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ABSTRACT

The curing of tobacco is a critical process that determines the quality of the final product. Accurate recognition
of tobacco curing states is essential for ensuring optimal quality. Existing recognition models mostly focus on
the transient states within the curing barn. In contrast, this study incorporates multiple time steps to capture
dynamic feature changes in the curing barn over time, providing a more accurate state recognition. A hybrid
deep learning model combining Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM)
networks, and a novel Density-aware Channel Redistribution Unit (DCRU) based on Kernel Density Estimation
is proposed. The model integrates the global feature extraction capability of TCN, the long-term dependency
modeling strength of LSTM, and the complex channel feature extraction ability of DCRU, thereby enhancing
the model's performance in recognizing the stages of tobacco leaf curing. Tests conducted on a real-world
tobacco dataset demonstrate that the model achieves a prediction accuracy of 0.989 and outperforms baseline
models as well as existing tobacco curing state recognition methods. These results validate the effectiveness
of the hybrid TCN-LSTM model in recognizing tobacco leaf curing states, with promising applications in
agricultural automation.
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INTRODUCTION

Tobacco has long been an economically significant crop, contributing substantially to the economies
of many countries. Globally, tobacco production supports millions of livelihoods and contributes significantly to
tax revenues, especially in developing countries. Besides contributing to tax revenues, tobacco cultivation also
plays a vital role in poverty alleviation in economically disadvantaged regions (Ahsan et al., 2022). The
production of tobacco involves several stages, each contributing to the final product's quality. Among the
various stages, the curing process stands out as a particularly critical determinant of the final product's quality.
Improper curing techniques or incorrect temperature settings in bulk curing barns can degrade leaf quality,
ultimately influencing the market value of tobacco products.

The tobacco curing process is complex, typically taking about five to seven days (Abubakar et al.,
2000). During curing, mature tobacco leaves undergo gradual dehydration, along with a series of physiological
and biochemical changes (Pang et al., 2024). As shown in Fig. 1, the curing process in bulk curing barns is
typically segmented into six stages based on changes in the color and texture of the leaves (Wang et al., 2016).
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Farmers constantly monitor the state of tobacco leaves, carefully adjusting the temperature, humidity,
and airflow based on the recognized tobacco curing state within the bulk curing barn to ensure optimal curing
conditions. However, this manual adjustment can lead to inconsistent tobacco quality, which highlights the
need for automated recognition methods to achieve precise and consistent control during the curing process.
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Fig. 1 - Methodology flowchart of tobacco curing state recognition.

With the advancement of machine learning and deep learning technologies, numerous scholars have
explored their applications in the tobacco processing industry. These approaches have been employed to
optimize various aspects of the production process, including maturity identification, leaf position recognition,
tobacco grading, and automatic tobacco curing. In the tobacco curing process, the dry-bulb temperature (DT),
wet-bulb temperature (WT), and temperature-raising time are key parameters that require precise control at
each stage (Wu et al., 2017). Consequently, many studies have focused on predicting these key parameters
to ensure optimal process control (Wang et al., 2017; Wu & Yang, 2019; Wu et al., 2014).

Compared to work on predicting those process parameters, there has been relatively little research on
recognizing the curing state of tobacco leaves. Color is a key indicator of curing extent, since moisture loss
and color change progress in coordination during an ideal curing process (Meng et al., 2024). Consequently,
numerous studies investigated the dynamics of color change in tobacco during the curing process. Wu (2016)
extracted color features from multiple color spaces (RGB, HSV, L*a*b*) and then applied a genetic algorithm-
support vector machine (GA-SVM) framework for feature selection. This approach removed redundant features
and reduced computational complexity. Li et al. (2022) extended this method by incorporating texture features
alongside color features, thereby improving recognition accuracy. However, this iterative process results in
longer inference times, and the genetic algorithm is prone to getting stuck in local optima. Wang and Qin (2022)
considered weight variation of leaves during curing and proposed a fusion model combining Long Short-Term
Memory (LSTM) and Extreme Gradient Boosting (XGBoost) to exploit both curing-room environmental data
and the leaves’ multi-modal features. Pei et al. (2024) observed varying degrees of feature change across
curing stages and introduced an XGBoost model incorporating feature-weighting preprocessing, which assigns
weights based on each feature’s change intensity. Given the ability of Convolutional Neural Networks (CNNSs)
to efficiently extract complex features, some scholars have used CNNs to directly extract features from images
(Song et al., 2024). Xiong et al. (2024) designed a state-recognition network combining standard convolutional
layers with short-term dense connections to achieve high-precision prediction. However, it neglects curing-
barn environmental factors, which significantly affect recognition performance.

Unlike the aforementioned static state recognition methods, tobacco curing is considered a dynamic
process due to its time-evolving nature. Consequently, modeling this process requires techniques capable of
capturing temporal dependencies in sequential data. In recent years, Long Short-Term Memory (LSTM)
networks have emerged as a widely adopted deep learning model for sequential data, including applications
in agriculture (Attri et al., 2023). LSTM is a variant of recurrent neural networks (RNNs), designed to address
long-term dependency and vanishing gradient problems via its gating mechanisms (Graves & Schmidhuber,
2005). To leverage the feature extraction capabilities of CNNs while effectively handling sequential data, Bai
et al. (2018) proposed the temporal convolutional network (TCN). TCN uses dilated convolutions to expand
the receptive field and causal convolutions to prevent information leakage from future time steps, enabling
effective extraction of temporal features from time series data (Liu et al., 2024).

Inspired by the STar Aggregate-Redistribute (STAR) module (Han et al., 2024), a Density-aware
Channel Redistribution Unit (DCRU) is proposed in this study. Unlike traditional attention mechanisms that
often introduce considerable computational complexity, STAR utilizes a centralized structure built from
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lightweight multilayer perceptron (MLP). However, STAR suffers from two major limitations: (1) it samples only
the most prominent channels, potentially overlooking complex feature structures with multi-modal or skewed
distributions; and (2) it uses different strategies during training and inference, which may lead to performance
instability. To address these limitations, the proposed DCRU integrates a channel redistribution mechanism
based on Kernel Density Estimation (KDE). Unlike STAR, which samples only the most prominent channels,
the KDE-based approach adaptively models the distribution of channel importance, enabling the capture of
more complex structures such as multi-peaked or skewed patterns. Specifically, KDE is applied along the
channel dimension to estimate the density distribution of feature importance. The resulting probability
distribution is then used to generate sampling weights through sampling. This allows the model to consider the
entire channel distribution, rather than focusing solely on the most salient feature, thus enhancing the
expressiveness of feature representations across curing stages. Furthermore, the KDE-based strategy
maintains consistency between training and inference, reducing the performance fluctuations caused by
STAR’s inconsistent sampling policy.

In summary, considering the complex and massive data involved in the curing process and the
limitations of previous studies, a hybrid TCN-LSTM model that integrates TCN, LSTM, and DCRU is proposed.
In the proposed model, the TCN is leveraged to extract global features from the raw data, while the LSTM
effectively captures long-term dependencies within the data. The DCRU captures both salient features and
distributional characteristics of the data. This model effectively represents features by preserving detailed local
information and integrating global information. To verify the effectiveness of the proposed method in practical
scenarios, its recognition performance is validated using data collected from tobacco curing barns. The final
results demonstrate that the proposed model outperforms conventional baseline neural network models in
tobacco curing state recognition.

MATERIALS AND METHODS
Dataset

The dataset used in this study was collected from eight tobacco curing barns located at tobacco
stations in Jinjiang, Jiangxi Province, and Nanping, Fujian Province, between June and October 2022. Images
of the curing barns, along with DT and WT readings, were recorded every five minutes. A total of 19,776 data
records were collected across twelve curing batches. Of these, eight batches were used for model training,
two batches for validation, and the remaining two batches for testing. The curing stages were classified based
on expert assessment in tobacco curing. As shown in Figure 2, Panel a) illustrates the tobacco leaf image
acquisition device, Panel b) presents a sample of the acquired tobacco leaf images, and Panel c) shows the
overall workflow of data processing, model training, and testing.
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Fig. 2 - Methodology flowchart of tobacco curing state recognition.
a) Tobacco image acquisition equipment; b) Tobacco image; ¢c) Data processing and training process;

Feature extraction of tobacco

Various color models exist, each offering distinct advantages and application scenarios. To effectively
simulate human color perception, the color model was selected to correspond closely with the characteristics
of the human visual system. Among these, the RGB (Red, Green, Blue) color space serves as a fundamental
model in digital imaging and is commonly used as the basis for conversion to other color spaces. Because the
yellow-brown coloration of tobacco leaves primarily results from a mixture of red and green components, the
R and G channels of the RGB model were selected for analysis (Pei et al., 2024). In addition, the a component
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of the L*a*b* color space (where L* denotes lightness, a represents the red-green axis, and b the blue-yellow
axis) was utilized to capture color variations along the red-green spectrum relevant to tobacco leaf color
changes.

Four statistical measures derived from the Gray-Level Co-occurrence Matrix were used for texture
feature extraction: Entropy (ENT), Angular Second Moment (ASM), and Inverse Difference Moment (IDM)
(Haralick, 1979; Li et al., 2022). To comprehensively capture the texture information of the image, these
features were calculated as the average values across four directions: 0°, 45°, 90°, and 135°.

ENT quantifies the complexity of image textures and describes the uncertainty of image information.
ASM emphasizes the consistency and uniformity of image textures, while IDM reflects the local contrast and
smoothness. By incorporating these features, the model gains sensitivity to the subtle visual cues that are
indicative of different curing stages, enabling more accurate and robust classification. The formulas for the
calculation of texture features are as follows:

ENT =%, ;p(i,)) log(p(i,))) (1
ASM =3, ;p(i,))? 2)
IDM = zi,j% 3)

where P(i, j) represents the probability of occurrence of the gray level (i, j). u is the mean of gray levels and o
is the standard deviation of the gray levels.
In total, eight features were extracted for model input, including three color features (R, G, and a from

the L*a*b* color space), three texture features (ENT, ASM, and IDM), and two environmental features (DT and
WT).

Model Architecture

As illustrated in Fig. 3, a hybrid framework integrating TCN, LSTM, and a DCRU module was
constructed. This architecture is designed to effectively capture long-term dependencies and extract deeper,
more complex features from the input data. The details of each component will be discussed in the following
sections.
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Fig. 3 - Network structure of the TCN-LSTM model

Temporal Convolutional Network (TCN)

The TCN module enables the model to capture intricate features from input data and addresses
challenges such as exploding or vanishing gradients. Unlike traditional RNN, TCN is based on the architecture
of CNN. Of particular importance, TCN supports parallel computing and, furthermore, a feedforward model
specifically designed for sequence modelling (Fan et al., 2023). Its architecture incorporates key components
such as causal convolution, dilated convolution, and residual connections, which collectively enhance its
overall performance.

To process time series data, TCN adopts causal convolution, which is exclusively based on elements
from time t and earlier. This strictly time-constrained scheme ensures that information from the future is not
incorporated into past computations. Although causal convolutions require an increase in the number of layers
to capture more information, resulting in a deeper and more complex network, the hierarchical structure of
TCN captures long-range patterns in sequential data.

Dilated convolution refers to an enhanced version of traditional convolution, achieved through interval
sampling, which enables the TCN model to obtain an exponentially large receptive field for aggregating diverse
information, particularly addressing the challenge of making predictions with long-term memory (Cheng et al.,
2021). The dilated convolution operation on elements of the 1-D sequence input x € R"is defined as shown in
Equation (4) for a given filter f: {0, ...,k — 1} = R.
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F(s) = (x*a f)() =250 f(©) " Xs-as 4)
where k is the convolution kernel size, d is the dilation rate, * denotes the convolution operation, and s — d - i
indicates the past direction. The architecture of dilated causal convolution is illustrated in Fig. 4a).
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Fig. 4 - The network structure of TCN
a) Dilated causal convolution structure of TCN; b) Residual block of TCN;

As neural networks become deeper, optimization may degrade, a phenomenon known as network
degradation. The residual block mitigates network degradation and the vanishing gradients problem. The
residual connection operation is mathematically represented as shown in Equation (5).

o=x+F(x,W) (5)

where o is the output of the residual block, and F(x, W) is the residual part.

The residual block of TCN is shown in Fig. 4b). Besides the elements mentioned above, the block
includes both WeightNorm and Dropout layers. The former accelerates the convergence speed, while the latter
helps prevent overfitting and improves the model's generalization ability.

Long Short-Term Memory Network (LSTM)

To solve the problems of vanishing and exploding gradients, which render RNNs inadequate for
capturing long-term dependencies, LSTM was developed to overcome these limitations. LSTM can be
regarded as an extension of RNNSs that introduces memory cells and gates. The memory cells retain the output
of the current time step and manage long-term information, while the gates regulate the flow of information
into and out of the memory cell.

The architecture of LSTM is illustrated in Fig.5. The forget gate f; controls the extent to which
information from the previous cell state (c;_) is retained or discarded. The input gate (i;) determines which
new information is added to the cell state (c;). The output gate (o;) regulates the amount of information from
the updated cell state that is used to compute the hidden state (h;), which serves as the output and is
transmitted to the next LSTM unit. This gating mechanism allows selective updating or retention of information,
supporting the handling of long-term dependencies.

The formulas for the LSTM cell are represented from Equation (6) to Equation (11).

fe = 0(Wyrxe + Wyphe_q + by) (6)
iy = o(Wyixe + Wyihe_1 + by) (7)

¢ = tanh(Wyex; + Wyche—1 + b.) ()
G =fi Qe +ip O & )

0y = 0 Wyoxy + Wyohe—q + b,) (10)
he = 0 O tanh(cy) (11)

where:

o(+) is the sigmoid activation function, I is the weight matrix, b represents the bias vectors, and ©
denotes the dot product.
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Fig. 5 - Structure of the LSTM

Density-aware Channel Redistribution Unit (DCRU)

Throughout the different stages of tobacco curing, both the curing environment and the physical
attributes of tobacco leaves undergo dynamic changes. A Density-aware Channel Redistribution Unit (DCRU)
is employed to extract salient features and the main feature distribution at each stage.

As shown in Fig. 6, DCRU first aggregates information from different channels to obtain the global core
representation. Then the local series representation is fused with the core representation to achieve the indirect
interaction between channels. This interaction method takes advantage of both channel independence and
aggregated information, which enhances the representation of important features.

Given a multivariate series with C channels, DCRU first constructs a global core representation by
aggregating information across all channels. Each channel is processed through a multilayer perceptron
(MLP), which consists of two linear layers with GELU activation, to project the input from the original dimension
d to core dimension d'. To overcome the limitations of the STAR module, particularly its tendency to sample
only the most salient features while ignoring complex feature patterns, DCRU introduces a dual-path sampling
strategy to generate a more expressive core representation.

KDE sampling is applied along the channel dimension to estimate the distribution of channel-wise
feature importance. This density-aware approach captures complex patterns such as multi-modal and skewed
distributions, resulting in a probabilistic part of core representation Corey . € R4, with further details provided
in the following section. In parallel, stochastic sampling adopts the same strategy as STAR to capture key
discriminative features from channels and produces another part of core representation Coreg; ., € R?. These
two representations are concatenated to form the final core representationCore = [Coreyg,.; Coregioen] € RI+d
which effectively integrates both distributional characteristics and salient features to enhance the model’s
representational capacity.

KDE
Sampling ~ ) Core
o—
Stochastic = §
Sampling l
MLP Concat
input l Oﬂgﬂt

Fig. 6 - Architecture of the DCRU module

A key component of DCRU is the KDE-based sampling strategy, which estimates the distributional
patterns of channel-wise feature importance. The formulation and application of this mechanism are described
below. To estimate the distribution of channel-wise feature importance, KDE is applied along the channel
dimension. Given a feature vector {x;, x,, ..., x.} € R® representing the channel-wise activations of a sample,
the density at each value x is estimated by treating it as the query point. The KDE equation is presented in
Equation (12).

f@) =2 KE (12)

The bandwidth h; is treated as a learnable parameter in the model. This enables the KDE mechanism
to adaptively adjust its sensitivity to different channels. The kernel function K(-) is chosen to be the Gaussian
kernel.
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1 _12
K@) = =exp(— ;1) (13)
Substituting into the KDE formula yields the following expression for the density estimate at channel x.
] 1 1 —Xi
fO) = cEh e (=5 7)) (14)

The raw density scores are converted into a valid probability distribution by applying a softmax operation
over the channel density.

exp(f(x)) .
i = > ——, L= 1,2, ey C 1
Txb exp(F(xr) ! (13)

This distribution P is then used to guide the sampling of multiple informative channels. Specifically,
multinomial sampling is performed to select d channels, forming a new representation vector Corege.

Coregge = [X1, %2, ..., %3], wherex; ~P for i=1,..,d (16)

The core representation is subsequently fused with the local series representation, facilitating indirect
interactions across channels. This design preserves the independence of local features while enabling the
model to benefit from global contextual cues. Importantly, the KDE-based sampling strategy ensures
consistency between training and inference phases, thereby mitigating the performance instability observed in
STAR. Furthermore, by modeling the entire distribution of channel importance rather than focusing solely on
the most prominent channels, DCRU enhances the expressiveness and robustness of feature
representations—particularly under dynamic curing conditions.

RESULTS
Model evaluation index

In this paper, accuracy (ACC) is used to evaluate the recognition performance of the hybrid model
proposed. To account for the performance across all states equally, the macro-average of the precision
(Macro-PR), recall (Macro-RE), and F1-scores (Macro-F1) is used, as described in Equation (17) to Eq.(20).

TP+TN

ACC‘LLT’CI,C}/ = m (17)
N rp orpeaEp.
MacroPrecision = w (13)
N b P A EN,
MacroRecall = 2= TP/ FPiHFND (19)

N

2xMacroPrecision*MacroRecall
MacroF1 = (20)

MacroPrecison+MacroRecall

where N represents the total number of categories, i represents the index for each category, TP stands for
true positive, TN stands for true negative, FP stands for false positive, and FN stands for false negative.

Experimental configuration

The experiments were conducted on a PC running Windows, equipped with an Intel Core Ultra5 125H
CPU and an NVIDIA GeForce RTX 3080 GPU. Python 3.9.2 and the open-source software library PyTorch
were used to conduct the experiments.

The flowchart of the hybrid TCN-LSTM model is presented in Fig. 3. Three stacked of TCN are
employed to directly extract input features. Each block shares the same kernel size of 3, while the number of
filters increases across blocks: 32, 64, and 128, respectively. The dilation factors for the three blocks are set
to 1, 2, and 4, respectively. The core dimension of DCRU is set to 128, after which a max-pooling layer is
applied to reduce the feature dimensionality. The LSTM module consists of two layers, with the first layer
containing 64 units and the second layer 32 units. The model is optimized using the Adam optimizer, with an
initial learning rate of 5 x 10~*. A cosine learning rate scheduler is employed to adjust the learning rate
dynamically during training.

Architectural Analysis of the Hybrid TCN-LSTM model

To evaluate the comparative effectiveness of different model architectures in recognizing tobacco
curing states, a series of experiments were conducted using multiple deep learning frameworks. As shown in
Table 1, the standalone TCN and LSTM models achieved comparable performance, with TCN attaining an
accuracy of 0.963 and LSTM slightly lower at 0.962. When the two models were combined into a hybrid TCN-
LSTM framework, performance improved notably across all metrics, achieving an accuracy of 0.975 and a
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Macro-F1 score of 0.975. Further incorporating the STAR attention mechanism into the TCN-LSTM
architecture (TCN-STAR-LSTM) yielded additional gains, with accuracy increasing to 0.983 and Macro-F1
reaching 0.981, indicating the effectiveness of attention-based feature refinement. Finally, the proposed TCN-
DCRU-LSTM model outperformed all other models, achieving the highest accuracy of 0.989 and a Macro-F1
score of 0.988. These results demonstrate the superiority of our method in capturing complex temporal and
distributional features during tobacco curing state recognition.

Table 1
Different Models architecture

Model ACC Macro-PR Macro-RE Macro-F1
TCN 0.963 0.953 0.951 0.952
LSTM 0.962 0.961 0.958 0.959
TCN-LSTM 0.975 0.974 0.977 0.975
TCN-STAR-LSTM 0.983 0.980 0.982 0.981
TCN-DCRU-LSTM 0.989 0.989 0.987 0.988

Comparison with different model

To further evaluate the effectiveness of the proposed hybrid TCN-LSTM model for curing state
recognition, experiments were conducted on the proposed and compared models in this section. To ensure a
comprehensive evaluation, six baseline models were selected for comparison. The deep learning baselines
include Artificial Neural Networks (ANN), RNN, CNN, and the Transformer model. Additionally, the proposed
model was compared against traditional machine learning algorithms, including XGBoost and Support Vector
Machines (SVM). The ANN model was implemented as a multilayer perceptron (MLP) with three hidden layers
comprising 128, 64, and 32 units, respectively. The RNN model consists of three hidden layers with 64, 64,
and 32 units. The CNN model includes two convolutional layers followed by a fully connected layer. The
Transformer model adopts a two-layer encoder structure, with each layer containing four attention heads and
an embedding dimension of 128. For XGBoost, the maximum tree depth was set to 4, and the number of estimators
was 90. For SVM, the radial basis function kernel was used, with the regularization parameter C set to 1.

Table 2
Result of different models

Model ACC Macro-PR Macro-RE Macro-F1
XVM 0.905 0.895 0.879 0.887
XGboost 0.915 0.894 0.901 0.897
ANN 0.935 0.927 0.912 0.919
CNN 0.955 0.945 0.946 0.945
RNN 0.947 0.935 0.931 0.933
Transformer 0.960 0.956 0.957 0.956
Hybrid TCN-LSTM 0.989 0.989 0.987 0.988

Table 2 presents the result of the evaluation metrics for the prediction performance of each model. In
terms of prediction performance, it is evident that the proposed model outperforms all other models. The SVM
achieves favorable results with 0.905 ACC, 0.895 Macro-PR, 0.879 Macro-RE, and 0.887 Macro-F1. The
XGboost performs slightly better than SVM, achieving an ACC of 0.915, a Macro-PR of 0.894, a Macro-RE of
0.901, and a Macro-F1 of 0.897. The deep learning models significantly outperform the machine learning
models. The ANN achieves an ACC of 0.935, a Macro-PR of 0.927, a Macro-RE of 0.912, and a Macro-F1 of
0.919. It can be observed that all deep learning models perform well in recognizing the curing state. However,
a considerable number of incorrect recognitions still occur. For instance, the RNN achieves an ACC of 0.947,
a Macro-PR of 0.935, a Macro-RE of 0.931, and a Macro-F1 of 0.933. Similarly, the CNN achieves an ACC of
0.955, a Macro-PR of 0.945, a Macro-RE of 0.946, and a Macro-F1 of 0.945. The Transformer performs slightly
better, reaching an ACC of 0.960, a Macro-PR of 0.956, a Macro-RE of 0.957, and a Macro-F1 of 0.956.

The test results are shown in Fig. 7b), where the misclassified categories are mainly distributed among
those with similar ground true classes, although there are still a considerable number of errors. The results of
the Hybrid TCN-LSTM model are shown in Fig. 7a), with only 38 misclassifications across all labels.
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In summary, the results presented in Table 2 clearly demonstrate the superior performance of the
proposed hybrid TCN-LSTM model. Compared to both traditional machine learning models and advanced
deep learning architectures, the hybrid TCN-LSTM consistently achieves the highest scores across all
evaluation metrics. With an accuracy of 0.989 and a Macro-F1 score of 0.988, the model not only captures
long-term dependencies and distributes patterns but also effectively integrates fine-grained local features.
These findings confirm the robustness, expressiveness, and practical applicability of the proposed approach
in the complex task of tobacco curing state recognition.

Comparison with related studies

Table 3 presents the results of the comparison conducted between the proposed model and other
advanced methods, which were based on different sets of original data. Specifically, the recognition
performance of hybrid TCN-LSTM model was compared with that of SRFM, GA-SVM, TFSNet, and CPBM.
The results show that GA-SVM had the lowest ACC, with a value of 0.965. This was followed by the SRFM
model, which attained an ACC of 0.974. Next, the CPBM model achieved better performance, with an ACC of
0.984. In comparison, the TFSNet model achieved an ACC of 0.987. The hybrid TCN-LSTM outperformed the
other methods and achieved the highest ACC of 0.989. The results illustrate that the introduction of DCRU
module can improve the recognition accuracy for tobacco curing state. In summary, the proposed hybrid TCN-
LSTM can exhibit better recognition performance.

Table 3
Comparison with related studies
Model ACC Macro-PR Macro-RE Macro-F1
SRFM(LSTM-XGboost)(Wang & Qin, 2022) 0.974 0.952 0.936 0.943
GA-SVM(Wu, 2016) 0.965 / / /
CBPM (data fusion based XGboost)(Pei et 0.984 0.986 0.982 0.984
al., 2024)
TFSNet (CNN) (Xiong et al., 2024) 0.987 / / /
Hybrid TCN-LSTM 0.989 0.989 0.987 0.988

Practical Applicability Demonstration and Testing

To further demonstrate the practical applicability of the proposed method, the trained hybrid TCN-
LSTM model was deployed on an upper-computer platform designed for tobacco curing state monitoring. The
system was implemented in a Windows environment, featuring a graphical interface for real-time data
visualization. Test data streams, identical to those used in the evaluation phase, were fed into the system to
validate its end-to-end recognition performance.

The results showed that the model could process input sequences in real time, with an average
inference latency of 146 ms per sample. The recognized curing states were automatically displayed on the
interface, enabling operators to intuitively monitor stage transitions throughout the curing process.

Fig.8 illustrates an example of the upper-computer interface output, where the predicted states closely
match the ground truth labels provided by experts.
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This system-level validation demonstrates that the proposed model is not only theoretically effective
but also practically deployable in real-world operational environments, enabling automated recognition of
tobacco curing stages when deployed on cloud or edge devices.

Current image Previous Images

F|98 - heal-time interface displaying tobacco curing state recognition result.

CONCLUSIONS

This study investigates the effectiveness of leveraging sequential data and hybrid models to recognize
the states of tobacco curing. To address the challenges posed by sequential data and multiple features, a
hybrid model based on TCN and LSTM was developed, demonstrating an effective ability to capture intricate
features from data collected in the curing barn. Furthermore, the introduction of the DCRU module provides
additional improvements in accuracy and robustness, underscoring the potential of the proposed approach in
complex prediction tasks.

Experiments were conducted on real data from tobacco stations and the results were compared with
other models. The experimental results demonstrate that the ACC of the hybrid TCN-LSTM model reached
0.989, demonstrating superior performance compared to traditional deep learning methods and existing
tobacco leaf curing prediction models. At the same time, the effectiveness of the model was validated during
practical testing. These findings indicate that the proposed tobacco curing states recognition model can
effectively extract meaningful features from the complex data of the curing room and tobacco leaves.
Compared to traditional methods, the proposed approach exhibits a significant advantage in recognition
accuracy, offering high practical value and contributing to the automation and standardization of tobacco leaf
curing.

Future research could explore the use of multi-source data, such as the concentration of chemicals
inside the curing room and the humidity at the ventilation outlets of the curing room. Additionally, the potential
applications of the model across different domains, such as the drying of fruits, vegetables, and herbs, could
be further investigated.
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