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ABSTRACT  

The recognition of Agaricus bisporus is a key step in the intelligent picking of Agaricus bisporus. Given the 

complex background and limited computing resources of edge devices in actual planting scenarios, an 

improved Mask-RCNN model for Agaricus bisporus recognition was proposed. In this method, the backbone 

feature extraction network of the baseline Mask-RCNN model was replaced with the lightweight MobileNetV3 

network to reduce the model complexity. Meanwhile, the BiFPN network was used to replace the original FPN 

feature fusion network, thereby strengthening feature fusion and enhancing the model's ability to learn image 

features and acquire contextual information. Experimental results showed that the improved Mask-RCNN 

model’s parameters and floating-point operations were 24.46 M and 173 G, respectively, which were 44.4% 

and 24.5% lower than those of the baseline Mask-RCNN model, and the frame rate increased by 3.55 FPS, 

indicating a better prospect for deployment on edge devices. This method can provide technical support for 

the development of the visual system of Agaricus bisporus picking robots. 

 

摘要 

双孢菇识别是双孢菇智能采摘的关键环节。针对实际种植场景中背景复杂以及边缘设备计算资源有限的问题，
提出了一种用于双孢菇识别的改进 Mask-RCNN 模型。该方法将基准 Mask-RCNN 模型的骨干特征提取网络
替换为轻量化的 MobileNetV3 网络，以降低模型复杂度；同时，采用 BiFPN 网络替代原有的 FPN 特征融合
网络，从而强化特征融合，提升模型对图像特征的学习能力和上下文信息的获取能力，。实验结果表明，改进
后的 Mask-RCNN 模型参数为 24.46M，浮点运算量为 173G，分别较基准 Mask-RCNN 模型降低了 44.4% 和 

24.5%，帧率提升了 3.55 FPS，在边缘设备上具有更好的部署前景。该方法可为双孢菇采摘机器人视觉系统
的研发提供技术支持。 

 

INTRODUCTION 

Agaricus bisporus, commonly known as the white button mushroom, is characterized by a delicate flavor 

and high nutritional value. It contains abundant amino acids, nucleotides, and vitamins, and also exhibits 

notable medicinal properties, including antihypertensive, lipid-lowering, and anticancer effects. As a result, its 

market demand has been increasing year by year (Wang et al., 2018; Wangsa et al., 2024; Menna et al., 2024). 

Agaricus bisporus is widely cultivated in provinces such as Jiangsu, Shandong, Hebei, and Shanxi in China, 

and is one of the edible fungi with the largest cultivation scale in China (China Edible Fungi Association, 2024). 

At present, the industrialized production mode of Agaricus bisporus is becoming increasingly mature, but the 

picking process still mainly relies on manual labor (Luo et al., 2021). Manual picking cannot meet the needs of 

large-scale Agaricus bisporus production, with problems such as low harvesting efficiency, high cost, and labor 

shortage during the harvesting season, which have become important factors restricting the rapid development 

of the Agaricus bisporus industry. Therefore, it is necessary to develop efficient and reliable intelligent 

harvesting equipment for Agaricus bisporus. Accurate identification of Agaricus bisporus is crucial for its 

intelligent picking (Liu et al., 2023). 
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With the development of computer technology, deep learning-based object detection methods have 

received extensive attention in the field of edible fungi detection (Albayrak et al., 2025; Javanmardi et al., 2025; 

Li et al., 2024; Lu et al., 2022; Luo et al., 2019; Yang et al., 2022). Deep learning methods have advantages 

such as strong feature extraction capability, high accuracy, and good robustness, and can adaptively extract 

image features from datasets to construct detection models for object recognition or segmentation (Ishana et 

al., 2023; Fang et al., 2024). At present, deep learning object detection methods are generally divided into two 

categories: one-stage models represented by the YOLO series and two-stage models represented by Mask 

R-CNN (Seetharaman K., 2022; Redmon J. et al., 2016). One-stage models can complete object classification 

and position prediction through a single feature extraction step, with simple structures and fast inference speed, 

but their accuracy is generally inferior to two-stage object segmentation models. The two-stage Mask R-CNN 

algorithm, improved from Faster R-CNN, can output rectangular bounding boxes and masks of objects to 

realize object recognition and segmentation. 

The Mask R-CNN model can simultaneously output the position and contour information of Agaricus 

bisporus, providing information support for the estimation of picking points and growth postures of Agaricus 

bisporus. However, as it employs the ResNet deep network for feature extraction, the model has a large 

number of parameters, high computational load, and slow inference speed (He et al., 2017). In the application 

scenario of picking robots, the model’s high computational complexity and resource requirements limit its 

practicality. Based on Mask R-CNN, this paper proposed an improved Mask R-CNN model for Agaricus 

bisporus detection, combined with the requirements of lightweight deployment and real-time detection in 

practical applications. 

 

MATERIALS AND METHODS 

Image Acquisition and Augmentation  
Agaricus bisporus images were collected in August 2024 from an Agaricus bisporus cultivation base in 

Fenxi County, Linfen City, Shanxi Province, China, using a D435i depth camera. The depth camera was 

positioned approximately 25-40 cm above the surface of the Agaricus bisporus cultivation substrate. The 

collected videos were frame-extracted, and after removing duplicate and blurred images, 500 Agaricus 

bisporus images were obtained. To increase sample diversity and improve model generalization ability, data 

augmentation methods such as contrast adjustment, brightness adjustment, color inversion, and noise addition 

were used, resulting in a total of 2000 sample images. The dataset was then divided into training and validation 

sets at an 8:2 ratio, with 1600 randomly selected images as the training set and 400 as the validation set 

(Wang et al., 2025). Examples of image augmentation are shown in Fig. 1. The Agaricus bisporus images 

were annotated using LabelMe software and saved as JSON-format label files. 

 

     

Original image 
Contrast 
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Brightness 
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Color inversion Noise addition 

Fig. 1 - Examples of image augmentation 

 

The Baseline Mask R-CNN Model 

The baseline Mask R-CNN is mainly composed of a backbone (ResNet50+FPN), RPN network, and 

Output Head network, with its baseline network structure shown in Fig. 2. The backbone network extracts 

features of Agaricus bisporus images through the ResNet50 convolutional neural network, and then fuses 

feature maps of different scales via the FPN network to generate multi-scale information feature maps. Various 

rectangular anchor boxes with different scale ratios and shapes are then set in the multi-scale information 

feature maps, and initial target candidate regions are generated by combining with the RPN network. The 

extracted target candidate regions are aligned with the feature maps through the ROIAlign algorithm. The 

aligned candidate region feature maps are input into the Output Head network, which consists of two parallel 

branches: the object detection branch and the mask prediction branch.  
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The object detection branch locates the bounding box of Agaricus bisporus, while the mask prediction 

branch segments it using the fully convolutional network. 

 

 

Fig. 2 - Mask R-CNN Model Structure 
 

Improved Mask R-CNN Mode 

The baseline Mask R-CNN model has high complexity, and its high computational complexity and 

resource requirements limit its practicality. Therefore, this paper performed lightweight improvements on the 

Mask R-CNN network: MobileNetV3 was used to replace ResNet50 in the backbone network for feature 

extraction to reduce the network parameters; meanwhile, the BiFPN network was introduced to replace the 

FPN feature fusion module to improve the network's multi-scale feature fusion capability and compensate for 

the accuracy loss due to reduced parameters in the feature extraction network. The structure of the improved 

Mask R-CNN model is shown in Fig. 3. The model took 640×640 pixel images as input, extracted features 

using the MobileNetV3 network, and output feature information of Layer 1, Layer 3, Layer 8, and Layer 11, 

respectively. Then, the BiFPN feature fusion network fused feature information of different layers and output 

them to RPN for candidate box extraction. Finally, the detection results were output through Output Head. 

 

 
Fig. 3 - Improved Mask R-CNN Model Structure 

 

(1) MobileNetV3 Feature Extraction Network 

To reduce algorithm complexity for deployment on AI development boards, the model requires lightweight 

processing. Therefore, this paper adopted the lightweight feature extraction network MobileNetV3 (Howard et 

al., 2019) to replace ResNet50. MobileNetV3 uses depth-wise separable convolution instead of a large number 

of standard convolutions, which can effectively compress the computational load and parameters of the feature 

extraction network in the detection model for Agaricus bisporus.  

(2) BiFPN feature fusion network 

The baseline Mask R-CNN model uses FPN as the feature fusion network (Lin et al., 2017). Although the 

introduction of FPN alleviates the problem of missing detection of low-resolution small targets by the model, 

FPN only fuses high and low-level features via upsampling at the neck, and thus affects segmentation 

accuracy. Therefore, to improve the feature fusion capability of the model, this paper introduces the BiFPN 

(Tan et al., 2020) network to replace the FPN network. BiFPN constructs bidirectional information flow 

channels through top-down and bottom-up paths, realizing in-depth information exchange and fusion between 

feature maps to improve segmentation accuracy. Its structure is shown in Fig. 4. 
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Fig. 4 - BiFPN network Structure 

 

Model training and evaluation 
Model training was conducted in a cloud server environment with the following hardware configuration: 

AMD R3900X 12-core processor, 32GB memory, and Nvidia RTX 2080Ti graphics card (12GB video memory); 

the software environment adopted the Windows 10 operating system, with the deep learning framework 

PyTorch 2.1.0. In the experiment, the input image resolution of the model was set to 640×640, and the training 

parameters were configured as follows: epoch=150, initial learning rate=0.003, initial momentum=0.9, batch 

size=4. 

The mean average precision (mAP) is used as the evaluation metric for model accuracy. Specifically, 

mAP@0.5 (box) refers to the detection mAP when the intersection over union (IoU) threshold is set to 0.5, 

which is used to evaluate the model’s detection precision; mAP@0.5 (mask) refers to the segmentation mAP 

when the intersection over union (IoU) threshold is set to 0.5, which is used to evaluate the model’s 

segmentation precision. The number of parameters and floating-point operations are used to evaluate model 

complexity, and the frame rate is used to evaluate model inference speed. 

To verify the feasibility of deploying the improved Mask-RCNN model on mobile edge devices, the model 

was converted to ONNX format and deployed on the EC-R3588SPC edge device (an AI development board) 

for testing. The hardware configuration of the EC-R3588SPC edge device is as follows: a CPU with 4-core 

Cortex-A76 and 4-core Cortex-A55, 8GB of RAM, and 64GB of storage space. The software environment is 

configured with Python 3.10, MMDeploy 1.3.1, and ONNX Runtime 1.23.1. 

 

RESULTS 

 

Effect of different feature extraction networks on model performance 

Lightweight improvements were implemented by replacing the ResNet50 network of the baseline Mask 

R-CNN model with common lightweight feature extraction networks such as MobileNetV3, ResNet18, and 

ConvNeXt. The model test results are shown in Table 1. As shown in the table, replacing the backbone with 

lightweight networks led to a decrease in model accuracy; however, when using MobileNetV3 as the feature 

extraction network, the model achieved significant reductions in parameters and computational load, while the 

frame rate was notably improved compared with the original Mask R-CNN model. 

Table 1  

Comparison of Lightweight Feature Extraction Networks  

Feature 
extraction 
network 

Independent growth Adherent growth 
Parameters 

/ M 

Floating-point 
operations 

/ G 

Frame 
rate 

/ FPS 
mAP@0.5 

(box) 
mAP@0.5 

(mask) 
mAP@0.5 

(box) 
mAP@0.5 

(mask) 

ResNet50 0.929 0.927 0.823 0.831 43.971 229 6.35 

MobileNetV
3 

0.841 0.761 0.821 0.636 20.46 152 10.2 

ResNet18 0.923 0.910 0.893 0.936 31.328 186 5.8 

ConvNeXt 0.944 0.945 0.947 0.948 48.095 223 6.75 

 

Effect of the BiFPN network on model performance 

To verify the effectiveness of the BiFPN feature fusion network, experiments were conducted by replacing 

FPN with BiFPN with MobileNetV3 as the feature extraction network, and the results are shown in Table 2. 
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Compared with the original FPN network, the BiFPN network can significantly improve the detection accuracy 

and segmentation accuracy of Agaricus bisporus. This indicates that using BiFPN as the feature fusion network 

can effectively compensate for the accuracy loss caused by the reduction in parameters when MobileNetV3 

performs feature extraction.  
Table 2 

Comparison of Different Feature Fusion Networks 

Feature 
fusion 

network 

Independent growth Adherent growth 

Parameters 
/ M 

Floating-point 
operations / 

G 

Frame 
rate/ FPS mAP@0.5 

(box) 
mAP@0.5 

(mask) 
mAP@0.5 

(box) 
mAP@0.5 

(mask) 

FPN 0.841 0.761 0.821 0.636 20.46 152 10.2 

BiFPN 0.882 0.793 0.860 0.654 24.46 173 9.9 

 

Ablation Experiment 

To verify the effectiveness of the improvement strategies proposed in this paper, ablation experiments 

were conducted, and the results are shown in Table 3.  

The improved Mask R-CNN model based on MobileNetV3 and BiFPN networks has a parameter number 

of 24.46 M and floating-point operations of 173 G, which are 44.4% and 24.5% lower than the parameter 

number (43.971 M) and floating-point operations (229 G) of the original Mask R-CNN, respectively; the frame 

rate of the improved model is 9.9 FPS, which is 3.55 FPS higher than that of the original Mask R-CNN (6.35 

FPS). 

Table 3 

Results of the ablation experiment 

Group 
Mobile 
NetV3 

BiFPN 

Independent growth Adherent growth 
Parameter

s 
/M 

Floating-
point 

operation
s 
/G 

Frame 
rate 
/FPS 

mAP@0.5 
(box) 

mAP@0.
5 (mask) 

mAP@0.5 
(box) 

mAP@0.
5 (mask) 

1 × × 0.929 0.927 0.823 0.831 43.971 229 6.35 

2 √ × 0.841 0.761 0.821 0.636 20.46 152 10.2 

3 √ √ 0.882 0.793 0.860 0.654 24.46 173 9.9 

Note: “√” indicates that this operation is performed, while “×” means that this operation is not performed. 

 

Results of model visualization detection 

Images were randomly selected from the validation set for testing, and the detection results of the 

improved Mask R-CNN and the original Mask R-CNN were compared, with the results shown in Fig. 5. Both 

models can accurately identify and segment the growth area of Agaricus bisporus and effectively distinguish 

between two categories: independent growth (labeled "SBG") and adherent growth (labeled "ZL"). However, 

compared with the original Mask R-CNN, the improved model, while showing reduced recognition accuracy, 

has significantly fewer parameters and lower computational load, with faster detection speed, making it more 

suitable for deployment on embedded devices. 
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Original images Baseline Mask R-CNN Improved Mask R-CNN 

Fig. 5 - Recognition Results of Different Networks 

 

Edge Device Deployment 

To deploy the models on the edge device, the best.pt files of the baseline Mask R-CNN and improved 

Mask R-CNN models were converted to ONNX format respectively, first. Subsequently, the ONNX runtime 

and MMDeploy frameworks were set up on the development board. Finally, the ONNX models were deployed 

to the EC-R3588SPC edge device, and inference tests were conducted on the validation set, with the test 

results presented in Table 4.  

Table 4 

Results of the Edge Device Deployment 

Model 

Independent growth Adherent growth 

Parameters 
/ M 

Floating-
point 

operations 
/ G 

Frame 
rate 

/ FPS mAP@0.
5 (box) 

mAP@0.5 
(mask) 

mAP@0.5 
(box) 

mAP@0.5 
(mask) 

Mask R-CNN 0.925 0.927 0.822 0.829 43.949 229 0.15 

Improved Mask R-
CNN 

0.882 0.790 0.860 0.654 20.397 173 0.22 

 

 

Due to the loss of some parameters during model conversion, the parameters of the converted models 

were slightly reduced compared with the models trained on the cloud server, leading to a slight decrease in 

detection accuracy. Owing to the hardware limitations of edge devices, the baseline Mask R-CNN model 

achieved a frame rate of only 0.15 FPS, while the improved Mask R-CNN model reached 0.22 FPS—

representing an approximate 46.7% improvement in detection speed. This indicates that the improved Mask 

R-CNN model effectively reduces computational overhead on resource-constrained edge devices. The 

deployment results are shown in Figure 6.  

It can be seen that the improved Mask R-CNN model can effectively segment the growth area of 

Agaricus bisporus—verifying the feasibility of the model deployed to the EC-R3588SPC edge device. 

 



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

 

594 

 

Fig. 6 - Deployment Results of the Improved Mask R-CNN model 

 

CONCLUSIONS 

This paper proposed a method for detecting Agaricus bisporus based on the improved Mask-RCNN 

model. The method introduced the lightweight MobileNetV3 to replace the ResNet50 feature extraction network 

in the backbone of Mask-RCNN, reducing model complexity; meanwhile, the BiFPN was used to replace the 

original FPN feature fusion network to enhance the model's ability to extract image features. The improved 

Mask-RCNN model’s number of parameters and floating-point operations were reduced by 44.4% and 24.5% 

respectively, and the frame rate increased by 3.55 FPS, making it more suitable for deployment in the terminal 

AI control board of intelligent picking equipment. In future research, the model structure will be further optimized 

for practical scenarios, and the applicability of the model in the actual cultivation environment of Agaricus 

bisporus will be evaluated more comprehensively, so as to provide more reliable technical support for the 

research and application of picking robots. 
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