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ABSTRACT

Accurately counting the number of corn seedlings is the key to evaluating the growth status of corn. To address
the problem of difficult detection and counting of corn seedlings in complex field environments, this study
proposes an improved MEI-YOLOv11 model. By introducing MANet, EUCB module, and Inner-SIOU loss
function, the ability to extract features and recognize small targets in complex environments is enhanced. The
results showed that the mAPO.5, P, and R of the model reached 97.0%, 94.2%, and 95.7%, respectively, which
were 2.8, 2.7, and 2.4 percentage points higher than YOLOv11, respectively. The parameter count and
inference time only increased by 1.28 M and 0.4 ms, respectively, and the detection accuracy was better than
other detection models. The accuracy of multi weather counting is above 90%, with the highest accuracy of
91.23% on sunny days (RMSE=4.5044, R ?=0.8508). This method can effectively identify corn seedlings in
complex backgrounds, providing technical support for accurate detection and counting of corn seedlings in
multiple weather conditions.
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INTRODUCTION

The emergence of corn seedlings is one of the key factors affecting corn yield. Accurate detection of
corn seedlings can accurately obtain their emergence status, providing a basis for subsequent evaluation of
sowing quality, field water and fertilizer management, and replanting of missing seedlings (Ma et al., 2014).
Traditional seedling counting and detection equipment mainly relies on ground mobile platforms, which have
problems such as single device functions and low operating efficiency, making it difficult to meet the needs of
modern crop information collection fields (Jia et al., 2015). In recent years, unmanned aerial vehicle remote
sensing platforms have been in a rapid development stage. Compared with traditional satellite remote sensing,
it has the advantages of strong timeliness, high spatial resolution, and low equipment operating costs (Liu et
al., 2024).

Early studies mostly employed machine vision and image processing methods for seedling counting,
mainly based on crop phenotypic characteristics (Lu et al., 2025), vegetation color information (Bryson et al.,
2010), and morphological features (Han et al., 2021), etc., combined with morphological operations for image
segmentation. This type of method is easily affected by factors such as terrain, climate, shooting tools and
crop spacing, and requires manual input of features.
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In complex environments, the recognition accuracy is difficult to guarantee. Gnadinger et al. (2017)
used the HSV model to detect ground coverage and combined it with a de-stretching contrast enhancement
program to achieve the statistics of corn plant numbers, but it was easily affected by weeds and the growth
period of crops. Varela et al. (2018) achieved an accuracy rate of 93.0% using super-green segmentation of
decision trees, but the computational cost was very high.

With the rapid development of deep learning, the combination of UAVs and object detection algorithms
can quickly, efficiently and accurately identify and count seedlings, gradually replacing traditional machine
vision methods. Shahid et al. proposed three tobacco counting methods. Among them, the average F1 score
of the YOLOv7 combined with the SORT tracking algorithm reached 96.7%, showing potential for real-time
application, but its performance declined when there were too many weeds (Shahid et al., 2024). Vong et al.
estimated the number of corn plants in the V2 period based on the U-Net network. The determination coefficient
was the best in the minimum tillage corn-soybean rotation, which was 0.95 (Vong et al., 2021). Sun et al. used
RC-Dino to detect early corn seedlings, with a recall rate of 0.779 and an average accuracy of 0.714 (Sun et
al., 2025). Barreto et al. utilized a fully convolutional network (FCN) to achieve corn counting, with a prediction
error of less than 4%, but it was susceptible to interference from crop spacing and growth stages (Barreto et
al., 2021). Zhang et al. proposed a FE-YOLO model based on feature enhancement. The detection mAP of
corn seedlings reached 87.22%, but the robustness improvement against weed and environmental noise
interference was limited (Zhang et al., 2021).

In summary, although corn seedling recognition based on drones and deep learning has the
advantages of high accuracy and good real-time performance, corn seedling detection still faces challenges
such as small target size, susceptibility to weed and straw background interference, and difficulty in feature
extraction. In addition, there is a lack of seedling counting under multiple weather conditions. In response to
the above issues, this article proposes the MEI-YOLOv11 corn seedling detection and counting model. The
YOLOv11 architecture is enhanced in three aspects: the backbone, the neck, and the loss function. Specifically,
the MANet module is integrated into the backbone network, the sampling strategy in the neck network is
replaced with the EUCB module, and Inner-loU is adopted as the loss function. Images of corn seedlings at
the V3 growth stage were collected using an unmanned aerial vehicle, and an all-weather dataset was
constructed through data augmentation. The result is a model capable of accurate detection and counting of
corn seedlings under diverse weather conditions.

MATERIALS AND METHODS
Data Acquisition and Pre-processing

The experimental site of this study was located in the experimental field of Jianshan Farm, Heilongjiang
Province, and the previous crop was soybeans. On June 4, 2024, the DJI Mavic 3M Multispectral Edition drone
was used to obtain field image information of corn seedlings during the V3 stage. During the shooting, the wind
speed did not exceed level 3, the row overlap was set at 80%, the side overlap was set at 70%, the flight
altitude was set at 12 meters, and the ground sampling distance was 0.56 pixels/cm. Seedling data were
collected along the "S" -shaped flight path. The shooting mode was equidistant fixed-point hovering, and 884
images were collected. The data collection of corn in the experimental area is shown in Fig. 1.
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Fig. 1 - Corn data collection diagram in the experimental area
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Considering the relatively large size of the collected single image and the dense distribution of
seedlings, the pixel area occupied by each seedling in the image is relatively small. Therefore, the original
images (5280 x 3956 pixels) were cropped into patches of 640 x 640 pixels. Images that were blurred,
overexposed, or distorted were removed. A total of 1,000 images were randomly selected to construct the
dataset. The images were annotated using Labellmg in YOLO format, with all corn seedlings labeled as the
category “seedling. In order to further enhance the robustness and generalization ability of the model under
complex weather conditions, four weather conditions - cloudy, foggy, rainy, and sandstorm - were simulated
before training data augmentation. The dataset has been expanded to 5000 images. Randomly divide 5000
image data into training set, validation set, and test set in a ratio of 7:2:1, with corresponding quantities of
3500, 1000, and 500, respectively. The Expansion of Corn Seeding Dataset is shown in Fig. 2.
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Fig. 2 - Expansion of Corn Seedling Dataset

Improved YOLOv11 model

Aiming at the problem of poor detection effect of YOLOv11 due to the small volume of corn seedlings,
numerous weed interferences and complex straw distribution, this study selects the lightweight YOLOv11n as
the benchmark model for improvement. The improved MEI-YOLOv11 model is mainly optimized from three
aspects: the backbone network, the neck network and the loss function. The network structure of MEI-
YOLOv11 is shown in Fig. 3.
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Fig. 3 - MEI-YOLOv11 Network Structure

In the backbone and neck networks, several C3k2 modules were replaced with MANet modules to
enhance feature extraction capability. In addition, the sampling strategy in the neck was upgraded to the EUCB
module, improving the representation of fine-grained features associated with small seedlings. The Inner-SloU
loss function was employed in place of CloU, enabling more effective discrimination between seedlings and
visually similar weeds by leveraging subtle morphological differences. Together, these modifications
substantially improve the detection accuracy of corn seedlings in complex field environments.
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MANet module

In the detection of corn seedlings, when the seedlings are in a complex environment formed by the
random distribution of straw, the YOLOv11 network may fail to accurately identify the position of the seedlings,
thereby resulting in a decrease in detection accuracy. Thus, a hybrid aggregation network (MANet) was
proposed (Feng et al., 2024).

The network first extracted fundamental features using the YOLO backbone, and then recalibrated the
channels through a 1x1 convolution to emphasize key representations. Depthwise separable convolution was
introduced to enable efficient multi-scale spatial feature encoding. In addition, the C2f module was integrated
to facilitate cross-stage connections and feature feedback, thereby fusing low-level detail with high-level
semantic information. These enhancements collectively improved feature richness and the detection accuracy
for corn seedlings. The architecture of the MANet module is shown in Fig. 4.
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Fig. 4 - MANet module

EUCB module

To preserve the edge detail information of small-volume corn seedlings during upsampling, an efficient
upsampling convolutional block (EUCB) was introduced (Rahman et al., 2024). A 2x upsampling operation
was performed on the input seedling feature map to enlarge the feature scale, after which the features were
processed using depthwise separable convolution (DWC) with batch normalization and ReLU activation.
Finally, a 1x1 convolution was applied to adjust the channel dimension so that the upsampled feature map
was compatible with the number of channels in the subsequent stages. This approach further enhanced the
feature representation of small-sized seedlings while maintaining a relatively low computational cost. The
network structure of the EUCB module is shown in Fig. 5.
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Fig. 5 - EUCB module

Inner-SloU loss function

When corn seedlings were located within weed-dense environments, the model exhibited limited self-
adaptive regulation and generalization ability. To address this issue, the original CloU loss was replaced with
the Inner-SloU loss. By incorporating the angular difference between the predicted bounding box and the target
box, the bounding box localization was further optimized, thereby improving the detection accuracy of
seedlings. The structure of the Inner-SloU loss function is shown in Fig. 6.
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Fig. 6 - Inner-SIOU loss function

The Inner-SloU loss function introduced a dynamic auxiliary bounding box mechanism based on SloU
(Zhang et al., 2023). For samples with high loU, smaller auxiliary boxes were employed to achieve fine-grained
adjustment, whereas for samples with low loU, larger auxiliary boxes were used to expand the correction
range. This scale-adaptive strategy significantly improved both the regression accuracy and the generalization
capability of the detection bounding boxes. The calculation formula is as follows:
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where: b¥ represents the target box and b represents the anchor box. The target box and the center point
inside the target box are represented by (xft,yg"t). (x.,y.) represents the anchor box and the center point
inside the anchor box. The width and height of the target box are represented as w* and A%, respectively,

while the width and height of the anchor box are represented as w and 4, respectively.

Experimental setup

The software configuration for experimental training and testing is based on the deep learning
framework PyTorch 2.0.1, developed in Window11 (64 bit), with Python version 3.9 and CUDA version 11.8,
respectively. The hardware configuration is Intel (R) Core (TM) i7-14650HX CPU, NVIDIA GeForce RTX 4060
GPU, 16GB of memory. The iteration count is set to 100, the batch size is 16, the learning rate is 0.01, and the
optimizer uses stochastic gradient descent algorithm (SGD).
Evaluation Metrics

To evaluate the detection performance of corn seedlings, the following evaluation criteria were
selected: precision (P), recall rate (R), F1 score and mean precision (mAP0.5) were used to assess the
accuracy of the detection model. The speed and efficiency of the model are evaluated by inference time
(Reasoning time), floating-point operation volume (FLOPs), and the number of parameters (Params).

The corn seedling counting model was evaluated using the coefficient of determination ( R ), root mean
square error (RMSE), and corn seedling counting accuracy ( P, ). These indicators were selected based on the

research on crop seedling counting by Wang et al., (2025), Xue et al., (2024), Liu et al., (2021) etc. R?
represents the explanatory power of model detection on observed data variation, with a range of 0 to 1.
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The closer the R? value is to 1, the better the model fitting performance. RMSE is a key indicator for evaluating
the prediction accuracy of a model, where a lower RMSE indicates higher accuracy and more stable model
performance. P; represents the comparison between the model’'s seedling count and the actual number of
seedlings in the image, and is used to calculate the counting accuracy. The calculation formulas are as follows:

n

NG

R2=1- (€))
RMSE = (10)
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P={1-2 i 100% (11)
t m.
1

where:
m; is the number of artificially labeled corn seedlings in the i-th image,

;j is the average number of artificially labeled corn seedlings in the i-th image,
p; is the predicted number of corn seedlings by the model, and n is the number of tested images.

RESULTS
Comparative experiments of different models

To further verify the effectiveness of the improved MEI-YOLOv11 model in corn seedling detection,
comparative experiments were conducted against several advanced mainstream object detection models
using the same training dataset. The comparison included YOLOv5, YOLOvS8, YOLOV9, YOLOv10, YOLOv11,
YOLOv12, RT-DETR, and the proposed MEI-YOLOv11 model. The experimental results for the different
models are presented in Table 1. A comparison of the comprehensive performance indicators is shown in Fig.
7, where each curve corresponds to one model. The closer the vertex of a curve lies to the outer boundary of
the coordinate system, the better the model’s performance on that metric. Additionally, a larger enclosed area
indicates stronger overall performance.

It can be seen from Table 1 that the mAPO0.5, P, R and F1 of the MEI-YOLOv11 model are all superior
to other models in detection accuracy, reaching 97.0%, 94.2%, 95.7% and 95.0% respectively. In terms of
inference time, it outperforms the YOLOvS5 and RTDETR models. In terms of computational load, although it
is 2 to 3G and 1 to 2M higher than other YOLO models, it is 91.8 G and 24.57 M lower than the RTDETR
model.

Table 1
Comparison test results of different models
Model P[%] R[%] F1[%] mAP0.5[%] FLOPs[G] Params [M] Reasoning time[ms]
YOLOv5 91.2 93.2 92.0 94.0 5.8 2.18 3.2
YOLOv8 91.2 93.5 92.0 941 6.8 2.68 2.4
YOLOvV9 91.1 93.5 92.0 93.9 6.4 1.73 2.7
YOLOv10 88.4 89.1 89.0 92.2 6.5 2.27 1.7
YOLOv11 91.5 93.3 92.0 94.2 6.3 2.58 2.5
YOLOv12 91.1 93.3 92.0 94.0 6.3 2.54 2.9
RTDETR 86.4 91.1 89.0 90.3 100.6 28.46 4.9
MEI-YOLOv11 94.2 95.7 95.0 97.0 8.8 3.86 2.9

The comprehensive performance comparison between the MEI-YOLOv11 model and other models is
shown in Fig. 7. At the cost of a slight increase in computational load, the detection accuracy is significantly
improved while maintaining real-time performance. Comprehensive comparison shows that this model has
both the best detection performance and real-time processing capability, and thus has been selected as the
final model for corn seedling detection and counting.
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Ablation experiments

To verify the effectiveness of each improved module in the MEI-YOLOv11 model in the detection of
corn seedlings, ablation experiments were conducted for different improved modules, and the results are
shown in Table 2. A module model was randomly added. Through multi-scale feature fusion, the MANet module
increased P by 1.2%, R by 0.9%, mAP0.5 by 1.1%, and the number of parameters and reasoning time
increased by 1.17 M and 0.9 ms respectively, effectively alleviating the interference of complex backgrounds.
The EUCB module enhanced the extraction of detailed features. The mAP0.5 was improved by 0.9%, the
number of parameters was increased by 0.09 M, and the inference time was shortened by 0.1 ms
simultaneously. The Inner-SloU loss function increased mAPO0.5 by 0.8% without increasing the number of
parameters and effectively solved the problem of category confusion between weeds and seedlings. Then, two
modules were randomly added, and their model P, recall rate R, and mAPO0.5 were all higher than those of
adding one module. Finally, three modules were added. The MEI-YOLOv11 model demonstrated a stronger
detection effect. Compared with the original YOLOv11, P increased by 2.7 percentage points to 94.2%, R
increased by 2.4 percentage points to 95.7%, and mAPO.5 increased by 2.8 percentage points to 97.0%. Only
1.28 M of parameters and 0.4 ms of reasoning time were added, effectively overcoming the interference of
weeds and straw and the difficulty in detecting small-sized seedlings, providing technical support for the precise
counting of corn seedlings.

Table 2
Results of ablation experiments
Model MANet EUCB Inner-SloU P[%] R[%] mAP0.5[%] Params[M] Reasoning time[ms]

YOLOv11 - - - 91.5 933 94.2 2.58 25
M-YOLOv11 v - - 92.7 94.2 95.3 3.77 34
E-YOLOv11 - v - 92.2 94.0 95.1 2.67 2.4
[-YOLOv11 - - v 92.3 93.9 95.0 2.58 2.4
ME-YOLOv11 v v - 934 946 96.1 3.86 29
MI-YOLOv11 v - v 932 944 95.7 3.77 3.2
EI-YOLOv11 - v v 926 94.6 95.4 2.67 3.1
MEI-YOLOv11 v v v 94.2 957 97.0 3.86 29

Note: v indicates that the module is used; - indicates that the module is not used

Visualization analysis of heat map

Grad-CAM is a method used to interpret the decision-making process of convolutional neural networks
(CNNS), which utilizes gradient information to locate the key regions in the image and thereby generate
visualized images (Selvaraju et al., 2017). Through the visualization analysis of Grad-CAM, it was found that
the attention distribution of the original YOLOv11 model to corn seedlings was relatively scattered under
different weather conditions, and there was obvious background interference of straw and weeds. The
improved MEI-YOLOv11 model shows a more concentrated and extensive deep red heatmap area, indicating
a high level of attention to the corn seedling area in the image. The results are shown in Fig. 8. The model can
accurately identify seedlings and has high robustness and adaptability for the detection of corn seedlings in
different weather conditions.

449



Vol. 77, No. 3/ 2025

Original
drawing

P L

k,,»~..4\'xt/-~-"~

YOLOvV11

A e L A i

MEI-YOLOv11

Sunny Cloudy

R A D L

.;.;o\t‘t\-‘

Snos Payerpi s

TR LAt

PRt P AL DAL

cBon@ bt ssawe

oo du o daste

wd 8o esnsmb

Foggy

INMATEH - Agricultural Engineering

g wamuweyh g

.;-.a‘amecvv-‘-‘

“"“,.'rl LS

EIPTS R TRttt

Rainy

e Ll LA

ppm s i bbamt

N Pegevpid s

h e gen ool g

s=oug=ags e

b & oo w80 sga=9

tne fege ol e

L =8 ¢ po wono=d ]

Sandstorm

Fig. 8 - Visualization results of YOLOv11 model heatmap before and after improvement

Corn seedling counting experiment

To test the counting accuracy of the MEI-YOLOv11 model for corn seedlings under different weather
conditions, the corn seedlings in five weather images were detected. The comparison results of the counting
accuracy of the model before and after improvement are shown in Table 3. The multi weather linear fitting
results of the model before and after improvement are shown in Fig. 9. The multi weather detection results of
the model before and after improvement are shown in Fig. 10.

According to Table 3, the MEI-YOLOv11 model exhibits significant improvement in counting
performance under different weather conditions. The highest accuracy of 91.23% was achieved in a sunny
environment, which is 2.73 percentage points higher than the model. In cloudy, foggy, rainy, and sandstorm
environments, the increase was 2.57, 3.02, 2.57, and 2.59 percentage points, respectively.

Comparison of Counting Accuracy of Models Before and After Improvement Table 3

Accuracy of counting corn seedlings (%)

Weather YOLOv11 model MEI-YOLOv11 model
Sunny 88.50 91.23
Cloudy 88.28 90.85
Foggy 87.95 90.97
Rainy 88.21 90.78
Sandstorm 88.16 90.75

From Figure 9, it can be seen that the MEI-YOLOv11 model outperforms the original model in
predicting seedling accuracy and fitting performance under all weather conditions. The root mean square error
is the lowest in sunny environments, and the accuracy of predicting corn seedlings is the highest. However, its
fitting performance is only better than sandy and dusty environments, lower than the other three environments,
but the difference is small, indicating that the MEI-YOLOv11 model is suitable for various weather environments

and can meet the precise detection and counting of corn seedlings.
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Fig. 10 visually shows that the MEI-YOLOv11 model performs the best in corn seedling detection and
counting tasks, accurately detecting corn seedlings and counting their plant numbers. The detection box is
closest to the true value, and the probability of missed or false positives is relatively low. This indicates that
the model not only has the best detection accuracy, but also exhibits stronger environmental adaptability and
generalization ability, fully verifying the effectiveness of the improved scheme.

Original
drawing

YOLOv11

MEI-
YOLOv11

Al iy
T s g A AL

Rainy | Sandstorm .

Snny . Cloudy

Fig. 10 - Multiple weather detection results before and after improvement of the model

CONCLUSIONS

Aiming at the problems that the detection and counting of traditional corn seedlings are easily affected
by the complex field environment and rely on artificial features, a detection and counting method for corn
seedlings based on the MEI-YOLOv11 model is proposed.

(1) Images of corn seedlings in sunny conditions were collected by using unmanned aerial vehicles
(UAVs), and an all-weather dataset was constructed through data augmentation.

(2) Different detection models were compared, and YOLOv11 with better performance was selected
as the benchmark model. To further improve the accuracy of the model's detection count, the MANet module
was introduced into the backbone and neck networks. Sampling on the neck network was replaced by the
EUCB module, and the Inner-SloU loss function was replaced by the original CloU loss.

(3) Compared with the original model, the mAP50, P and R of the MEI-YOLOv11 model have increased
by 2.8, 2.7 and 2.4 percentage points respectively. Although the computational load has slightly increased, the
difference is not significant, and the shorter reasoning time meets the real-time requirements of the detection.
The detection accuracy is superior to other detection models, and the overall performance is better.

(4) Under multiple weather conditions, the counting accuracy of corn seedlings is above 90%. Among
them, the counting accuracy on sunny days is the highest, reaching 91.23%, and the root mean square error
is the lowest, only 4.5044. The coefficient of determination is 0.8508, which is 0.01679 less than that in foggy
environments. The differences are very small, and it can achieve the detection and counting of corn seedlings
in all-weather environments, which has broad application prospects and significant practical value.

Overall, the MEI-YOLOv11 model can reduce the missed detection and false detection of corn
seedlings in complex field environments such as straw and weeds, and has high accuracy and robustness. It
can simultaneously achieve detection and counting in various weather conditions, and has strong practicality.
Furthermore, the limitation of the model lies in the fact that the computational load has increased by 1.28 M
compared to the original model, and the training data comes from specific regions and corn varieties. In the
future, data on corn seedlings of different varieties selected from various regions will be collected for
experiments. Lightweight technologies such as knowledge distillation, pruning or quantization will be adopted
to reduce computational complexity while ensuring accuracy, making it more suitable for deployment on edge
devices with limited computing power.
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