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ABSTRACT  

The curing of tobacco is a critical process that determines the quality of the final product. Accurate recognition 

of tobacco curing states is essential for ensuring optimal quality. Existing recognition models mostly focus on 

the transient states within the curing barn. In contrast, this study incorporates multiple time steps to capture 

dynamic feature changes in the curing barn over time, providing a more accurate state recognition. A hybrid 

deep learning model combining Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) 

networks, and a novel Density-aware Channel Redistribution Unit (DCRU) based on Kernel Density Estimation 

is proposed. The model integrates the global feature extraction capability of TCN, the long-term dependency 

modeling strength of LSTM, and the complex channel feature extraction ability of DCRU, thereby enhancing 

the model's performance in recognizing the stages of tobacco leaf curing. Tests conducted on a real-world 

tobacco dataset demonstrate that the model achieves a prediction accuracy of 0.989 and outperforms baseline 

models as well as existing tobacco curing state recognition methods. These results validate the effectiveness 

of the hybrid TCN-LSTM model in recognizing tobacco leaf curing states, with promising applications in 

agricultural automation. 

 

摘要  

烟叶烘烤是决定最终产品质量的关键工序，准确识别烟叶烘烤状态对于保障其品质至关重要。现有的识别模型

多基于烘烤过程中烤房内的瞬时状态，而本研究通过引入多个时间步，捕捉烤房内动态变化的特征，从而实现

更为准确的状态识别。本文提出了一种融合 Temporal Convolutional Network（TCN）、Long Short-Term 

Memory（LSTM）与基于核密度估计的 Density-aware Channel Redistribution Unit（DCRU）的混合深度学习

模型。该模型结合了 TCN 的全局特征提取能力、LSTM对长期依赖的建模能力，以及 DCRU 在复杂通道特征

分布提取方面的优势，从而有效提升了对烟叶烘烤阶段的识别性能。在真实烟叶数据集上的测试结果表明，该

模型的预测准确率达到 0.989，优于基线模型及现有的烟叶烘烤状态识别方法。研究结果验证了该混合 TCN-

LSTM模型在烟叶烘烤状态识别中的有效性，为农业自动化应用提供了有前景的解决方案。 

 

INTRODUCTION 

 Tobacco has long been an economically significant crop, contributing substantially to the economies 

of many countries. Globally, tobacco production supports millions of livelihoods and contributes significantly to 

tax revenues, especially in developing countries. Besides contributing to tax revenues, tobacco cultivation also 

plays a vital role in poverty alleviation in economically disadvantaged regions (Ahsan et al., 2022). The 

production of tobacco involves several stages, each contributing to the final product's quality. Among the 

various stages, the curing process stands out as a particularly critical determinant of the final product's quality. 

Improper curing techniques or incorrect temperature settings in bulk curing barns can degrade leaf quality, 

ultimately influencing the market value of tobacco products. 

 The tobacco curing process is complex, typically taking about five to seven days (Abubakar et al., 

2000). During curing, mature tobacco leaves undergo gradual dehydration, along with a series of physiological 

and biochemical changes (Pang et al., 2024). As shown in Fig. 1, the curing process in bulk curing barns is 

typically segmented into six stages based on changes in the color and texture of the leaves (Wang et al., 2016).  
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 Farmers constantly monitor the state of tobacco leaves, carefully adjusting the temperature, humidity, 

and airflow based on the recognized tobacco curing state within the bulk curing barn to ensure optimal curing 

conditions. However, this manual adjustment can lead to inconsistent tobacco quality, which highlights the 

need for automated recognition methods to achieve precise and consistent control during the curing process. 

Fig. 1 - Methodology flowchart of tobacco curing state recognition. 

 

With the advancement of machine learning and deep learning technologies, numerous scholars have 

explored their applications in the tobacco processing industry. These approaches have been employed to 

optimize various aspects of the production process, including maturity identification, leaf position recognition, 

tobacco grading, and automatic tobacco curing. In the tobacco curing process, the dry-bulb temperature (DT), 

wet-bulb temperature (WT), and temperature-raising time are key parameters that require precise control at 

each stage (Wu et al., 2017). Consequently, many studies have focused on predicting these key parameters 

to ensure optimal process control (Wang et al., 2017; Wu & Yang, 2019; Wu et al., 2014). 

 Compared to work on predicting those process parameters, there has been relatively little research on 

recognizing the curing state of tobacco leaves. Color is a key indicator of curing extent, since moisture loss 

and color change progress in coordination during an ideal curing process (Meng et al., 2024). Consequently, 

numerous studies investigated the dynamics of color change in tobacco during the curing process. Wu (2016) 

extracted color features from multiple color spaces (RGB, HSV, L*a*b*) and then applied a genetic algorithm-

support vector machine (GA-SVM) framework for feature selection. This approach removed redundant features 

and reduced computational complexity. Li et al. (2022) extended this method by incorporating texture features 

alongside color features, thereby improving recognition accuracy. However, this iterative process results in 

longer inference times, and the genetic algorithm is prone to getting stuck in local optima. Wang and Qin (2022) 

considered weight variation of leaves during curing and proposed a fusion model combining Long Short-Term 

Memory (LSTM) and Extreme Gradient Boosting (XGBoost) to exploit both curing-room environmental data 

and the leaves’ multi-modal features. Pei et al. (2024) observed varying degrees of feature change across 

curing stages and introduced an XGBoost model incorporating feature-weighting preprocessing, which assigns 

weights based on each feature’s change intensity. Given the ability of Convolutional Neural Networks (CNNs) 

to efficiently extract complex features, some scholars have used CNNs to directly extract features from images 

(Song et al., 2024). Xiong et al. (2024) designed a state-recognition network combining standard convolutional 

layers with short-term dense connections to achieve high-precision prediction. However, it neglects curing-

barn environmental factors, which significantly affect recognition performance. 

 Unlike the aforementioned static state recognition methods, tobacco curing is considered a dynamic 

process due to its time-evolving nature. Consequently, modeling this process requires techniques capable of 

capturing temporal dependencies in sequential data. In recent years, Long Short-Term Memory (LSTM) 

networks have emerged as a widely adopted deep learning model for sequential data, including applications 

in agriculture (Attri et al., 2023). LSTM is a variant of recurrent neural networks (RNNs), designed to address 

long-term dependency and vanishing gradient problems via its gating mechanisms (Graves & Schmidhuber, 

2005). To leverage the feature extraction capabilities of CNNs while effectively handling sequential data, Bai 

et al. (2018) proposed the temporal convolutional network (TCN). TCN uses dilated convolutions to expand 

the receptive field and causal convolutions to prevent information leakage from future time steps, enabling 

effective extraction of temporal features from time series data (Liu et al., 2024). 

 Inspired by the STar Aggregate-Redistribute (STAR) module (Han et al., 2024), a Density-aware 

Channel Redistribution Unit (DCRU) is proposed in this study. Unlike traditional attention mechanisms that 

often introduce considerable computational complexity, STAR utilizes a centralized structure built from 
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lightweight multilayer perceptron (MLP). However, STAR suffers from two major limitations: (1) it samples only 

the most prominent channels, potentially overlooking complex feature structures with multi-modal or skewed 

distributions; and (2) it uses different strategies during training and inference, which may lead to performance 

instability. To address these limitations, the proposed DCRU integrates a channel redistribution mechanism 

based on Kernel Density Estimation (KDE). Unlike STAR, which samples only the most prominent channels, 

the KDE-based approach adaptively models the distribution of channel importance, enabling the capture of 

more complex structures such as multi-peaked or skewed patterns. Specifically, KDE is applied along the 

channel dimension to estimate the density distribution of feature importance. The resulting probability 

distribution is then used to generate sampling weights through sampling. This allows the model to consider the 

entire channel distribution, rather than focusing solely on the most salient feature, thus enhancing the 

expressiveness of feature representations across curing stages. Furthermore, the KDE-based strategy 

maintains consistency between training and inference, reducing the performance fluctuations caused by 

STAR’s inconsistent sampling policy. 

 In summary, considering the complex and massive data involved in the curing process and the 

limitations of previous studies, a hybrid TCN-LSTM model that integrates TCN, LSTM, and DCRU is proposed. 

In the proposed model, the TCN is leveraged to extract global features from the raw data, while the LSTM 

effectively captures long-term dependencies within the data. The DCRU captures both salient features and 

distributional characteristics of the data. This model effectively represents features by preserving detailed local 

information and integrating global information. To verify the effectiveness of the proposed method in practical 

scenarios, its recognition performance is validated using data collected from tobacco curing barns. The final 

results demonstrate that the proposed model outperforms conventional baseline neural network models in 

tobacco curing state recognition. 

 

MATERIALS AND METHODS 

Dataset 

 The dataset used in this study was collected from eight tobacco curing barns located at tobacco 

stations in Jinjiang, Jiangxi Province, and Nanping, Fujian Province, between June and October 2022. Images 

of the curing barns, along with DT and WT readings, were recorded every five minutes. A total of 19,776 data 

records were collected across twelve curing batches. Of these, eight batches were used for model training, 

two batches for validation, and the remaining two batches for testing. The curing stages were classified based 

on expert assessment in tobacco curing. As shown in Figure 2, Panel a) illustrates the tobacco leaf image 

acquisition device, Panel b) presents a sample of the acquired tobacco leaf images, and Panel c) shows the 

overall workflow of data processing, model training, and testing. 

Fig. 2 - Methodology flowchart of tobacco curing state recognition. 
a）Tobacco image acquisition equipment; b）Tobacco image; c）Data processing and training process; 

 

Feature extraction of tobacco 

 Various color models exist, each offering distinct advantages and application scenarios. To effectively 

simulate human color perception, the color model was selected to correspond closely with the characteristics 

of the human visual system. Among these, the RGB (Red, Green, Blue) color space serves as a fundamental 

model in digital imaging and is commonly used as the basis for conversion to other color spaces. Because the 

yellow-brown coloration of tobacco leaves primarily results from a mixture of red and green components, the 

R and G channels of the RGB model were selected for analysis (Pei et al., 2024). In addition, the a component 
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of the L*a*b* color space (where L* denotes lightness, a represents the red-green axis, and b the blue-yellow 

axis) was utilized to capture color variations along the red-green spectrum relevant to tobacco leaf color 

changes. 

 Four statistical measures derived from the Gray-Level Co-occurrence Matrix were used for texture 

feature extraction: Entropy (ENT), Angular Second Moment (ASM), and Inverse Difference Moment (IDM) 

(Haralick, 1979; Li et al., 2022). To comprehensively capture the texture information of the image, these 

features were calculated as the average values across four directions: 0°, 45°, 90°, and 135°. 

 ENT quantifies the complexity of image textures and describes the uncertainty of image information. 

ASM emphasizes the consistency and uniformity of image textures, while IDM reflects the local contrast and 

smoothness. By incorporating these features, the model gains sensitivity to the subtle visual cues that are 

indicative of different curing stages, enabling more accurate and robust classification. The formulas for the 

calculation of texture features are as follows: 

 𝐸𝑁𝑇 = ∑ 𝑝(𝑖, 𝑗) 𝑙𝑜𝑔( 𝑝(𝑖, 𝑗))𝑖,𝑗  (1) 

 𝐴𝑆𝑀 = ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗  (2) 

 𝐼𝐷𝑀 = ∑
𝑝(𝑖,𝑗)

1+(𝑖−𝑗)2𝑖,𝑗  (3) 

where 𝑃(𝑖, 𝑗) represents the probability of occurrence of the gray level (𝑖, 𝑗). 𝜇 is the mean of gray levels and 𝜎 

is the standard deviation of the gray levels. 

 In total, eight features were extracted for model input, including three color features (R, G, and a from 

the L*a*b* color space), three texture features (ENT, ASM, and IDM), and two environmental features (DT and 

WT). 

 

Model Architecture 

 As illustrated in Fig. 3, a hybrid framework integrating TCN, LSTM, and a DCRU module was 

constructed. This architecture is designed to effectively capture long-term dependencies and extract deeper, 

more complex features from the input data. The details of each component will be discussed in the following 

sections. 

 

Fig. 3 - Network structure of the TCN-LSTM model 

 

Temporal Convolutional Network (TCN) 

 The TCN module enables the model to capture intricate features from input data and addresses 

challenges such as exploding or vanishing gradients. Unlike traditional RNN, TCN is based on the architecture 

of CNN. Of particular importance, TCN supports parallel computing and, furthermore, a feedforward model 

specifically designed for sequence modelling (Fan et al., 2023). Its architecture incorporates key components 

such as causal convolution, dilated convolution, and residual connections, which collectively enhance its 

overall performance.  

 To process time series data, TCN adopts causal convolution, which is exclusively based on elements 

from time t and earlier. This strictly time-constrained scheme ensures that information from the future is not 

incorporated into past computations. Although causal convolutions require an increase in the number of layers 

to capture more information, resulting in a deeper and more complex network, the hierarchical structure of 

TCN captures long-range patterns in sequential data. 

 Dilated convolution refers to an enhanced version of traditional convolution, achieved through interval 

sampling, which enables the TCN model to obtain an exponentially large receptive field for aggregating diverse 

information, particularly addressing the challenge of making predictions with long-term memory (Cheng et al., 

2021). The dilated convolution operation on elements of the 1-D sequence input 𝑥 ∈ ℝ𝑛is defined as shown in 

Equation (4) for a given filter 𝑓: {0, … , 𝑘 − 1} → ℝ. 
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 𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖) ⋅ 𝑥𝑠−𝑑⋅𝑖
𝑘−1
𝑖=0  (4) 

where 𝑘 is the convolution kernel size, 𝑑 is the dilation rate, ∗ denotes the convolution operation, and 𝑠 − 𝑑 ⋅ 𝑖 
indicates the past direction. The architecture of dilated causal convolution is illustrated in Fig. 4a). 

Fig. 4 - The network structure of TCN 
a）Dilated causal convolution structure of TCN; b）Residual block of TCN; 

 

 As neural networks become deeper, optimization may degrade, a phenomenon known as network 

degradation. The residual block mitigates network degradation and the vanishing gradients problem. The 

residual connection operation is mathematically represented as shown in Equation (5). 

 𝑜 = 𝑥 + 𝐹(𝑥, 𝑊) (5) 

where 𝑜 is the output of the residual block, and 𝐹(𝑥, 𝑊) is the residual part. 

 The residual block of TCN is shown in Fig. 4b). Besides the elements mentioned above, the block 

includes both WeightNorm and Dropout layers. The former accelerates the convergence speed, while the latter 

helps prevent overfitting and improves the model's generalization ability. 

 

Long Short-Term Memory Network (LSTM) 

 To solve the problems of vanishing and exploding gradients, which render RNNs inadequate for 

capturing long-term dependencies, LSTM was developed to overcome these limitations. LSTM can be 

regarded as an extension of RNNs that introduces memory cells and gates. The memory cells retain the output 

of the current time step and manage long-term information, while the gates regulate the flow of information 

into and out of the memory cell. 

 The architecture of LSTM is illustrated in Fig.5. The forget gate 𝑓𝑡 controls the extent to which 

information from the previous cell state (𝑐𝑡−1) is retained or discarded. The input gate (𝑖𝑡) determines which 

new information is added to the cell state (𝑐𝑡). The output gate (𝑜𝑡) regulates the amount of information from 

the updated cell state that is used to compute the hidden state (ℎ𝑡 ), which serves as the output and is 

transmitted to the next LSTM unit. This gating mechanism allows selective updating or retention of information, 

supporting the handling of long-term dependencies.  

 The formulas for the LSTM cell are represented from Equation (6) to Equation (11). 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (6) 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (7) 

 𝑐̃ = 𝑡𝑎𝑛ℎ( 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (8) 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 (9) 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (10) 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡) (11) 

where: 

 𝜎(⋅) is the sigmoid activation function, 𝑊 is the weight matrix, 𝑏 represents the bias vectors, and ⊙ 

denotes the dot product.  
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Fig. 5 - Structure of the LSTM 

 

Density-aware Channel Redistribution Unit (DCRU) 

 Throughout the different stages of tobacco curing, both the curing environment and the physical 

attributes of tobacco leaves undergo dynamic changes. A Density-aware Channel Redistribution Unit (DCRU) 

is employed to extract salient features and the main feature distribution at each stage. 

 As shown in Fig. 6, DCRU first aggregates information from different channels to obtain the global core 

representation. Then the local series representation is fused with the core representation to achieve the indirect 

interaction between channels. This interaction method takes advantage of both channel independence and 

aggregated information, which enhances the representation of important features. 

 Given a multivariate series with 𝐶 channels, DCRU first constructs a global core representation by 

aggregating information across all channels. Each channel is processed through a multilayer perceptron 

(MLP), which consists of two linear layers with GELU activation, to project the input from the original dimension 

𝑑 to core dimension 𝑑′. To overcome the limitations of the STAR module, particularly its tendency to sample 

only the most salient features while ignoring complex feature patterns, DCRU introduces a dual-path sampling 

strategy to generate a more expressive core representation.  

 KDE sampling is applied along the channel dimension to estimate the distribution of channel-wise 

feature importance. This density-aware approach captures complex patterns such as multi-modal and skewed 

distributions, resulting in a probabilistic part of core representation 𝐶𝑜𝑟𝑒𝑘𝑑𝑒 ∈ ℝ𝑑̃, with further details provided 

in the following section. In parallel, stochastic sampling adopts the same strategy as STAR to capture key 

discriminative features from channels and produces another part of core representation 𝐶𝑜𝑟𝑒𝑠𝑡𝑜𝑐ℎ ∈ ℝ𝑑̂. These 

two representations are concatenated to form the final core representation𝐶𝑜𝑟𝑒 = [𝐶𝑜𝑟𝑒𝑘𝑑𝑒 ; 𝐶𝑜𝑟𝑒𝑠𝑡𝑜𝑐ℎ] ∈ ℝ𝑑̃+𝑑̂ 

which effectively integrates both distributional characteristics and salient features to enhance the model’s 

representational capacity. 

Fig. 6 - Architecture of the DCRU module 

 

 A key component of DCRU is the KDE-based sampling strategy, which estimates the distributional 

patterns of channel-wise feature importance. The formulation and application of this mechanism are described 

below. To estimate the distribution of channel-wise feature importance, KDE is applied along the channel 

dimension. Given a feature vector {𝑥1, 𝑥2, … , 𝑥𝑐} ∈ ℝ𝐶 representing the channel-wise activations of a sample, 

the density at each value x  is estimated by treating it as the query point. The KDE equation is presented in 

Equation (12). 

 𝑓(𝑥) =
1

𝐶
∑

1

ℎ𝑖
𝐾(

𝑥−𝑥𝑖

ℎ𝑖
)𝐶

𝑖=1  (12) 

 The bandwidth ℎ𝑖 is treated as a learnable parameter in the model. This enables the KDE mechanism 

to adaptively adjust its sensitivity to different channels. The kernel function 𝐾(⋅) is chosen to be the Gaussian 

kernel. 
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 𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝( −

1

2
𝑢2) (13) 

 Substituting into the KDE formula yields the following expression for the density estimate at channel 𝑥. 

 𝑓(𝑥) =
1

𝐶
∑

1

√2𝜋ℎ𝑖
𝑒𝑥𝑝( −

1

2
(

𝑥−𝑥𝑖

ℎ
)2)𝐶

𝑖=1  (14) 

 The raw density scores are converted into a valid probability distribution by applying a softmax operation 

over the channel density. 

 𝑝𝑖 =
𝑒𝑥𝑝(𝑓̂(𝑥𝑖))

∑ 𝑒𝑥𝑝(𝑓̂(𝑥𝑘))𝐶
𝑘=1

, 𝑖 = 1,2, … , 𝐶 (15) 

 This distribution 𝑃 is then used to guide the sampling of multiple informative channels. Specifically, 

multinomial sampling is performed to select 𝑑̃ channels, forming a new representation vector 𝐶𝑜𝑟𝑒𝑘𝑑𝑒. 

 𝐶𝑜𝑟𝑒𝑘𝑑𝑒 = [𝑥1, 𝑥2, … , 𝑥𝑑̃], where 𝑥𝑖 ∼ 𝑃 𝑓𝑜𝑟 𝑖 = 1, … , 𝑑̃ (16) 

 The core representation is subsequently fused with the local series representation, facilitating indirect 

interactions across channels. This design preserves the independence of local features while enabling the 

model to benefit from global contextual cues. Importantly, the KDE-based sampling strategy ensures 

consistency between training and inference phases, thereby mitigating the performance instability observed in 

STAR. Furthermore, by modeling the entire distribution of channel importance rather than focusing solely on 

the most prominent channels, DCRU enhances the expressiveness and robustness of feature 

representations—particularly under dynamic curing conditions. 

 

RESULTS 

Model evaluation index 

 In this paper, accuracy (ACC) is used to evaluate the recognition performance of the hybrid model 

proposed. To account for the performance across all states equally, the macro-average of the precision 

(Macro-PR), recall (Macro-RE), and F1-scores (Macro-F1) is used, as described in Equation (17) to Eq.(20). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (17) 

 𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖/(𝑇𝑃𝑖+𝐹𝑃𝑖)𝑁

𝑖=1

𝑁
 (18) 

 𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖/(𝐹𝑃𝑖+𝐹𝑁𝑖)𝑁

𝑖=1

𝑁
 (19) 

 𝑀𝑎𝑐𝑟𝑜𝐹1 =
2∗𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙
 (20) 

where 𝑁 represents the total number of categories, 𝑖 represents the index for each category, TP stands for 

true positive, TN stands for true negative, FP stands for false positive, and FN stands for false negative. 

Experimental configuration 

 The experiments were conducted on a PC running Windows, equipped with an Intel Core Ultra5 125H 

CPU and an NVIDIA GeForce RTX 3080 GPU. Python 3.9.2 and the open-source software library PyTorch 

were used to conduct the experiments. 

 The flowchart of the hybrid TCN-LSTM model is presented in Fig. 3. Three stacked of TCN are 

employed to directly extract input features. Each block shares the same kernel size of 3, while the number of 

filters increases across blocks: 32, 64, and 128, respectively. The dilation factors for the three blocks are set 

to 1, 2, and 4, respectively. The core dimension of DCRU is set to 128, after which a max-pooling layer is 

applied to reduce the feature dimensionality. The LSTM module consists of two layers, with the first layer 

containing 64 units and the second layer 32 units. The model is optimized using the Adam optimizer, with an 

initial learning rate of 5 × 10−4 . A cosine learning rate scheduler is employed to adjust the learning rate 

dynamically during training. 

Architectural Analysis of the Hybrid TCN-LSTM model 

 To evaluate the comparative effectiveness of different model architectures in recognizing tobacco 

curing states, a series of experiments were conducted using multiple deep learning frameworks. As shown in 

Table 1, the standalone TCN and LSTM models achieved comparable performance, with TCN attaining an 

accuracy of 0.963 and LSTM slightly lower at 0.962. When the two models were combined into a hybrid TCN-

LSTM framework, performance improved notably across all metrics, achieving an accuracy of 0.975 and a 
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Macro-F1 score of 0.975. Further incorporating the STAR attention mechanism into the TCN-LSTM 

architecture (TCN-STAR-LSTM) yielded additional gains, with accuracy increasing to 0.983 and Macro-F1 

reaching 0.981, indicating the effectiveness of attention-based feature refinement. Finally, the proposed TCN-

DCRU-LSTM model outperformed all other models, achieving the highest accuracy of 0.989 and a Macro-F1 

score of 0.988. These results demonstrate the superiority of our method in capturing complex temporal and 

distributional features during tobacco curing state recognition. 

Table 1 
Different Models architecture 

Model ACC Macro-PR Macro-RE Macro-F1 

TCN 0.963 0.953 0.951 0.952 

LSTM 0.962 0.961 0.958 0.959 

TCN-LSTM 0.975 0.974 0.977 0.975 

TCN-STAR-LSTM 0.983 0.980 0.982 0.981 

TCN-DCRU-LSTM 0.989 0.989 0.987 0.988 

 

Comparison with different model 

 To further evaluate the effectiveness of the proposed hybrid TCN-LSTM model for curing state 

recognition, experiments were conducted on the proposed and compared models in this section. To ensure a 

comprehensive evaluation, six baseline models were selected for comparison. The deep learning baselines 

include Artificial Neural Networks (ANN), RNN, CNN, and the Transformer model. Additionally, the proposed 

model was compared against traditional machine learning algorithms, including XGBoost and Support Vector 

Machines (SVM). The ANN model was implemented as a multilayer perceptron (MLP) with three hidden layers 

comprising 128, 64, and 32 units, respectively. The RNN model consists of three hidden layers with 64, 64, 

and 32 units. The CNN model includes two convolutional layers followed by a fully connected layer. The 

Transformer model adopts a two-layer encoder structure, with each layer containing four attention heads and 

an embedding dimension of 128. For XGBoost, the maximum tree depth was set to 4, and the number of estimators 

was 90. For SVM, the radial basis function kernel was used, with the regularization parameter C set to 1. 

Table 2 
Result of different models 

Model ACC Macro-PR Macro-RE Macro-F1 

XVM 0.905 0.895 0.879 0.887 

XGboost 0.915 0.894 0.901 0.897 

ANN 0.935 0.927 0.912 0.919 

CNN 0.955 0.945 0.946 0.945 

RNN 0.947 0.935 0.931 0.933 

Transformer 0.960 0.956 0.957 0.956 

Hybrid TCN-LSTM 0.989 0.989 0.987 0.988 

 

 Table 2 presents the result of the evaluation metrics for the prediction performance of each model. In 

terms of prediction performance, it is evident that the proposed model outperforms all other models. The SVM 

achieves favorable results with 0.905 ACC, 0.895 Macro-PR, 0.879 Macro-RE, and 0.887 Macro-F1. The 

XGboost performs slightly better than SVM, achieving an ACC of 0.915, a Macro-PR of 0.894, a Macro-RE of 

0.901, and a Macro-F1 of 0.897. The deep learning models significantly outperform the machine learning 

models. The ANN achieves an ACC of 0.935, a Macro-PR of 0.927, a Macro-RE of 0.912, and a Macro-F1 of 

0.919. It can be observed that all deep learning models perform well in recognizing the curing state. However, 

a considerable number of incorrect recognitions still occur. For instance, the RNN achieves an ACC of 0.947, 

a Macro-PR of 0.935, a Macro-RE of 0.931, and a Macro-F1 of 0.933. Similarly, the CNN achieves an ACC of 

0.955, a Macro-PR of 0.945, a Macro-RE of 0.946, and a Macro-F1 of 0.945. The Transformer performs slightly 

better, reaching an ACC of 0.960, a Macro-PR of 0.956, a Macro-RE of 0.957, and a Macro-F1 of 0.956.  

 The test results are shown in Fig. 7b), where the misclassified categories are mainly distributed among 

those with similar ground true classes, although there are still a considerable number of errors. The results of 

the Hybrid TCN-LSTM model are shown in Fig. 7a), with only 38 misclassifications across all labels. 
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Fig. 7 - Confusion matrix of test result 
a）Confusion matrix of Hybrid TCN-LSTM; b）Confusion matrix of Transformer; 

 

 In summary, the results presented in Table 2 clearly demonstrate the superior performance of the 

proposed hybrid TCN-LSTM model. Compared to both traditional machine learning models and advanced 

deep learning architectures, the hybrid TCN-LSTM consistently achieves the highest scores across all 

evaluation metrics. With an accuracy of 0.989 and a Macro-F1 score of 0.988, the model not only captures 

long-term dependencies and distributes patterns but also effectively integrates fine-grained local features. 

These findings confirm the robustness, expressiveness, and practical applicability of the proposed approach 

in the complex task of tobacco curing state recognition. 

Comparison with related studies 

 Table 3 presents the results of the comparison conducted between the proposed model and other 

advanced methods, which were based on different sets of original data. Specifically, the recognition 

performance of hybrid TCN-LSTM model was compared with that of SRFM, GA-SVM, TFSNet, and CPBM. 

The results show that GA-SVM had the lowest ACC, with a value of 0.965. This was followed by the SRFM 

model, which attained an ACC of 0.974. Next, the CPBM model achieved better performance, with an ACC of 

0.984. In comparison, the TFSNet model achieved an ACC of 0.987. The hybrid TCN-LSTM outperformed the 

other methods and achieved the highest ACC of 0.989. The results illustrate that the introduction of DCRU 

module can improve the recognition accuracy for tobacco curing state. In summary, the proposed hybrid TCN-

LSTM can exhibit better recognition performance. 

Table 3 
Comparison with related studies 

Model ACC Macro-PR Macro-RE Macro-F1 

SRFM(LSTM-XGboost)(Wang & Qin, 2022) 0.974 0.952 0.936 0.943 

GA-SVM(Wu, 2016) 0.965 / / / 

CBPM (data fusion based XGboost)(Pei et 
al., 2024) 

0.984 0.986 0.982 0.984 

TFSNet (CNN) (Xiong et al., 2024) 0.987 / / / 

Hybrid TCN-LSTM 0.989 0.989 0.987 0.988 
 

 

 

 

Practical Applicability Demonstration and Testing 

 To further demonstrate the practical applicability of the proposed method, the trained hybrid TCN-

LSTM model was deployed on an upper-computer platform designed for tobacco curing state monitoring. The 

system was implemented in a Windows environment, featuring a graphical interface for real-time data 

visualization. Test data streams, identical to those used in the evaluation phase, were fed into the system to 

validate its end-to-end recognition performance. 

 The results showed that the model could process input sequences in real time, with an average 

inference latency of 146 ms per sample. The recognized curing states were automatically displayed on the 

interface, enabling operators to intuitively monitor stage transitions throughout the curing process.  

 Fig.8 illustrates an example of the upper-computer interface output, where the predicted states closely 

match the ground truth labels provided by experts. 
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 This system-level validation demonstrates that the proposed model is not only theoretically effective 

but also practically deployable in real-world operational environments, enabling automated recognition of 

tobacco curing stages when deployed on cloud or edge devices. 

Fig. 8 - Real-time interface displaying tobacco curing state recognition result. 
 

CONCLUSIONS 

 This study investigates the effectiveness of leveraging sequential data and hybrid models to recognize 

the states of tobacco curing. To address the challenges posed by sequential data and multiple features, a 

hybrid model based on TCN and LSTM was developed, demonstrating an effective ability to capture intricate 

features from data collected in the curing barn. Furthermore, the introduction of the DCRU module provides 

additional improvements in accuracy and robustness, underscoring the potential of the proposed approach in 

complex prediction tasks. 

 Experiments were conducted on real data from tobacco stations and the results were compared with 

other models. The experimental results demonstrate that the ACC of the hybrid TCN-LSTM model reached 

0.989, demonstrating superior performance compared to traditional deep learning methods and existing 

tobacco leaf curing prediction models. At the same time, the effectiveness of the model was validated during 

practical testing. These findings indicate that the proposed tobacco curing states recognition model can 

effectively extract meaningful features from the complex data of the curing room and tobacco leaves. 

Compared to traditional methods, the proposed approach exhibits a significant advantage in recognition 

accuracy, offering high practical value and contributing to the automation and standardization of tobacco leaf 

curing. 

 Future research could explore the use of multi-source data, such as the concentration of chemicals 

inside the curing room and the humidity at the ventilation outlets of the curing room. Additionally, the potential 

applications of the model across different domains, such as the drying of fruits, vegetables, and herbs, could 

be further investigated. 
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