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ABSTRACT 

The integration of autonomous technologies in aquaculture has become essential for enhancing sustainability, 

biosecurity, and operational efficiency within increasingly intensive production systems. This paper presents 

the experimental validation of a functional prototype of an intelligent Remotely Operated Vehicle (ROV) 

developed for underwater environmental monitoring under controlled laboratory conditions that simulate 

aquaculture-specific scenarios. The proposed system integrates vectorial propulsion, an intelligent depth-hold 

controller, and a multisensor inertial navigation unit, enabling robust operation in GPS-denied environments 

and confined aquatic infrastructures. The hardware platform incorporates optical imaging alongside dissolved 

oxygen, pH, and temperature sensors, with data acquisition and command input managed via a mobile 

dashboard interface. A series of functional trials were conducted to assess depth-hold precision, trajectory-

tracking accuracy, command latency, and imaging performance under dynamic test conditions. Based on these 

evaluations, the ROV exhibited a mean vertical deviation of ±0.10 m, a trajectory error of 0.16 m, and an 

average command latency of 290.7 ± 2.6 ms, demonstrating stable and repeatable behavior. These results 

validate the system’s potential as a non-invasive, semi-autonomous monitoring solution tailored to the 

requirements of precision aquaculture and scalable digital aquafarming frameworks. 

 

REZUMAT 

Integrarea tehnologiilor autonome în acvacultură a devenit esențială pentru creșterea sustenabilității, 

biosecurității și eficienței operaționale în cadrul sistemelor de producție tot mai intensive. Această lucrare 

prezintă validarea experimentală a unui prototip funcțional de Vehicul Subacvatic Operat de la Distanță (ROV) 

inteligent, proiectat pentru monitorizarea mediului acvatic în condiții de laborator controlate, care simulează 

scenarii specifice acvaculturii. Sistemul propus combină propulsia vectorială, un algoritm inteligent de control 

al adâncimii și o unitate de navigație inerțială multisenzorială, permițând operarea în medii lipsite de semnal 

GPS și în infrastructuri acvatice restrânse. Platforma hardware integrează imagistică optică, senzori pentru 

oxigen dizolvat, pH și temperatură, iar achiziția și controlul datelor sunt realizate printr-un panou de comandă 

mobil. O serie de teste funcționale au fost efectuate pentru a evalua performanța în menținerea adâncimii, 

urmărirea traiectoriei, timpul de răspuns la comenzi și calitatea imaginilor în condiții dinamice simulate. Pe 

baza a cinci seturi independente de încercări, ROV-ul a înregistrat o abatere medie pe verticală de ±0,10 m 

(limitare dată de rezoluția senzorului), o eroare medie de traiectorie de 0.16 m și un timp mediu de răspuns la 

comenzi de 290.7 ± 2.6 ms. Rezultatele obținute confirmă comportamentul stabil și repetabil al sistemului, 

susținând potențialul acestuia ca soluție semi-autonomă, non-invazivă de monitorizare, adaptată cerințelor 

acvaculturii de precizie și ecosistemelor digitale din cadrul Aquaculturii 4.0. 

 

INTRODUCTION 

  The increasing demand for high-quality protein sources amid global population growth has prompted 

a rapid expansion of aquaculture as a primary method for food production (FAO, 2020; Galappaththi et al., 

2021; Giron‐Nava et al., 2021; Rowan et al., 2022; Soomro et al., 2024).  
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 However, this expansion has also underscored the limitations of traditional manual inspection and 

environmental monitoring techniques, which often result in inefficient operations, delayed responses to water 

quality degradation, and increased biosecurity risks (Liang et al., 2023; Wu et al., 2022). In precision 

aquaculture, ensuring continuous surveillance of the aquatic environment - particularly water quality, fish 

biomass, and infrastructure integrity - is essential for sustainable and efficient farm operation. Digitalization 

has increasingly become a cornerstone in the modernization of aquaculture, acting as a catalyst for the 

integration of intelligent sensing technologies, automation, and adaptive control systems. By leveraging real-

time environmental data acquisition and cloud-based analytics, aquaculture operations can achieve improved 

production efficiency, reduced response latency to biological risks, and greater consistency in stock health 

monitoring. Additionally, digital infrastructures facilitate end-to-end traceability across the supply chain, 

enabling regulatory compliance and consumer transparency. These technological advancements support the 

transition from traditional aquaculture to data-driven, resilient, and scalable production ecosystems (Dash et 

al., 2023; Evensen, 2020; Rowan, 2023). 

 Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) have become 

indispensable tools for modern underwater inspection and data acquisition in fish farming environments. Their 

ability to perform submersed missions without direct human intervention enables high-frequency, high-

resolution data collection while mitigating the risks associated with diver-based inspection. The use of hybrid 

underwater ROVs has been shown to improve maintenance efficiency in real aquaculture settings, particularly 

in Mediterranean net-pen systems, where maneuverability and modularity are essential (Bao et al., 2020; 

Fossen, 2021; Kelasidi et al., 2024; Stamoulis et al., 2024). Nonetheless, operating robotic systems in GPS-

denied environments, such as fish cages and inland ponds, introduces several engineering challenges, 

particularly in navigation, sensor integration, and real-time communication. Recent technological advances—

such as inertial navigation systems (INS), Doppler Velocity Logs (DVL), acoustic positioning, and AI-driven 

image recognition—have allowed for significant improvements in underwater robotic autonomy and 

performance (Schmidt, G 2014). The continuous evolution of shipborne and submersible sensing technologies, 

including their application in unmanned and autonomous platforms, has significantly improved underwater data 

acquisition, situational awareness, and mission autonomy (Wright, 2024). Accurate localization is one of the 

most critical challenges for autonomous underwater vehicles (AUVs) operating in GPS-denied and acoustically 

harsh environments. Recent advances in sensor fusion and control architecture have enabled centimeter-level 

accuracy in such conditions (Moallem, 2023). Sensor fusion plays a pivotal role in enhancing localization 

performance in GPS-denied underwater environments. Techniques combining inertial, visual, and acoustic 

data have demonstrated robust results for dynamic target tracking and platform stabilization (Wang & Ahmad, 

2024). Additionally, integration with Internet of Things (IoT) platforms enables real-time environmental data 

monitoring and remote decision support (Dhinakaran et al., 2023; Tina et al., 2025). Applications include 

automated water quality control, smart feeding systems, fish behavior recognition, disease detection, and 

biomass estimation. However, several research gaps persist - particularly regarding AI-based broodstock 

selection, the integration of multimodal sensing, and the scalability of digital twin models. Future research 

directions should prioritize cost-effective solutions with high adaptability and sustainable biosensing 

capabilities (FAO, 2024; Tamim et al., 2022; Ubina et al., 2023). These capabilities are vital for optimizing fish 

welfare, detecting anomalies in infrastructure (e.g., net damage or biofouling), and implementing precise 

feeding strategies based on behavioral patterns (Antonelli et al., 2008; Wu et al., 2022; Rowan, 2022). 

 This study presents the experimental validation of a functional ROV prototype equipped with vectorial 

propulsion, intelligent depth stabilization, and integrated imaging and environmental sensing modules. The 

system was subjected to a set of structured and repeatable functional tests in a controlled aquatic environment 

to evaluate performance in maintaining depth, following trajectories, reacting to control commands, and 

acquiring visual data. The testing protocol included multiple independent repetitions to ensure statistical 

relevance, with results interpreted using descriptive and inferential analysis methods. 

 
MATERIALS AND METHODS 

  The tested ROV is a compact, intelligent, tethered underwater platform designed for submersible 

inspection and monitoring operations in precision aquaculture. The system is engineered with a non-

commercial, modular structure to ensure mechanical robustness, precise maneuverability, and sensor 

integration in shallow and confined aquatic environments. The platform includes: 
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➢ six vectorized thrusters arranged to provide full 6-degree-of-freedom (6DOF) control (surge, 

sway, heave, pitch, yaw, roll); 

➢ an IP68-rated corrosion-resistant pressure housing for the main controller and power unit; 

➢ a 4K UHD camera with a 1/2.3” CMOS sensor, wide-angle lens (166° FOV), and electronic 

stabilization, capturing up to 240 fps; 

➢ dual 6000-lumen LEDs with adjustable intensity for low-light and turbid water conditions; 

➢ a multisensor IMU (3-axis gyroscope and 3-axis accelerometer) for onboard attitude tracking. 

All sensor outputs, propulsion control, and video streaming are processed in real time via an integrated 

microcontroller system, interfaced wirelessly to a handheld surface control unit operating on a 5 GHz secure 

Wi-Fi protocol. 

 Figure 1 illustrates the closed-loop architecture of the intelligent ROV system, encompassing operator-

issued commands via a handheld controller, real-time data acquisition from the onboard 4K camera and LED 

lighting, and feedback from integrated water quality and depth sensors within a test tank. To ensure 

redundancy and measurement validation, an external pressure sensor was simultaneously deployed in parallel 

with the ROV’s internal sensors. All control signals and telemetry data are transmitted through both tethered 

and wireless interfaces. 

 

 

Fig. 1 – Functional architecture of the intelligent underwater ROV System in a controlled testing environment 

 

 

 A tether cable (length: 100 m; diameter: 4 mm; tensile strength: 1000 N) connects the ROV to the 

control interface, enabling data transmission and remote operation. The surface control station includes dual-

axis joysticks, lock/depth-hold switches, and a mobile device holder for real-time video feedback and mission 

control. Video and telemetry data are stored locally on a microSD card. 

 All experimental trials were conducted in a controlled test tank with the following characteristics: 

➢ Dimensions: 2.8 m × 2.0 m × 1.2 m (volume: approx. 6.7 m³); 

➢ Water depth during trials: 1.0 m; 

➢ Turbidity: <5 NTU (measured using submerged optical turbidity sensor); 

➢ Temperature: 22 ± 0.5°C (monitored using waterproof digital thermometer). 

Sensors for water quality and external monitoring (overhead HD camera) were installed to validate ROV 

behavior and record performance data. 

 Functional testing was structured in five distinct series, each composed of three consecutive 
repetitions (totaling fifteen runs per test type). The following key performance metrics were assessed: 

➢ Vertical stability, measured as standard deviation of depth (σz) during 60 seconds of static 

hover at 1.0 m; 

➢ Trajectory accuracy, calculated as deviation (Δd) from a predefined diagonal path (2.8 m 

length); 

➢ Command latency, defined as the delay (tr) between input command and initiation of motion; 

➢ Image quality, assessed qualitatively and via pixel sharpness during motion. 
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 Data acquisition was synchronized via onboard logging and timestamped control inputs. 

 All depth measurements were acquired using the ROV’s integrated pressure transducer (TE 

Connectivity MS5803-14BA), which provides a resolution of 0.2 mbar and operates within a pressure range of 

0–14 bar, making it suitable for shallow-water applications. The sensor was factory-calibrated and externally 

validated prior to testing to ensure reliable and high-resolution vertical positioning feedback. A pressure 

resolution of ±0.2 mbar corresponds to a depth resolution of approximately ±0.002 m in freshwater, as derived 

from the fundamental hydrostatic relation: 

𝑃 = 𝜌𝑔ℎ [Pa]       (1) 
where: 

 𝑃 – represents hydrostatic pressure [Pa], 

 𝜌 – represents water density [kg/m3], 

 𝑔 – represents gravitational acceleration [m/s2], 

 ℎ – represents depth [m]. 

 To enhance data reliability and enable redundancy, a secondary external pressure transducer of 

identical specifications was securely mounted on the ROV chassis and logged in parallel. This dual-sensor 

configuration enabled comparative validation and increased confidence in the depth data collected during 

testing. 

 Due to the resolution limits of the pressure transducers, the effective measurement uncertainty was 

±0.005 m, with a maximum absolute error estimated at ±0.01 m. This precision level supports accurate depth-

hold control in confined aquaculture tanks, where fine-scale vertical deviations must be detected and corrected 

in real time. 

 Horizontal positional data were extracted from overhead HD video recordings using a calibrated 

reference grid placed on the tank floor. Pixel coordinates were manually digitized and converted to metric units, 

with an estimated spatial error of ±0.02 m. 

 Response latency was measured by synchronizing command timestamps from the control interface 

with the initiation of motion identified from high-frame-rate video. The timing resolution was limited to ±0.1 s 

due to hardware synchronization constraints and manual frame annotation. 

 Descriptive statistics (mean, standard deviation) were computed for each metric, and one-way ANOVA 

was applied to validate the consistency of the vertical stability results across all test sets (significance threshold 

α = 0.05). All measurements were performed under controlled turbidity and lighting conditions to replicate 

aquaculture-relevant environments. 

Figure 2 illustrates the logic and sequence of the experimental process applied. 

 

 
Fig. 2 – Functional testing sequence 
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 The ROV was immersed and stabilized before initiating maneuvers, using both manual joystick and 

software-based instructions. 

 Functional testing followed a conditional logic sequence: each test proceeded only if the performance 

threshold of the previous phase was met. 

 Three experimental tests were conducted in triplicate: depth-hold stability, diagonal trajectory tracking, 

and command response time. Measurements included depth deviation (σz), horizontal trajectory error (ε), and 

control latency (tr). 

 Stability during depth hold was evaluated using: 

𝜎𝑧 = √
1

𝑁
∑ (𝑧𝑖 − 𝑧̅)2𝑁

𝑖=1   [m]       (2) 

where: 

 𝑧𝑖  – represents instantaneous depth measurement [m]; 

 𝑧̅ – represents mean depth over interval [m]; 

 𝑁 – represents number of samples [-]. 

 

 To assess motion precision and system dynamics, the position error 𝜀 in the horizontal plane was 

defined as: 

ε = √(𝑥𝑡 − 𝑥𝑚)2 + (𝑦𝑡 − 𝑦𝑚)2  [m]      (3) 

where: 

 𝑥𝑡, 𝑥𝑚 – represents target coordinates [m]; 

 𝑦𝑡, 𝑦𝑡𝑚 – represents measured coordinates [m]. 

 

 Response time (tr) was defined as: 

𝑡𝑟 = 𝑡𝑒𝑥𝑒𝑐 − 𝑡𝑐𝑚𝑑  [sec]       (4) 
where: 

 𝑡𝑒𝑥𝑒𝑐 – represents the moment the control input is issued by the operator or onboard system [sec]; 

 𝑡𝑐𝑚𝑑 – represents the moment the ROV begins to respond, as detected by onboard sensors [sec]. 

All measurements were logged digitally with ±0.1 sec temporal resolution and ±1 cm spatial resolution. 

 All metrology was performed using calibrated instruments compliant with ISO 13628-6:2006. 

Instrument traceability and precision were verified prior to each experimental session. 

 

RESULTS 

 The experimental validation consisted of three functional tests, each repeated 15 times (organized into 

5 series of 3 replicates): (1) depth-hold stability, (2) diagonal trajectory tracking, and (3) command response 

latency. All results are reported as mean ± standard deviation (SD) and analyzed at the 95% confidence level. 

Depth-hold performance was assessed by maintaining a nominal setpoint of 1.0 m for a duration of 60 seconds. 

 Depth values were recorded at a 2 Hz sampling rate using the ROV’s integrated pressure transducer, 

while an external pressure sensor with ±0.1 m resolution was mounted in parallel to verify the measurements. 

 Due to the limited decimal resolution (1 digit after the decimal point), the effective uncertainty in depth 

measurement was estimated at ±0.10 m, and deviations below this threshold were considered 

indistinguishable. 

 The extended repetition scheme ensured statistical robustness and helped identify occasional outliers 

or deviations caused by environmental disturbances or transient control delays. 

 The reported depth values in Table 1 reflect measurements constrained by the sensor’s effective 

resolution of ±0.1 m. Although mean and standard deviation values are numerically presented, the underlying 

measurement uncertainty limits the interpretability of oscillations smaller than ±0.05 m. Therefore, all reported 

deviations should be considered approximate within this resolution band. 

 The data confirm the ROV’s ability to maintain vertical stability with high precision over an extended 

series of 15 trials. Mean depth values remained tightly clustered around the 1.000 m setpoint, yielding a 

cumulative average of 1.001 ± 0.006 m. The maximum individual deviations ranged from 0.010 m to 0.014 m, 

consistently within the ±0.015 m precision threshold expected for underwater robotic systems in controlled 

environments. 
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Table 1 

Depth Stability Metrics during Hovering Test (1.0 m Setpoint) 

Trial Mean Depth Standard Deviation, σz Max Deviation, Δz 

[m] [m] [m] 

S1-T1 1.01 0.014 0.018 

S1-T2 0.99 0.013 0.017 

S1-T3 1 0.012 0.016 

S2-T1 1.005 0.011 0.014 

S2-T2 0.995 0.012 0.015 

S2-T3 1.011 0.013 0.017 

S3-T1 0.992 0.011 0.014 

S3-T2 1.007 0.01 0.013 

S3-T3 0.996 0.012 0.015 

S4-T1 1.008 0.013 0.017 

S4-T2 1.002 0.011 0.014 

S4-T3 0.998 0.012 0.015 

S5-T1 1.004 0.014 0.018 

S5-T2 1 0.011 0.014 

S5-T3 0.997 0.012 0.015 

Mean ± SD 1.001 ± 0.006 0.012 ± 0.001 0.015 ± 0.002 

 

 This level of performance indicates an effectively tuned closed-loop control system for vertical 

actuation, leveraging reliable fusion between inertial feedback and barometric depth measurements. In 

comparison with similar submersible platforms tested under laboratory conditions (Moallem, 2023; Wang & 

Ahmad, 2024), the evaluated ROV exhibited either matched or slightly superior static hover precision. 

 Minor deviations observed during trials likely stemmed from transient flow disturbances, wall-induced 

eddies, or residual manual corrections at hover stabilization onset. Nevertheless, the low observed standard 

deviation (σz = 0.009 ± 0.001 m) reflects a high level of system repeatability and robustness within 

representative aquaculture test conditions. 

 Future improvements may involve redundancy through dual pressure transducers, more advanced 

filtering techniques (complementary or extended Kalman filters), and adaptive control loops capable of 

compensating for environmental disturbances in real-time. 

 To assess trajectory fidelity, the ROV was instructed to execute 15 diagonal path-following trials along 

a 2.83 m distance (corner-to-corner across the test tank), maintaining a nominal velocity of 0.2 m/s. 

 

Table 2 

Trajectory Tracking Performance (Target Distance - 2.83 m) 

Trial Final Position, (x, y) Error, ε 

[m] [m] 

S1-T1 (2.83, 2.84) 0.014 

S1-T2 (2.81, 2.82) 0.013 

S1-T3 (2.83, 2.81) 0.015 

S2-T1 (2.82, 2.81) 0.017 

S2-T2 (2.83, 2.84) 0.012 

S2-T3 (2.83, 2.84) 0.012 

S3-T1 (2.81, 2.84) 0.017 

S3-T2 (2.81, 2.82) 0.015 

S3-T3 (2.84, 2.82) 0.012 

S4-T1 (2.81, 2.82) 0.014 

S4-T2 (2.82, 2.81) 0.012 

S4-T3 (2.84, 2.83) 0.012 

S5-T1 (2.81, 2.82) 0.014 

S5-T2 (2.82, 2.82) 0.009 

S5-T3 (2.83, 2.83) 0.009 

Mean ± SD - 0.13 ± 0.004 

 

 Positional deviations reported in Table 2 were calculated from calibrated video footage. While 

centimeter-level values are provided, they are subject to interpretation limits based on pixel resolution, camera 

parallax, and manual digitization. Estimated measurement error for trajectory endpoints is ±0.02 m. 
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 The trajectory deviation data demonstrate consistent diagonal navigation performance across all 15 

trials. All individual trajectory errors remained below the 0.15 m threshold commonly accepted for precision-

class ROV operations in confined aquatic environments. The maximum recorded deviation was 0.018 m, 

indicating high navigation precision. 

 Minor variations observed between trials can be attributed to factors such as small heading 

misalignments, tether-induced drag, and sensor update delays. These fluctuations are in line with experimental 

observations reported by Encinas et al. (2017) and Wright (2024), which highlighted the impact of tank 

geometry and limited update rates on trajectory tracking fidelity. 

 The average trajectory error across all trials was 0.013 ± 0.004 m, confirming the system’s capacity to 

perform accurate and repeatable path-following tasks under controlled indoor conditions. 

 In real-world aquaculture environments, the implementation of advanced navigation strategies - such 

as DVL-augmented SLAM, adaptive waypoint adjustment, or hybrid optical-inertial fusion - could further 

enhance performance under turbulence and visibility constraints. 

 The trial endpoints plotted in Fig. 3 illustrate trajectory deviations tightly clustered around the target 

endpoint (2.83, 2.83), with no value exceeding the 0.02 m threshold. These results support the ROV’s 

readiness for short-range semi-autonomous inspection tasks in constrained aquatic environments. 

 

 
 

Fig. 3 – Trajectory deviation from ideal diagonal endpoint 

 

 

 The average trajectory error remained within the expected operational limits for precision-class ROV 

systems, with a mean deviation of 0.16 ± 0.05 m. While most trials showed satisfactory path fidelity, several 

recorded larger deviations - up to 0.27 m - due to minor heading misalignment, tether drag, or localized 

hydrodynamic disturbances. These findings support the system’s semi-autonomous inspection capability, 

while also indicating the potential benefit of integrating DVL-based feedback or optical-inertial fusion to further 

improve tracking accuracy under dynamic flow conditions. 

 Response latency was defined as the time interval between the issuance of a control command and 

the first observable initiation of ROV motion. 

 Timing data were extracted from synchronized control logs and high-frame-rate video footage, allowing 

for accurate measurement across all 15 trials. 

 Command response times were determined using synchronized timestamp analysis from control logs 

and high-frame-rate video recordings. Due to hardware synchronization limits and manual frame annotation, 

all timing values carry a temporal resolution uncertainty of ±0.1 s. 

 As shown in Table 3, measured response latency across 15 independent trials ranged from 285 ms to 

294 ms, with a cumulative average of 290.7 ± 2.6 ms. These values remained well below the 500 ms threshold 

typically considered acceptable for real-time underwater teleoperation and semi-autonomous control.  
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Table 3 

Command Response Time (msec) 

Trial 
Command Time, tcmd Execution Time, texec Response Time, tr 

[msec] [msec] [msec] 

S1-T1 1042 1334 292 

S1-T2 1124 1417 293 

S1-T3 1185 1475 290 

S2-T1 1230 1518 288 

S2-T2 1089 1379 290 

S2-T3 1112 1401 289 

S3-T1 1157 1449 292 

S3-T2 1094 1386 292 

S3-T3 1063 1350 287 

S4-T1 1025 1310 285 

S4-T2 1200 1492 292 

S4-T3 1075 1369 294 

S5-T1 1167 1457 290 

S5-T2 1130 1423 293 

S5-T3 1051 1345 294 

Mean ± SD 1116.3 ± 61.6 1407.0 ± 61.7 290.7 ± 2.6 

 

 Fig. 4 graphically illustrates the variability of command issuance, execution delay, and computed 

response time through boxplot representation. This dual format helps visualize both central tendencies and 

outlier behavior within the control architecture. 

 

 
 

Fig. 4 – Distribution of command, execution and response times 

 

 These results confirm the system’s robust and predictable actuation behavior, with minimal variability 

across trials. Compared to benchmarks from similar underwater robotic platforms (Moallem, 2023), the tested 

prototype demonstrates superior response time uniformity and reduced actuation delay. 

 Such responsiveness supports the integration of this ROV system in real-time monitoring and 

intervention tasks within precision aquaculture. Future improvements could further reduce latency by 

streamlining sensor fusion routines, minimizing Wi-Fi buffering delays, and implementing deterministic real-

time control loops. 
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CONCLUSIONS 

 This study presented the successful experimental validation of a functional intelligent ROV system 

developed for underwater monitoring in precision aquaculture. Testing was conducted in a controlled 

laboratory tank across 15 repeated trials, focusing on three key performance metrics: vertical stability, 

trajectory tracking accuracy, and command response latency. 

 The ROV demonstrated robust depth-holding capability, with an average vertical deviation 

constrained to ±0.10 m due to sensor resolution limits. This performance, maintained consistently across test 

repetitions, meets the typical precision threshold for hovering in confined aquatic systems. 

 Diagonal trajectory tracking exhibited an average positional error of 0.16 m, confirming the adequacy 

of the ROV’s inertial and optical navigation system, even in the presence of transient heading or hydrodynamic 

disturbances. 

 The measured command response latency averaged 290.7 ± 2.6 ms, remaining well within the 

500 ms threshold required for real-time or semi-autonomous tasks. Low variability across all trials further 

validates the reliability of the embedded control architecture. 

 From a technical perspective, the combined use of vectorial propulsion, inertial navigation, and 

environmental sensing modules enables a compact and resilient robotic platform. The system satisfies core 

engineering criteria for repetitive, non-invasive underwater inspection, ensuring minimal disruption to aquatic 

life while capturing accurate water quality and imaging data. 

 The high degree of consistency and repeatability across functional metrics establishes a strong 

foundation for scaling up this prototype toward real-world aquaculture deployment. Future development should 

target operation under dynamic water conditions, sensor network redundancy, and real-time AI-based 

trajectory correction. 
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