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ABSTRACT 

Accurately counting the number of corn seedlings is the key to evaluating the growth status of corn. To address 

the problem of difficult detection and counting of corn seedlings in complex field environments, this study 

proposes an improved MEI-YOLOv11 model. By introducing MANet, EUCB module, and Inner-SIOU loss 

function, the ability to extract features and recognize small targets in complex environments is enhanced. The 

results showed that the mAP0.5, P, and R of the model reached 97.0%, 94.2%, and 95.7%, respectively, which 

were 2.8, 2.7, and 2.4 percentage points higher than YOLOv11, respectively. The parameter count and 

inference time only increased by 1.28 M and 0.4 ms, respectively, and the detection accuracy was better than 

other detection models. The accuracy of multi weather counting is above 90%, with the highest accuracy of 

91.23% on sunny days (RMSE=4.5044, R ²=0.8508). This method can effectively identify corn seedlings in 

complex backgrounds, providing technical support for accurate detection and counting of corn seedlings in 

multiple weather conditions. 

 

摘要 

准确统计玉米苗数是评估玉米生长状况的关键，本研究为应对复杂田间环境玉米幼苗检测计数难的问题，提出

改进 MEI-YOLOv11 模型。通过引入 MANet、EUCB 模块及 Inner-SIoU 损失函数，增强复杂环境下特征提取

与小目标识别能力。结果表明，该模型的 mAP0.5、P 和 R 分别达到 97.0%、94.2%和 95.7%，分别比

YOLOv11提高 2.8、2.7和 2.4个百分点。参数量和推理时间分别只增加了 1.28M和 0.4ms，检测精度优于其

他检测模型。多天气计数准确率均在 90%以上，晴天准确率最高，为 91.23% （RMSE=4.5044, R²=0.8508）。

该方法能够有效识别复杂背景下玉米幼苗，为多天气玉米幼苗准确检测计数提供技术支持。 

 

INTRODUCTION 

 The emergence of corn seedlings is one of the key factors affecting corn yield. Accurate detection of 

corn seedlings can accurately obtain their emergence status, providing a basis for subsequent evaluation of 

sowing quality, field water and fertilizer management, and replanting of missing seedlings (Ma et al., 2014). 

Traditional seedling counting and detection equipment mainly relies on ground mobile platforms, which have 

problems such as single device functions and low operating efficiency, making it difficult to meet the needs of 

modern crop information collection fields (Jia et al., 2015). In recent years, unmanned aerial vehicle remote 

sensing platforms have been in a rapid development stage. Compared with traditional satellite remote sensing, 

it has the advantages of strong timeliness, high spatial resolution, and low equipment operating costs (Liu et 

al., 2024). 

 Early studies mostly employed machine vision and image processing methods for seedling counting, 

mainly based on crop phenotypic characteristics (Lu et al., 2025), vegetation color information (Bryson et al., 

2010), and morphological features (Han et al., 2021), etc., combined with morphological operations for image 

segmentation. This type of method is easily affected by factors such as terrain, climate, shooting tools and 

crop spacing, and requires manual input of features.  
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 In complex environments, the recognition accuracy is difficult to guarantee. Gnadinger et al. (2017) 

used the HSV model to detect ground coverage and combined it with a de-stretching contrast enhancement 

program to achieve the statistics of corn plant numbers, but it was easily affected by weeds and the growth 

period of crops. Varela et al. (2018) achieved an accuracy rate of 93.0% using super-green segmentation of 

decision trees, but the computational cost was very high. 

 With the rapid development of deep learning, the combination of UAVs and object detection algorithms 

can quickly, efficiently and accurately identify and count seedlings, gradually replacing traditional machine 

vision methods. Shahid et al. proposed three tobacco counting methods. Among them, the average F1 score 

of the YOLOv7 combined with the SORT tracking algorithm reached 96.7%, showing potential for real-time 

application, but its performance declined when there were too many weeds (Shahid et al., 2024). Vong et al. 

estimated the number of corn plants in the V2 period based on the U-Net network. The determination coefficient 

was the best in the minimum tillage corn-soybean rotation, which was 0.95 (Vong et al., 2021). Sun et al. used 

RC-Dino to detect early corn seedlings, with a recall rate of 0.779 and an average accuracy of 0.714 (Sun et 

al., 2025). Barreto et al. utilized a fully convolutional network (FCN) to achieve corn counting, with a prediction 

error of less than 4%, but it was susceptible to interference from crop spacing and growth stages (Barreto et 

al., 2021). Zhang et al. proposed a FE-YOLO model based on feature enhancement. The detection mAP of 

corn seedlings reached 87.22%, but the robustness improvement against weed and environmental noise 

interference was limited (Zhang et al., 2021). 

 In summary, although corn seedling recognition based on drones and deep learning has the 

advantages of high accuracy and good real-time performance, corn seedling detection still faces challenges 

such as small target size, susceptibility to weed and straw background interference, and difficulty in feature 

extraction. In addition, there is a lack of seedling counting under multiple weather conditions. In response to 

the above issues, this article proposes the MEI-YOLOv11 corn seedling detection and counting model. The 

YOLOv11 architecture is enhanced in three aspects: the backbone, the neck, and the loss function. Specifically, 

the MANet module is integrated into the backbone network, the sampling strategy in the neck network is 

replaced with the EUCB module, and Inner-IoU is adopted as the loss function. Images of corn seedlings at 

the V3 growth stage were collected using an unmanned aerial vehicle, and an all-weather dataset was 

constructed through data augmentation. The result is a model capable of accurate detection and counting of 

corn seedlings under diverse weather conditions. 

 

MATERIALS AND METHODS 

Data Acquisition and Pre-processing 

 The experimental site of this study was located in the experimental field of Jianshan Farm, Heilongjiang 

Province, and the previous crop was soybeans. On June 4, 2024, the DJI Mavic 3M Multispectral Edition drone 

was used to obtain field image information of corn seedlings during the V3 stage. During the shooting, the wind 

speed did not exceed level 3, the row overlap was set at 80%, the side overlap was set at 70%, the flight 

altitude was set at 12 meters, and the ground sampling distance was 0.56 pixels/cm. Seedling data were 

collected along the "S" -shaped flight path. The shooting mode was equidistant fixed-point hovering, and 884 

images were collected. The data collection of corn in the experimental area is shown in Fig. 1. 

 

 

 

 

Fig. 1 - Corn data collection diagram in the experimental area 
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 Considering the relatively large size of the collected single image and the dense distribution of 

seedlings, the pixel area occupied by each seedling in the image is relatively small. Therefore, the original 

images (5280 × 3956 pixels) were cropped into patches of 640 × 640 pixels. Images that were blurred, 

overexposed, or distorted were removed. A total of 1,000 images were randomly selected to construct the 

dataset. The images were annotated using LabelImg in YOLO format, with all corn seedlings labeled as the 

category “seedling. In order to further enhance the robustness and generalization ability of the model under 

complex weather conditions, four weather conditions - cloudy, foggy, rainy, and sandstorm - were simulated 

before training data augmentation. The dataset has been expanded to 5000 images. Randomly divide 5000 

image data into training set, validation set, and test set in a ratio of 7:2:1, with corresponding quantities of 

3500, 1000, and 500, respectively. The Expansion of Corn Seeding Dataset is shown in Fig. 2. 

 

 

(a) Sunny 

    
(b) Cloudy (c) Foggy (d) Rainy (e) Sandstorm 

Fig. 2 - Expansion of Corn Seedling Dataset 

 

Improved YOLOv11 model 

 Aiming at the problem of poor detection effect of YOLOv11 due to the small volume of corn seedlings, 

numerous weed interferences and complex straw distribution, this study selects the lightweight YOLOv11n as 

the benchmark model for improvement. The improved MEI-YOLOv11 model is mainly optimized from three 

aspects: the backbone network, the neck network and the loss function. The network structure of MEI-

YOLOv11 is shown in Fig. 3. 

 

Fig. 3 - MEI-YOLOv11 Network Structure 

 

 In the backbone and neck networks, several C3k2 modules were replaced with MANet modules to 

enhance feature extraction capability. In addition, the sampling strategy in the neck was upgraded to the EUCB 

module, improving the representation of fine-grained features associated with small seedlings. The Inner-SIoU 

loss function was employed in place of CIoU, enabling more effective discrimination between seedlings and 

visually similar weeds by leveraging subtle morphological differences. Together, these modifications 

substantially improve the detection accuracy of corn seedlings in complex field environments. 
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MANet module 

 In the detection of corn seedlings, when the seedlings are in a complex environment formed by the 

random distribution of straw, the YOLOv11 network may fail to accurately identify the position of the seedlings, 

thereby resulting in a decrease in detection accuracy. Thus, a hybrid aggregation network (MANet) was 

proposed (Feng et al., 2024).  

The network first extracted fundamental features using the YOLO backbone, and then recalibrated the 

channels through a 1×1 convolution to emphasize key representations. Depthwise separable convolution was 

introduced to enable efficient multi-scale spatial feature encoding. In addition, the C2f module was integrated 

to facilitate cross-stage connections and feature feedback, thereby fusing low-level detail with high-level 

semantic information. These enhancements collectively improved feature richness and the detection accuracy 

for corn seedlings. The architecture of the MANet module is shown in Fig. 4. 

 

 

Fig. 4 - MANet module 

 

EUCB module 

 To preserve the edge detail information of small-volume corn seedlings during upsampling, an efficient 

upsampling convolutional block (EUCB) was introduced (Rahman et al., 2024). A 2× upsampling operation 

was performed on the input seedling feature map to enlarge the feature scale, after which the features were 

processed using depthwise separable convolution (DWC) with batch normalization and ReLU activation. 

Finally, a 1×1 convolution was applied to adjust the channel dimension so that the upsampled feature map 

was compatible with the number of channels in the subsequent stages. This approach further enhanced the 

feature representation of small-sized seedlings while maintaining a relatively low computational cost. The 

network structure of the EUCB module is shown in Fig. 5. 

 

 

Fig. 5 - EUCB module 

 

Inner-SIoU loss function 

 When corn seedlings were located within weed-dense environments, the model exhibited limited self-

adaptive regulation and generalization ability. To address this issue, the original CIoU loss was replaced with 

the Inner-SIoU loss. By incorporating the angular difference between the predicted bounding box and the target 

box, the bounding box localization was further optimized, thereby improving the detection accuracy of 

seedlings. The structure of the Inner-SIoU loss function is shown in Fig. 6. 
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Fig. 6 - Inner-SIOU loss function 
 

 The Inner-SIoU loss function introduced a dynamic auxiliary bounding box mechanism based on SIoU 

(Zhang et al., 2023). For samples with high IoU, smaller auxiliary boxes were employed to achieve fine-grained 

adjustment, whereas for samples with low IoU, larger auxiliary boxes were used to expand the correction 

range. This scale-adaptive strategy significantly improved both the regression accuracy and the generalization 

capability of the detection bounding boxes. The calculation formula is as follows: 
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where:  gtb represents the target box and b represents the anchor box. The target box and the center point 

inside the target box are represented by (𝑥𝑐
𝑔𝑡

, 𝑦𝑐
𝑔𝑡

). (𝑥𝑐 , 𝑦𝑐) represents the anchor box and the center point 

inside the anchor box. The width and height of the target box are represented as gtw  and gth , respectively, 

while the width and height of the anchor box are represented as w and h, respectively.  

Experimental setup 

 The software configuration for experimental training and testing is based on the deep learning 

framework PyTorch 2.0.1, developed in Window11 (64 bit), with Python version 3.9 and CUDA version 11.8, 

respectively. The hardware configuration is Intel (R) Core (TM) i7-14650HX CPU, NVIDIA GeForce RTX 4060 

GPU, 16GB of memory. The iteration count is set to 100, the batch size is 16, the learning rate is 0.01, and the 

optimizer uses stochastic gradient descent algorithm (SGD). 

Evaluation Metrics 

 To evaluate the detection performance of corn seedlings, the following evaluation criteria were 

selected: precision (P), recall rate (R), F1 score and mean precision (mAP0.5) were used to assess the 

accuracy of the detection model. The speed and efficiency of the model are evaluated by inference time 

(Reasoning time), floating-point operation volume (FLOPs), and the number of parameters (Params). 

 The corn seedling counting model was evaluated using the coefficient of determination ( 2R ), root mean 

square error (RMSE), and corn seedling counting accuracy ( tP ). These indicators were selected based on the 

research on crop seedling counting by Wang et al., (2025), Xue et al., (2024), Liu et al., (2021) etc. 𝑅2 

represents the explanatory power of model detection on observed data variation, with a range of 0 to 1.  
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The closer the 𝑅2 value is to 1, the better the model fitting performance. RMSE is a key indicator for evaluating 

the prediction accuracy of a model, where a lower RMSE indicates higher accuracy and more stable model 

performance. 𝑃t represents the comparison between the model’s seedling count and the actual number of 

seedlings in the image, and is used to calculate the counting accuracy. The calculation formulas are as follows: 
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where:  

 im  is the number of artificially labeled corn seedlings in the i-th image,  

 im  is the average number of artificially labeled corn seedlings in the i-th image, 

 ip  is the predicted number of corn seedlings by the model, and n is the number of tested images.  

 

RESULTS 

Comparative experiments of different models 

 To further verify the effectiveness of the improved MEI-YOLOv11 model in corn seedling detection, 

comparative experiments were conducted against several advanced mainstream object detection models 

using the same training dataset. The comparison included YOLOv5, YOLOv8, YOLOv9, YOLOv10, YOLOv11, 

YOLOv12, RT-DETR, and the proposed MEI-YOLOv11 model. The experimental results for the different 

models are presented in Table 1. A comparison of the comprehensive performance indicators is shown in Fig. 

7, where each curve corresponds to one model. The closer the vertex of a curve lies to the outer boundary of 

the coordinate system, the better the model’s performance on that metric. Additionally, a larger enclosed area 

indicates stronger overall performance. 

 It can be seen from Table 1 that the mAP0.5, P, R and F1 of the MEI-YOLOv11 model are all superior 

to other models in detection accuracy, reaching 97.0%, 94.2%, 95.7% and 95.0% respectively. In terms of 

inference time, it outperforms the YOLOv5 and RTDETR models. In terms of computational load, although it 

is 2 to 3G and 1 to 2M higher than other YOLO models, it is 91.8 G and 24.57 M lower than the RTDETR 

model. 

Table 1 

Comparison test results of different models 

Model P[%] R[%] F1[%] mAP0.5[%] FLOPs[G] Params [M] Reasoning time[ms] 

YOLOv5 91.2 93.2 92.0 94.0 5.8 2.18 3.2 

YOLOv8 91.2 93.5 92.0 94.1 6.8 2.68 2.4 

YOLOv9 91.1 93.5 92.0 93.9 6.4 1.73 2.7 

YOLOv10 88.4 89.1 89.0 92.2 6.5 2.27 1.7 

YOLOv11 91.5 93.3 92.0 94.2 6.3 2.58 2.5 

YOLOv12 91.1 93.3 92.0 94.0 6.3 2.54 2.9 

RTDETR 86.4 91.1 89.0 90.3 100.6 28.46 4.9 

MEI-YOLOv11 94.2 95.7 95.0 97.0 8.8 3.86 2.9 

 

 

 The comprehensive performance comparison between the MEI-YOLOv11 model and other models is 

shown in Fig. 7. At the cost of a slight increase in computational load, the detection accuracy is significantly 

improved while maintaining real-time performance. Comprehensive comparison shows that this model has 

both the best detection performance and real-time processing capability, and thus has been selected as the 

final model for corn seedling detection and counting. 
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Fig. 7 - Performance Comparison Results of Different Models 

 

Ablation experiments 

 To verify the effectiveness of each improved module in the MEI-YOLOv11 model in the detection of 

corn seedlings, ablation experiments were conducted for different improved modules, and the results are 

shown in Table 2. A module model was randomly added. Through multi-scale feature fusion, the MANet module 

increased P by 1.2%, R by 0.9%, mAP0.5 by 1.1%, and the number of parameters and reasoning time 

increased by 1.17 M and 0.9 ms respectively, effectively alleviating the interference of complex backgrounds. 

The EUCB module enhanced the extraction of detailed features. The mAP0.5 was improved by 0.9%, the 

number of parameters was increased by 0.09 M, and the inference time was shortened by 0.1 ms 

simultaneously. The Inner-SIoU loss function increased mAP0.5 by 0.8% without increasing the number of 

parameters and effectively solved the problem of category confusion between weeds and seedlings. Then, two 

modules were randomly added, and their model P, recall rate R, and mAP0.5 were all higher than those of 

adding one module. Finally, three modules were added. The MEI-YOLOv11 model demonstrated a stronger 

detection effect. Compared with the original YOLOv11, P increased by 2.7 percentage points to 94.2%, R 

increased by 2.4 percentage points to 95.7%, and mAP0.5 increased by 2.8 percentage points to 97.0%. Only 

1.28 M of parameters and 0.4 ms of reasoning time were added, effectively overcoming the interference of 

weeds and straw and the difficulty in detecting small-sized seedlings, providing technical support for the precise 

counting of corn seedlings. 

Table 2 

Results of ablation experiments 

Model MANet EUCB Inner-SIoU P[%] R[%] mAP0.5[%] Params [M] Reasoning time[ms] 

YOLOv11 - - - 91.5 93.3 94.2 2.58 2.5 

M-YOLOv11 ✓ - - 92.7 94.2 95.3 3.77 3.4 

E-YOLOv11 - ✓ - 92.2 94.0 95.1 2.67 2.4 

I-YOLOv11 - - ✓ 92.3 93.9 95.0 2.58 2.4 

ME-YOLOv11 ✓ ✓ - 93.4 94.6 96.1 3.86 2.9 

MI-YOLOv11 ✓ - ✓ 93.2 94.4 95.7 3.77 3.2 

EI-YOLOv11 - ✓ ✓ 92.6 94.6 95.4 2.67 3.1 

MEI-YOLOv11 ✓ ✓ ✓ 94.2 95.7 97.0 3.86 2.9 

Note: ✓ indicates that the module is used; - indicates that the module is not used 

 

Visualization analysis of heat map 

 Grad-CAM is a method used to interpret the decision-making process of convolutional neural networks 

(CNNS), which utilizes gradient information to locate the key regions in the image and thereby generate 

visualized images (Selvaraju et al., 2017). Through the visualization analysis of Grad-CAM, it was found that 

the attention distribution of the original YOLOv11 model to corn seedlings was relatively scattered under 

different weather conditions, and there was obvious background interference of straw and weeds. The 

improved MEI-YOLOv11 model shows a more concentrated and extensive deep red heatmap area, indicating 

a high level of attention to the corn seedling area in the image. The results are shown in Fig. 8. The model can 

accurately identify seedlings and has high robustness and adaptability for the detection of corn seedlings in 

different weather conditions. 
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Original 
drawing 

     

YOLOv11 

     

MEI-YOLOv11 

     
 Sunny Cloudy Foggy Rainy Sandstorm 

Fig. 8 - Visualization results of YOLOv11 model heatmap before and after improvement 
 

Corn seedling counting experiment 

 To test the counting accuracy of the MEI-YOLOv11 model for corn seedlings under different weather 

conditions, the corn seedlings in five weather images were detected. The comparison results of the counting 

accuracy of the model before and after improvement are shown in Table 3. The multi weather linear fitting 

results of the model before and after improvement are shown in Fig. 9. The multi weather detection results of 

the model before and after improvement are shown in Fig. 10. 
 According to Table 3, the MEI-YOLOv11 model exhibits significant improvement in counting 

performance under different weather conditions. The highest accuracy of 91.23% was achieved in a sunny 

environment, which is 2.73 percentage points higher than the model. In cloudy, foggy, rainy, and sandstorm 

environments, the increase was 2.57, 3.02, 2.57, and 2.59 percentage points, respectively. 

Comparison of Counting Accuracy of Models Before and After Improvement                 Table 3 

Weather 
Accuracy of counting corn seedlings (%) 

YOLOv11 model MEI-YOLOv11 model 

Sunny 88.50 91.23 

Cloudy 88.28 90.85 

Foggy 87.95 90.97 

Rainy 88.21 90.78 

Sandstorm 88.16 90.75 
 

 From Figure 9, it can be seen that the MEI-YOLOv11 model outperforms the original model in 

predicting seedling accuracy and fitting performance under all weather conditions. The root mean square error 

is the lowest in sunny environments, and the accuracy of predicting corn seedlings is the highest. However, its 

fitting performance is only better than sandy and dusty environments, lower than the other three environments, 

but the difference is small, indicating that the MEI-YOLOv11 model is suitable for various weather environments 

and can meet the precise detection and counting of corn seedlings. 

YOLOv11 

     

MEI-
YOLOv11 

     
 Sunny Cloudy Foggy Rainy Sandstorm 

Fig. 10 - Multi weather linear fitting of corn seedling counting before and after improvement model 
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 Fig. 10 visually shows that the MEI-YOLOv11 model performs the best in corn seedling detection and 

counting tasks, accurately detecting corn seedlings and counting their plant numbers. The detection box is 

closest to the true value, and the probability of missed or false positives is relatively low. This indicates that 

the model not only has the best detection accuracy, but also exhibits stronger environmental adaptability and 

generalization ability, fully verifying the effectiveness of the improved scheme. 

 

Original 
drawing 

     

YOLOv11 

     

MEI-
YOLOv11 

     
 Sunny Cloudy Foggy Rainy Sandstorm 

Fig. 10 - Multiple weather detection results before and after improvement of the model 

 

CONCLUSIONS 

 Aiming at the problems that the detection and counting of traditional corn seedlings are easily affected 

by the complex field environment and rely on artificial features, a detection and counting method for corn 

seedlings based on the MEI-YOLOv11 model is proposed. 

 (1) Images of corn seedlings in sunny conditions were collected by using unmanned aerial vehicles 

(UAVs), and an all-weather dataset was constructed through data augmentation. 

 (2) Different detection models were compared, and YOLOv11 with better performance was selected 

as the benchmark model. To further improve the accuracy of the model's detection count, the MANet module 

was introduced into the backbone and neck networks. Sampling on the neck network was replaced by the 

EUCB module, and the Inner-SIoU loss function was replaced by the original CIoU loss. 

 (3) Compared with the original model, the mAP50, P and R of the MEI-YOLOv11 model have increased 

by 2.8, 2.7 and 2.4 percentage points respectively. Although the computational load has slightly increased, the 

difference is not significant, and the shorter reasoning time meets the real-time requirements of the detection. 

The detection accuracy is superior to other detection models, and the overall performance is better. 

 (4) Under multiple weather conditions, the counting accuracy of corn seedlings is above 90%. Among 

them, the counting accuracy on sunny days is the highest, reaching 91.23%, and the root mean square error 

is the lowest, only 4.5044. The coefficient of determination is 0.8508, which is 0.01679 less than that in foggy 

environments. The differences are very small, and it can achieve the detection and counting of corn seedlings 

in all-weather environments, which has broad application prospects and significant practical value. 

 Overall, the MEI-YOLOv11 model can reduce the missed detection and false detection of corn 

seedlings in complex field environments such as straw and weeds, and has high accuracy and robustness. It 

can simultaneously achieve detection and counting in various weather conditions, and has strong practicality. 

Furthermore, the limitation of the model lies in the fact that the computational load has increased by 1.28 M 

compared to the original model, and the training data comes from specific regions and corn varieties. In the 

future, data on corn seedlings of different varieties selected from various regions will be collected for 

experiments. Lightweight technologies such as knowledge distillation, pruning or quantization will be adopted 

to reduce computational complexity while ensuring accuracy, making it more suitable for deployment on edge 

devices with limited computing power. 
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