applying 

the minimum turning radius constraint, the system generates smooth paths that conform to the kinematic 

characteristics of the harvester, thereby reducing the impact of sharp turns on the hydraulic steering system 

and improving operational stability. This study has established a comprehensive research framework 

encompassing theoretical modeling, algorithm implementation, and field validation, laying a solid foundation 

for future integration of VS-IRRT algorithms into harvester control systems and multi-machine collaborative 

testing. 

(3) Although the VS-IRRT algorithm exhibits exceptional performance in terms of path planning efficiency, 

smoothness, and navigation accuracy, it still presents certain limitations. The experimental scope and terrain 

complexity in this study are still constrained, with a lack of validation in large-scale farmland or extreme 

environments. Furthermore, the weight parameters in the cost function were mainly optimized via empirical 

approaches and small-scale experiments, lacking universal optimization strategies suitable for diverse crop 

types and terrain conditions. Therefore, future research should concentrate on multi-scenario, multi-crop, and 

large-scale operational environments for experimental validation. Furthermore, exploring more adaptive weight 

adjustment strategies for the cost function will improve the algorithm's versatility and robustness. 
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