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ABSTRACT

The integration of autonomous technologies in aquaculture has become essential for enhancing sustainability,
biosecurity, and operational efficiency within increasingly intensive production systems. This paper presents
the experimental validation of a functional prototype of an intelligent Remotely Operated Vehicle (ROV)
developed for underwater environmental monitoring under controlled laboratory conditions that simulate
aquaculture-specific scenarios. The proposed system integrates vectorial propulsion, an intelligent depth-hold
controller, and a multisensor inertial navigation unit, enabling robust operation in GPS-denied environments
and confined aquatic infrastructures. The hardware platform incorporates optical imaging alongside dissolved
oxygen, pH, and temperature sensors, with data acquisition and command input managed via a mobile
dashboard interface. A series of functional trials were conducted to assess depth-hold precision, trajectory-
tracking accuracy, command latency, and imaging performance under dynamic test conditions. Based on these
evaluations, the ROV exhibited a mean vertical deviation of £0.10 m, a trajectory error of 0.16 m, and an
average command latency of 290.7 + 2.6 ms, demonstrating stable and repeatable behavior. These results
validate the system’s potential as a non-invasive, semi-autonomous monitoring solution tailored to the
requirements of precision aquaculture and scalable digital aquafarming frameworks.

REZUMAT

Integrarea tehnologiilor autonome in acvaculturd a devenit esentiald pentru cresterea sustenabilitétii,
biosecuritatii si eficientei operationale in cadrul sistemelor de productie tot mai intensive. Aceasta lucrare
prezinta validarea experimentald a unui prototip functional de Vehicul Subacvatic Operat de la Distanta (ROV)
inteligent, proiectat pentru monitorizarea mediului acvatic in conditii de laborator controlate, care simuleaza
scenarii specifice acvaculturii. Sistemul propus combina propulsia vectoriala, un algoritm inteligent de control
al adéancimii si o unitate de navigatie inertiala multisenzoriala, permitand operarea in medii lipsite de semnal
GPS si in infrastructuri acvatice restrénse. Platforma hardware integreazéd imagisticd optica, senzori pentru
oxigen dizolvat, pH si temperatura, iar achizitia si controlul datelor sunt realizate printr-un panou de comandéa
mobil. O serie de teste functionale au fost efectuate pentru a evalua performanta in mentinerea adancimii,
urmarirea traiectoriei, timpul de raspuns la comenzi si calitatea imaginilor in conditii dinamice simulate. Pe
baza a cinci seturi independente de incercari, ROV-ul a inregistrat o abatere medie pe verticald de +0,10 m
(limitare daté de rezolutia senzorului), o eroare medie de traiectorie de 0.16 m si un timp mediu de rdspuns la
comenzi de 290.7 £ 2.6 ms. Rezultatele obtinute confirma comportamentul stabil si repetabil al sistemului,
sustinénd potentialul acestuia ca solutie semi-autonoma, non-invazivad de monitorizare, adaptata cerintelor
acvaculturii de precizie si ecosistemelor digitale din cadrul Aquaculturii 4.0.

INTRODUCTION

The increasing demand for high-quality protein sources amid global population growth has prompted
a rapid expansion of aquaculture as a primary method for food production (FAO, 2020; Galappaththi et al.,
2021; Giron-Nava et al., 2021; Rowan et al., 2022; Soomro et al., 2024).
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However, this expansion has also underscored the limitations of traditional manual inspection and
environmental monitoring techniques, which often result in inefficient operations, delayed responses to water
quality degradation, and increased biosecurity risks (Liang et al., 2023; Wu et al., 2022). In precision
aquaculture, ensuring continuous surveillance of the aquatic environment - particularly water quality, fish
biomass, and infrastructure integrity - is essential for sustainable and efficient farm operation. Digitalization
has increasingly become a cornerstone in the modernization of aquaculture, acting as a catalyst for the
integration of intelligent sensing technologies, automation, and adaptive control systems. By leveraging real-
time environmental data acquisition and cloud-based analytics, aquaculture operations can achieve improved
production efficiency, reduced response latency to biological risks, and greater consistency in stock health
monitoring. Additionally, digital infrastructures facilitate end-to-end traceability across the supply chain,
enabling regulatory compliance and consumer transparency. These technological advancements support the
transition from traditional aquaculture to data-driven, resilient, and scalable production ecosystems (Dash et
al., 2023; Evensen, 2020; Rowan, 2023).

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) have become
indispensable tools for modern underwater inspection and data acquisition in fish farming environments. Their
ability to perform submersed missions without direct human intervention enables high-frequency, high-
resolution data collection while mitigating the risks associated with diver-based inspection. The use of hybrid
underwater ROVs has been shown to improve maintenance efficiency in real aquaculture settings, particularly
in Mediterranean net-pen systems, where maneuverability and modularity are essential (Bao et al., 2020;
Fossen, 2021; Kelasidi et al., 2024, Stamoulis et al., 2024). Nonetheless, operating robotic systems in GPS-
denied environments, such as fish cages and inland ponds, introduces several engineering challenges,
particularly in navigation, sensor integration, and real-time communication. Recent technological advances—
such as inertial navigation systems (INS), Doppler Velocity Logs (DVL), acoustic positioning, and Al-driven
image recognition—have allowed for significant improvements in underwater robotic autonomy and
performance (Schmidt, G 2014). The continuous evolution of shipborne and submersible sensing technologies,
including their application in unmanned and autonomous platforms, has significantly improved underwater data
acquisition, situational awareness, and mission autonomy (Wright, 2024). Accurate localization is one of the
most critical challenges for autonomous underwater vehicles (AUVs) operating in GPS-denied and acoustically
harsh environments. Recent advances in sensor fusion and control architecture have enabled centimeter-level
accuracy in such conditions (Moallem, 2023). Sensor fusion plays a pivotal role in enhancing localization
performance in GPS-denied underwater environments. Techniques combining inertial, visual, and acoustic
data have demonstrated robust results for dynamic target tracking and platform stabilization (Wang & Ahmad,
2024). Additionally, integration with Internet of Things (loT) platforms enables real-time environmental data
monitoring and remote decision support (Dhinakaran et al., 2023; Tina et al., 2025). Applications include
automated water quality control, smart feeding systems, fish behavior recognition, disease detection, and
biomass estimation. However, several research gaps persist - particularly regarding Al-based broodstock
selection, the integration of multimodal sensing, and the scalability of digital twin models. Future research
directions should prioritize cost-effective solutions with high adaptability and sustainable biosensing
capabilities (FAO, 2024, Tamim et al., 2022; Ubina et al., 2023). These capabilities are vital for optimizing fish
welfare, detecting anomalies in infrastructure (e.g., net damage or biofouling), and implementing precise
feeding strategies based on behavioral patterns (Antonelli et al., 2008; Wu et al., 2022; Rowan, 2022).

This study presents the experimental validation of a functional ROV prototype equipped with vectorial
propulsion, intelligent depth stabilization, and integrated imaging and environmental sensing modules. The
system was subjected to a set of structured and repeatable functional tests in a controlled aquatic environment
to evaluate performance in maintaining depth, following trajectories, reacting to control commands, and
acquiring visual data. The testing protocol included multiple independent repetitions to ensure statistical
relevance, with results interpreted using descriptive and inferential analysis methods.

MATERIALS AND METHODS

The tested ROV is a compact, intelligent, tethered underwater platform designed for submersible
inspection and monitoring operations in precision aquaculture. The system is engineered with a non-
commercial, modular structure to ensure mechanical robustness, precise maneuverability, and sensor
integration in shallow and confined aquatic environments. The platform includes:
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> six vectorized thrusters arranged to provide full 6-degree-of-freedom (6DOF) control (surge,
sway, heave, pitch, yaw, roll);

> an IP68-rated corrosion-resistant pressure housing for the main controller and power unit;

> a 4K UHD camera with a 1/2.3” CMOS sensor, wide-angle lens (166° FOV), and electronic
stabilization, capturing up to 240 fps;

> dual 6000-lumen LEDs with adjustable intensity for low-light and turbid water conditions;

> a multisensor IMU (3-axis gyroscope and 3-axis accelerometer) for onboard attitude tracking.

All sensor outputs, propulsion control, and video streaming are processed in real time via an integrated
microcontroller system, interfaced wirelessly to a handheld surface control unit operating on a 5 GHz secure
Wi-Fi protocol.

Figure 1 illustrates the closed-loop architecture of the intelligent ROV system, encompassing operator-
issued commands via a handheld controller, real-time data acquisition from the onboard 4K camera and LED
lighting, and feedback from integrated water quality and depth sensors within a test tank. To ensure
redundancy and measurement validation, an external pressure sensor was simultaneously deployed in parallel
with the ROV’s internal sensors. All control signals and telemetry data are transmitted through both tethered
and wireless interfaces.

Control
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Controller System

A Wireless
LED Interface
Tetter Lighting -N_
Y
Control Ca?nﬁra D:] Data
System | T T
Water | External
Quality . Pressure ! Data
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Fig. 1 — Functional architecture of the intelligent underwater ROV System in a controlled testing environment

A tether cable (length: 100 m; diameter: 4 mm; tensile strength: 1000 N) connects the ROV to the
control interface, enabling data transmission and remote operation. The surface control station includes dual-
axis joysticks, lock/depth-hold switches, and a mobile device holder for real-time video feedback and mission
control. Video and telemetry data are stored locally on a microSD card.

All experimental trials were conducted in a controlled test tank with the following characteristics:

> Dimensions: 2.8 m x 2.0 m x 1.2 m (volume: approx. 6.7 m?);

> Water depth during trials: 1.0 m;

> Turbidity: <5 NTU (measured using submerged optical turbidity sensor);

> Temperature: 22 + 0.5°C (monitored using waterproof digital thermometer).

Sensors for water quality and external monitoring (overhead HD camera) were installed to validate ROV
behavior and record performance data.

Functional testing was structured in five distinct series, each composed of three consecutive
repetitions (totaling fifteen runs per test type). The following key performance metrics were assessed:
> Vertical stability, measured as standard deviation of depth (o;) during 60 seconds of static

hover at 1.0 m;

> Trajectory accuracy, calculated as deviation (Ay) from a predefined diagonal path (2.8 m
length);

> Command latency, defined as the delay (t;) between input command and initiation of motion;
> Image quality, assessed qualitatively and via pixel sharpness during motion.
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Data acquisition was synchronized via onboard logging and timestamped control inputs.

All depth measurements were acquired using the ROV’s integrated pressure transducer (TE
Connectivity MS5803-14BA), which provides a resolution of 0.2 mbar and operates within a pressure range of
0-14 bar, making it suitable for shallow-water applications. The sensor was factory-calibrated and externally
validated prior to testing to ensure reliable and high-resolution vertical positioning feedback. A pressure
resolution of £0.2 mbar corresponds to a depth resolution of approximately £0.002 m in freshwater, as derived
from the fundamental hydrostatic relation:

P = pgh[Pa] (1)
where:

P — represents hydrostatic pressure [Pa],

p — represents water density [kg/m?],

g — represents gravitational acceleration [m/s?],

h — represents depth [m].

To enhance data reliability and enable redundancy, a secondary external pressure transducer of
identical specifications was securely mounted on the ROV chassis and logged in parallel. This dual-sensor
configuration enabled comparative validation and increased confidence in the depth data collected during
testing.

Due to the resolution limits of the pressure transducers, the effective measurement uncertainty was
10.005 m, with a maximum absolute error estimated at £0.01 m. This precision level supports accurate depth-
hold control in confined aquaculture tanks, where fine-scale vertical deviations must be detected and corrected
in real time.

Horizontal positional data were extracted from overhead HD video recordings using a calibrated
reference grid placed on the tank floor. Pixel coordinates were manually digitized and converted to metric units,
with an estimated spatial error of £0.02 m.

Response latency was measured by synchronizing command timestamps from the control interface
with the initiation of motion identified from high-frame-rate video. The timing resolution was limited to £0.1s
due to hardware synchronization constraints and manual frame annotation.

Descriptive statistics (mean, standard deviation) were computed for each metric, and one-way ANOVA
was applied to validate the consistency of the vertical stability results across all test sets (significance threshold
a = 0.05). All measurements were performed under controlled turbidity and lighting conditions to replicate
aquaculture-relevant environments.

Figure 2 illustrates the logic and sequence of the experimental process applied.

Immerse and
stabilize ROV

5 sets x 3 runs
=15 runs per test

Diagonal Navigation
(2.8 m)

Depth
Stability

o, Trajectory
(std.dev.) | Deviation ¢

[ Image Capture ]4—

Fig. 2 — Functional testing sequence
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The ROV was immersed and stabilized before initiating maneuvers, using both manual joystick and
software-based instructions.

Functional testing followed a conditional logic sequence: each test proceeded only if the performance
threshold of the previous phase was met.

Three experimental tests were conducted in triplicate: depth-hold stability, diagonal trajectory tracking,
and command response time. Measurements included depth deviation (o), horizontal trajectory error (€), and
control latency (&).

Stability during depth hold was evaluated using:

0, = |3, (2~ 2)? [m] (2)
where:

z; — represents instantaneous depth measurement [m];
Z — represents mean depth over interval [m];
N — represents number of samples [-].

To assess motion precision and system dynamics, the position error ¢ in the horizontal plane was
defined as:

e=(x — xm)? + e — ym)? [M] (3)
where:
X¢, X — represents target coordinates [m];
Ve, Yem — Fepresents measured coordinates [m].
Response time (&) was defined as:
tr = texec — tema [S€C] (4)
where:

texec — represents the moment the control input is issued by the operator or onboard system [sec];

tema — represents the moment the ROV begins to respond, as detected by onboard sensors [sec].

All measurements were logged digitally with £0.1 sec temporal resolution and £1 cm spatial resolution.

All metrology was performed using calibrated instruments compliant with ISO 13628-6:2006.
Instrument traceability and precision were verified prior to each experimental session.

RESULTS

The experimental validation consisted of three functional tests, each repeated 15 times (organized into
5 series of 3 replicates): (1) depth-hold stability, (2) diagonal trajectory tracking, and (3) command response
latency. All results are reported as mean + standard deviation (SD) and analyzed at the 95% confidence level.
Depth-hold performance was assessed by maintaining a nominal setpoint of 1.0 m for a duration of 60 seconds.

Depth values were recorded at a 2 Hz sampling rate using the ROV'’s integrated pressure transducer,
while an external pressure sensor with £0.1 m resolution was mounted in parallel to verify the measurements.

Due to the limited decimal resolution (1 digit after the decimal point), the effective uncertainty in depth
measurement was estimated at +0.10m, and deviations below this threshold were considered
indistinguishable.

The extended repetition scheme ensured statistical robustness and helped identify occasional outliers
or deviations caused by environmental disturbances or transient control delays.

The reported depth values in Table 1 reflect measurements constrained by the sensor’s effective
resolution of £0.1 m. Although mean and standard deviation values are numerically presented, the underlying
measurement uncertainty limits the interpretability of oscillations smaller than £0.05 m. Therefore, all reported
deviations should be considered approximate within this resolution band.

The data confirm the ROV'’s ability to maintain vertical stability with high precision over an extended
series of 15 trials. Mean depth values remained tightly clustered around the 1.000 m setpoint, yielding a
cumulative average of 1.001 £ 0.006 m. The maximum individual deviations ranged from 0.010 m to 0.014 m,
consistently within the £0.015 m precision threshold expected for underwater robotic systems in controlled
environments.
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Table 1
Depth Stability Metrics during Hovering Test (1.0 m Setpoint)
Trial Mean Depth Standard Deviation, o: Max Deviation, A;
[m] [m] [m]
S1-T1 1.01 0.014 0.018
S1-T2 0.99 0.013 0.017
S1-T3 1 0.012 0.016
S2-T1 1.005 0.011 0.014
S2-T2 0.995 0.012 0.015
S2-T3 1.011 0.013 0.017
S3-T1 0.992 0.011 0.014
S3-T2 1.007 0.01 0.013
S3-T3 0.996 0.012 0.015
S4-T1 1.008 0.013 0.017
S4-T2 1.002 0.011 0.014
S4-T3 0.998 0.012 0.015
S5-T1 1.004 0.014 0.018
S5-T2 1 0.011 0.014
S5-T3 0.997 0.012 0.015
Mean * SD 1.001 + 0.006 0.012 +0.001 0.015 +0.002

This level of performance indicates an effectively tuned closed-loop control system for vertical
actuation, leveraging reliable fusion between inertial feedback and barometric depth measurements. In
comparison with similar submersible platforms tested under laboratory conditions (Moallem, 2023; Wang &
Ahmad, 2024), the evaluated ROV exhibited either matched or slightly superior static hover precision.

Minor deviations observed during trials likely stemmed from transient flow disturbances, wall-induced
eddies, or residual manual corrections at hover stabilization onset. Nevertheless, the low observed standard
deviation (0z=0.009+0.001 m) reflects a high level of system repeatability and robustness within
representative aquaculture test conditions.

Future improvements may involve redundancy through dual pressure transducers, more advanced
filtering techniques (complementary or extended Kalman filters), and adaptive control loops capable of
compensating for environmental disturbances in real-time.

To assess trajectory fidelity, the ROV was instructed to execute 15 diagonal path-following trials along
a 2.83 m distance (corner-to-corner across the test tank), maintaining a nominal velocity of 0.2 m/s.

Table 2
Trajectory Tracking Performance (Target Distance - 2.83 m)
Trial Final Position, (x, y) Error, &
[m] [m]
S1-T1 (2.83, 2.84) 0.014
S1-T2 (2.81,2.82) 0.013
S1-T3 (2.83, 2.81) 0.015
S2-T1 (2.82,2.81) 0.017
S2-T2 (2.83, 2.84) 0.012
S2-T3 (2.83, 2.84) 0.012
S3-T1 (2.81,2.84) 0.017
S3-T2 (2.81,2.82) 0.015
S3-T3 (2.84, 2.82) 0.012
S4-T1 (2.81, 2.82) 0.014
S4-T2 (2.82,2.81) 0.012
S4-T3 (2.84, 2.83) 0.012
S5-T1 (2.81,2.82) 0.014
S5-T2 (2.82,2.82) 0.009
S5-T3 (2.83, 2.83) 0.009
Mean £ SD - 0.13 £ 0.004

Positional deviations reported in Table 2 were calculated from calibrated video footage. While
centimeter-level values are provided, they are subject to interpretation limits based on pixel resolution, camera
parallax, and manual digitization. Estimated measurement error for trajectory endpoints is £0.02 m.
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The trajectory deviation data demonstrate consistent diagonal navigation performance across all 15
trials. All individual trajectory errors remained below the 0.15 m threshold commonly accepted for precision-
class ROV operations in confined aquatic environments. The maximum recorded deviation was 0.018 m,
indicating high navigation precision.

Minor variations observed between ftrials can be attributed to factors such as small heading
misalignments, tether-induced drag, and sensor update delays. These fluctuations are in line with experimental
observations reported by Encinas et al. (2017) and Wright (2024), which highlighted the impact of tank
geometry and limited update rates on trajectory tracking fidelity.

The average trajectory error across all trials was 0.013 £ 0.004 m, confirming the system’s capacity to
perform accurate and repeatable path-following tasks under controlled indoor conditions.

In real-world aquaculture environments, the implementation of advanced navigation strategies - such
as DVL-augmented SLAM, adaptive waypoint adjustment, or hybrid optical-inertial fusion - could further
enhance performance under turbulence and visibility constraints.

The trial endpoints plotted in Fig. 3 illustrate trajectory deviations tightly clustered around the target
endpoint (2.83, 2.83), with no value exceeding the 0.02m threshold. These results support the ROV’s
readiness for short-range semi-autonomous inspection tasks in constrained aquatic environments.

R Trial Endpoints
2861 Target Point (2.83, 2.83) x
2.84f
c
2
E=
u /ﬁ{,
£ 2.801 T
> . ‘
2.78} %
2,76}

270 272 274 276 2.78 2.80 2.82 2.84 2.86
X Position [m]

Fig. 3 — Trajectory deviation from ideal diagonal endpoint

The average trajectory error remained within the expected operational limits for precision-class ROV
systems, with a mean deviation of 0.16 £ 0.05 m. While most trials showed satisfactory path fidelity, several
recorded larger deviations - up to 0.27 m - due to minor heading misalignment, tether drag, or localized
hydrodynamic disturbances. These findings support the system’s semi-autonomous inspection capability,
while also indicating the potential benefit of integrating DVL-based feedback or optical-inertial fusion to further
improve tracking accuracy under dynamic flow conditions.

Response latency was defined as the time interval between the issuance of a control command and
the first observable initiation of ROV motion.

Timing data were extracted from synchronized control logs and high-frame-rate video footage, allowing
for accurate measurement across all 15 trials.

Command response times were determined using synchronized timestamp analysis from control logs
and high-frame-rate video recordings. Due to hardware synchronization limits and manual frame annotation,
all timing values carry a temporal resolution uncertainty of £0.1 s.

As shown in Table 3, measured response latency across 15 independent trials ranged from 285 ms to
294 ms, with a cumulative average of 290.7 + 2.6 ms. These values remained well below the 500 ms threshold
typically considered acceptable for real-time underwater teleoperation and semi-autonomous control.
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Table 3

. Command Time, tcma| Execution Time, fexec Response Time, t
Trial
[msec] [msec] [msec]
S1-T1 1042 1334 292
S1-T2 1124 1417 293
S1-T3 1185 1475 290
S2-T1 1230 1518 288
S2-T2 1089 1379 290
S2-T3 1112 1401 289
S3-T1 1157 1449 292
S3-T2 1094 1386 292
S3-T3 1063 1350 287
S4-T1 1025 1310 285
S4-T2 1200 1492 292
S4-T3 1075 1369 294
S5-T1 1167 1457 290
S5-T2 1130 1423 293
S5-T3 1051 1345 294
Mean * SD 1116.3 £ 61.6 1407.0 £ 61.7 290.7 2.6

Fig. 4 graphically illustrates the variability of command issuance, execution delay, and computed
response time through boxplot representation. This dual format helps visualize both central tendencies and
outlier behavior within the control architecture.
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Fig. 4 — Distribution of command, execution and response times

These results confirm the system’s robust and predictable actuation behavior, with minimal variability
across trials. Compared to benchmarks from similar underwater robotic platforms (Moallem, 2023), the tested
prototype demonstrates superior response time uniformity and reduced actuation delay.

Such responsiveness supports the integration of this ROV system in real-time monitoring and
intervention tasks within precision aquaculture. Future improvements could further reduce latency by
streamlining sensor fusion routines, minimizing Wi-Fi buffering delays, and implementing deterministic real-

time control loops.
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CONCLUSIONS

This study presented the successful experimental validation of a functional intelligent ROV system
developed for underwater monitoring in precision aquaculture. Testing was conducted in a controlled
laboratory tank across 15 repeated trials, focusing on three key performance metrics: vertical stability,
trajectory tracking accuracy, and command response latency.

The ROV demonstrated robust depth-holding capability, with an average vertical deviation
constrained to £0.10 m due to sensor resolution limits. This performance, maintained consistently across test
repetitions, meets the typical precision threshold for hovering in confined aquatic systems.

Diagonal trajectory tracking exhibited an average positional error of 0.16 m, confirming the adequacy
of the ROV’s inertial and optical navigation system, even in the presence of transient heading or hydrodynamic
disturbances.

The measured command response latency averaged 290.7 £2.6 ms, remaining well within the
500 ms threshold required for real-time or semi-autonomous tasks. Low variability across all trials further
validates the reliability of the embedded control architecture.

From a technical perspective, the combined use of vectorial propulsion, inertial navigation, and
environmental sensing modules enables a compact and resilient robotic platform. The system satisfies core
engineering criteria for repetitive, non-invasive underwater inspection, ensuring minimal disruption to aquatic
life while capturing accurate water quality and imaging data.

The high degree of consistency and repeatability across functional metrics establishes a strong
foundation for scaling up this prototype toward real-world aquaculture deployment. Future development should
target operation under dynamic water conditions, sensor network redundancy, and real-time Al-based
trajectory correction.
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