Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

RECOGNITION OF AGARICUS BISPORUS BASED ON
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ABSTRACT

The recognition of Agaricus bisporus is a key step in the intelligent picking of Agaricus bisporus. Given the
complex background and limited computing resources of edge devices in actual planting scenarios, an
improved Mask-RCNN model for Agaricus bisporus recognition was proposed. In this method, the backbone
feature extraction network of the baseline Mask-RCNN model was replaced with the lightweight MobileNetV3
network to reduce the model complexity. Meanwhile, the BiFPN network was used to replace the original FPN
feature fusion network, thereby strengthening feature fusion and enhancing the model's ability to learn image
features and acquire contextual information. Experimental results showed that the improved Mask-RCNN
model’s parameters and floating-point operations were 24.46 M and 173 G, respectively, which were 44.4%
and 24.5% lower than those of the baseline Mask-RCNN model, and the frame rate increased by 3.55 FPS,
indicating a better prospect for deployment on edge devices. This method can provide technical support for
the development of the visual system of Agaricus bisporus picking robots.
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INTRODUCTION

Agaricus bisporus, commonly known as the white button mushroom, is characterized by a delicate flavor
and high nutritional value. It contains abundant amino acids, nucleotides, and vitamins, and also exhibits
notable medicinal properties, including antihypertensive, lipid-lowering, and anticancer effects. As a result, its
market demand has been increasing year by year (Wang et al., 2018; Wangsa et al., 2024; Menna et al., 2024).
Agaricus bisporus is widely cultivated in provinces such as Jiangsu, Shandong, Hebei, and Shanxi in China,
and is one of the edible fungi with the largest cultivation scale in China (China Edible Fungi Association, 2024).
At present, the industrialized production mode of Agaricus bisporus is becoming increasingly mature, but the
picking process still mainly relies on manual labor (Luo et al., 2021). Manual picking cannot meet the needs of
large-scale Agaricus bisporus production, with problems such as low harvesting efficiency, high cost, and labor
shortage during the harvesting season, which have become important factors restricting the rapid development
of the Agaricus bisporus industry. Therefore, it is necessary to develop efficient and reliable intelligent
harvesting equipment for Agaricus bisporus. Accurate identification of Agaricus bisporus is crucial for its
intelligent picking (Liu et al., 2023).
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With the development of computer technology, deep learning-based object detection methods have
received extensive attention in the field of edible fungi detection (Albayrak et al., 2025; Javanmardi et al., 2025;
Lietal., 2024; Lu et al., 2022; Luo et al., 2019; Yang et al., 2022). Deep learning methods have advantages
such as strong feature extraction capability, high accuracy, and good robustness, and can adaptively extract
image features from datasets to construct detection models for object recognition or segmentation (/shana et
al., 2023; Fang et al., 2024). At present, deep learning object detection methods are generally divided into two
categories: one-stage models represented by the YOLO series and two-stage models represented by Mask
R-CNN (Seetharaman K., 2022, Redmon J. et al., 2016). One-stage models can complete object classification
and position prediction through a single feature extraction step, with simple structures and fast inference speed,
but their accuracy is generally inferior to two-stage object segmentation models. The two-stage Mask R-CNN
algorithm, improved from Faster R-CNN, can output rectangular bounding boxes and masks of objects to
realize object recognition and segmentation.

The Mask R-CNN model can simultaneously output the position and contour information of Agaricus
bisporus, providing information support for the estimation of picking points and growth postures of Agaricus
bisporus. However, as it employs the ResNet deep network for feature extraction, the model has a large
number of parameters, high computational load, and slow inference speed (He et al., 2017). In the application
scenario of picking robots, the model’s high computational complexity and resource requirements limit its
practicality. Based on Mask R-CNN, this paper proposed an improved Mask R-CNN model for Agaricus
bisporus detection, combined with the requirements of lightweight deployment and real-time detection in
practical applications.

MATERIALS AND METHODS
Image Acquisition and Augmentation

Agaricus bisporus images were collected in August 2024 from an Agaricus bisporus cultivation base in
Fenxi County, Linfen City, Shanxi Province, China, using a D435i depth camera. The depth camera was
positioned approximately 25-40 cm above the surface of the Agaricus bisporus cultivation substrate. The
collected videos were frame-extracted, and after removing duplicate and blurred images, 500 Agaricus
bisporus images were obtained. To increase sample diversity and improve model generalization ability, data
augmentation methods such as contrast adjustment, brightness adjustment, color inversion, and noise addition
were used, resulting in a total of 2000 sample images. The dataset was then divided into training and validation
sets at an 8:2 ratio, with 1600 randomly selected images as the training set and 400 as the validation set
(Wang et al., 2025). Examples of image augmentation are shown in Fig. 1. The Agaricus bisporus images
were annotated using LabelMe software and saved as JSON-format label files.

Original image Cpntrast Brl_ghtness Color inversion Noise addition
adjustment adjustment

Fig. 1 - Examples of image augmentation

The Baseline Mask R-CNN Model

The baseline Mask R-CNN is mainly composed of a backbone (ResNet50+FPN), RPN network, and
Output Head network, with its baseline network structure shown in Fig. 2. The backbone network extracts
features of Agaricus bisporus images through the ResNet50 convolutional neural network, and then fuses
feature maps of different scales via the FPN network to generate multi-scale information feature maps. Various
rectangular anchor boxes with different scale ratios and shapes are then set in the multi-scale information
feature maps, and initial target candidate regions are generated by combining with the RPN network. The
extracted target candidate regions are aligned with the feature maps through the ROIAlign algorithm. The
aligned candidate region feature maps are input into the Output Head network, which consists of two parallel
branches: the object detection branch and the mask prediction branch.
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The object detection branch locates the bounding box of Agaricus bisporus, while the mask prediction
branch segments it using the fully convolutional network.

ResNet50+FPN | 3 #

Target location
and category

—
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-

Fig. 2 - Mask R-CNN Model Structure

Improved Mask R-CNN Mode

The baseline Mask R-CNN model has high complexity, and its high computational complexity and
resource requirements limit its practicality. Therefore, this paper performed lightweight improvements on the
Mask R-CNN network: MobileNetV3 was used to replace ResNet50 in the backbone network for feature
extraction to reduce the network parameters; meanwhile, the BiFPN network was introduced to replace the
FPN feature fusion module to improve the network's multi-scale feature fusion capability and compensate for
the accuracy loss due to reduced parameters in the feature extraction network. The structure of the improved
Mask R-CNN model is shown in Fig. 3. The model took 640%640 pixel images as input, extracted features
using the MobileNetV3 network, and output feature information of Layer 1, Layer 3, Layer 8, and Layer 11,
respectively. Then, the BiFPN feature fusion network fused feature information of different layers and output
them to RPN for candidate box extraction. Finally, the detection results were output through Output Head.

Target location
and category

Fig. 3 - Improved Mask R-CNN Model Structure

(1) MobileNetV3 Feature Extraction Network

To reduce algorithm complexity for deployment on Al development boards, the model requires lightweight
processing. Therefore, this paper adopted the lightweight feature extraction network MobileNetV3 (Howard et
al., 2019) to replace ResNet50. MobileNetV3 uses depth-wise separable convolution instead of a large number
of standard convolutions, which can effectively compress the computational load and parameters of the feature
extraction network in the detection model for Agaricus bisporus.

(2) BiFPN feature fusion network

The baseline Mask R-CNN model uses FPN as the feature fusion network (Lin et al., 2017). Although the
introduction of FPN alleviates the problem of missing detection of low-resolution small targets by the model,
FPN only fuses high and low-level features via upsampling at the neck, and thus affects segmentation
accuracy. Therefore, to improve the feature fusion capability of the model, this paper introduces the BiFPN
(Tan et al., 2020) network to replace the FPN network. BiFPN constructs bidirectional information flow
channels through top-down and bottom-up paths, realizing in-depth information exchange and fusion between
feature maps to improve segmentation accuracy. Its structure is shown in Fig. 4.
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Fig. 4 - BiFPN network Structure

Model training and evaluation

Model training was conducted in a cloud server environment with the following hardware configuration:
AMD R3900X 12-core processor, 32GB memory, and Nvidia RTX 2080Ti graphics card (12GB video memory);
the software environment adopted the Windows 10 operating system, with the deep learning framework
PyTorch 2.1.0. In the experiment, the input image resolution of the model was set to 640x640, and the training
parameters were configured as follows: epoch=150, initial learning rate=0.003, initial momentum=0.9, batch
size=4.

The mean average precision (mAP) is used as the evaluation metric for model accuracy. Specifically,
mAP@0.5 (box) refers to the detection mAP when the intersection over union (/oU) threshold is set to 0.5,
which is used to evaluate the model’s detection precision; mAP@0.5 (mask) refers to the segmentation mAP
when the intersection over union (loU) threshold is set to 0.5, which is used to evaluate the model's
segmentation precision. The number of parameters and floating-point operations are used to evaluate model
complexity, and the frame rate is used to evaluate model inference speed.

To verify the feasibility of deploying the improved Mask-RCNN model on mobile edge devices, the model
was converted to ONNX format and deployed on the EC-R3588SPC edge device (an Al development board)
for testing. The hardware configuration of the EC-R3588SPC edge device is as follows: a CPU with 4-core
Cortex-A76 and 4-core Cortex-A55, 8GB of RAM, and 64GB of storage space. The software environment is
configured with Python 3.10, MMDeploy 1.3.1, and ONNX Runtime 1.23.1.

RESULTS

Effect of different feature extraction networks on model performance

Lightweight improvements were implemented by replacing the ResNet50 network of the baseline Mask
R-CNN model with common lightweight feature extraction networks such as MobileNetV3, ResNet18, and
ConvNeXt. The model test results are shown in Table 1. As shown in the table, replacing the backbone with
lightweight networks led to a decrease in model accuracy; however, when using MobileNetV3 as the feature
extraction network, the model achieved significant reductions in parameters and computational load, while the
frame rate was notably improved compared with the original Mask R-CNN model.

Table 1
Comparison of Lightweight Feature Extraction Networks

Feature Independent growth Adherent growth Parameters Floating-point | Frame
extraction | ,Ap@0.5 | mAP@0.5 | MAP@0.5 | mAP@0.5 M operations rate

network (box) (mask) (box) (mask) /G IFPS
ResNet50 0.929 0.927 0.823 0.831 43.971 229 6.35
MObIENStV 1 0,41 0.761 0.821 0.636 20.46 152 10.2
ResNet18 0.923 0.910 0.893 0.936 31.328 186 5.8
ConvNeXt 0.944 0.945 0.947 0.948 48.095 223 6.75

Effect of the BiFPN network on model performance
To verify the effectiveness of the BiFPN feature fusion network, experiments were conducted by replacing
FPN with BiFPN with MobileNetV3 as the feature extraction network, and the results are shown in Table 2.
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Compared with the original FPN network, the BiFPN network can significantly improve the detection accuracy
and segmentation accuracy of Agaricus bisporus. This indicates that using BiFPN as the feature fusion network
can effectively compensate for the accuracy loss caused by the reduction in parameters when MobileNetV3
performs feature extraction.

Table 2
Comparison of Different Feature Fusion Networks
Feature Independent growth Adherent growth Floating-point
fusion Parameters operations / Frame
network | MAP@0.5 | mAP@0.5 | mAP@0.5 | mAP@0.5 M P G rate/ FPS
(box) (mask) (box) (mask)
FPN 0.841 0.761 0.821 0.636 20.46 152 10.2
BiFPN 0.882 0.793 0.860 0.654 24.46 173 9.9

Ablation Experiment

To verify the effectiveness of the improvement strategies proposed in this paper, ablation experiments
were conducted, and the results are shown in Table 3.

The improved Mask R-CNN model based on MobileNetV3 and BiFPN networks has a parameter number
of 24.46 M and floating-point operations of 173 G, which are 44.4% and 24.5% lower than the parameter
number (43.971 M) and floating-point operations (229 G) of the original Mask R-CNN, respectively; the frame
rate of the improved model is 9.9 FPS, which is 3.55 FPS higher than that of the original Mask R-CNN (6.35
FPS).

Table 3
Results of the ablation experiment
Independent growth Adherent growth Floating-

Mobile Parameter point Frame

Group NetV3 BiFPN | mAP@0.5 | mAP@0. | mAP@0.5 | mAP@QO. S operation rate
(box) 5 (mask) (box) 5 (mask) M s IFPS

IG

1 x x 0.929 0.927 0.823 0.831 43.971 229 6.35

2 y x 0.841 0.761 0.821 0.636 20.46 152 10.2

3 y v 0.882 0.793 0.860 0.654 24 .46 173 9.9

Note: “v” indicates that this operation is performed, while “x” means that this operation is not performed.
Results of model visualization detection

Images were randomly selected from the validation set for testing, and the detection results of the
improved Mask R-CNN and the original Mask R-CNN were compared, with the results shown in Fig. 5. Both
models can accurately identify and segment the growth area of Agaricus bisporus and effectively distinguish
between two categories: independent growth (labeled "SBG") and adherent growth (labeled "ZL"). However,
compared with the original Mask R-CNN, the improved model, while showing reduced recognition accuracy,
has significantly fewer parameters and lower computational load, with faster detection speed, making it more
suitable for deployment on embedded devices.
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aseline Mask R-CNN

Fig. 5 - Recognition Results of Different Networks

Edge Device Deployment

To deploy the models on the edge device, the best.pt files of the baseline Mask R-CNN and improved
Mask R-CNN models were converted to ONNX format respectively, first. Subsequently, the ONNX runtime
and MMDeploy frameworks were set up on the development board. Finally, the ONNX models were deployed
to the EC-R3588SPC edge device, and inference tests were conducted on the validation set, with the test
results presented in Table 4.

Table 4
Results of the Edge Device Deployment
Independent growth Adherent growth Floating-
. Frame
Parameters point
Model . rate
mAP@0. | mAP@0.5 | mAP@0.5 | mAP@0.5 I'M operations |  ‘tpho
5 (box) (mask) (box) (mask) IG
Mask R-CNN 0.925 0.927 0.822 0.829 43.949 229 0.15
improved Nask R 0.882 0.790 0.860 0.654 20.397 173 0.22

Due to the loss of some parameters during model conversion, the parameters of the converted models
were slightly reduced compared with the models trained on the cloud server, leading to a slight decrease in
detection accuracy. Owing to the hardware limitations of edge devices, the baseline Mask R-CNN model
achieved a frame rate of only 0.15 FPS, while the improved Mask R-CNN model reached 0.22 FPS—
representing an approximate 46.7% improvement in detection speed. This indicates that the improved Mask
R-CNN model effectively reduces computational overhead on resource-constrained edge devices. The
deployment results are shown in Figure 6.

It can be seen that the improved Mask R-CNN model can effectively segment the growth area of
Agaricus bisporus—verifying the feasibility of the model deployed to the EC-R3588SPC edge device.
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EC-R3588SPC
Fig. 6 - Deployment Results of the Improved Mask R-CNN model

CONCLUSIONS

This paper proposed a method for detecting Agaricus bisporus based on the improved Mask-RCNN
model. The method introduced the lightweight MobileNetV3 to replace the ResNet50 feature extraction network
in the backbone of Mask-RCNN, reducing model complexity; meanwhile, the BiFPN was used to replace the
original FPN feature fusion network to enhance the model's ability to extract image features. The improved
Mask-RCNN model’s number of parameters and floating-point operations were reduced by 44.4% and 24.5%
respectively, and the frame rate increased by 3.55 FPS, making it more suitable for deployment in the terminal
Al control board of intelligent picking equipment. In future research, the model structure will be further optimized
for practical scenarios, and the applicability of the model in the actual cultivation environment of Agaricus
bisporus will be evaluated more comprehensively, so as to provide more reliable technical support for the
research and application of picking robots.
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