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ABSTRACT  

To achieve mobile deployment of corn leaf disease detection, this study proposes a lightweight method, 

YOLOv8n-LSCSBD. The Lightweight Shared Convolutional Separable Batch normalization Detection 

(LSCSBD) is used to achieve cross-scale feature sharing convolution and independent normalization, thereby 

reducing computational complexity and preserving detection accuracy. Comparisons of YOLOv8 training 

strategies show that using YOLOv8n as the initial model, with a learning rate of 1e-2 and an optimizer of SGD, 

yields the best performance. Comparisons of different detection head schemes show that YOLOv8n-LSCSBD 

reduces the model size by 20.6% (to 5.0MB) compared to the original YOLOv8n model. When compared to 

YOLOv10n and YOLOv11n, the model size decreased by 13.8% and 9.1%, respectively. Notably, YOLOv8n-

LSCSBD achieves P of 97.6%, R of 95.4%, mAP@0.5 of 97.7%, and mAP@0.5:0.95 of 87.3%. This method 

provides an efficient lightweight solution for mobile device deployment. 

 

摘要 

为实现玉米叶病的移动端部署检测，本研究提出 YOLOv8n-LSCSBD 轻量化检测方法。该方法通过轻量级共享卷积

可分离批量归一化检测头（LSCSBD），实现跨尺度特征共享卷积与独立归一化，在减少计算量的同时保留检测精

度。对比 YOLOv8 不同训练策略显示，使用 YOLOv8n 作为初始模型，学习率和优化器分别设置为 1e-2 和 SGD 时

性能最佳。对比不同检测头方案显示，使用 LSCSBD 较原始 YOLOv8n 模型大小下降了 20.6%至 5.0MB。与

YOLOv10n 和 YOLOv11n 相比，模型大小分别下降了 13.8%和 9.1%。YOLOv8n-LSCSBD 的 P、R、mAP@0.5 和

mAP@0.5:0.95 分别达到了 97.6%、95.4%、97.7%和 87.3%。该方法为移动端高效部署提供了轻量化解决方案。 

 

INTRODUCTION 

 As one of the three major food crops in the world (Farooq et al., 2023; Khaki et al., 2020; Yang et al., 

2024), the yield and quality of corn are directly related to food security and agricultural economic development 

(Song et al., 2023; Cui et al., 2023). According to the Food and Agriculture Organization of the United Nations 

(FAO), disease outbreaks can lead to a loss ranging from 20% to 40% in maize yield (FAO, 2020). There are 

many types of corn diseases worldwide that are difficult to detect, among which leaf diseases such as leaf 

blight disease, gray leaf spot disease, and rust disease are the most common (ZibanI et al., 2022). Traditional 

disease detection mainly relies on field inspections by agricultural technicians. These inspections are limited 

by subjective experience, high workload, and environmental conditions, resulting in low detection efficiency, 

strong time lag, and limited coverage. These issues make it difficult to meet the demands of modern agricultural 

precision management. 

 In recent years, breakthroughs in deep learning technology in the field of computer vision have 

provided a new paradigm for agricultural disease detection (Shao et al., 2022). Sun et al. proposed a multi-

scale feature fusion instance detection method based on convolutional neural network (CNN) for detecting 

maize leaf blight, achieving an mAP of 91.83%, which was about 20% higher than the original SSD algorithm 

(Sun et al., 2020). Zhang et al. optimized CNN using multiple activation function (MAF) module to detect maize 

leaf diseases. They employed transfer learning and warm-up methods to accelerate training, improving the 

accuracy of traditional artificial intelligence methods (Zhang et al., 2021). Chen et al. proposed a lightweight 

corn disease recognition model, DFCANet (dual fusion block with coordinate attention network), achieving an 

average recognition accuracy of 98.47% (Chen et al., 2022).  
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 Bi et al. proposed the CD-Mobilenetv3 model to identify maize leaf diseases, replacing the SE module 

of the original model with the EAC module, and introducing dilated convolution into the model (Bi et al., 2023). 

The accuracy on open source datasets reached as high as 98.23%. Su et al. improved the YOLOv5 algorithm 

by adding a CA attention mechanism, replacing the original PANet with BiFPN, and introducing the Focal IoU 

Loss function (Su et al., 2023). The improved algorithm enhanced performance with only a minimal increase 

in complexity. Dai et al. proposed a Multi-Task Deep-Learning-Based System for Enhanced Precision 

Detection and Diagnosis of Corn Leaf Diseases (MTDL-EPDCLD) to enhance the detection and diagnosis of 

corn leaf disease, and developed a mobile application using the cross platform software development 

framework Qt (Dai et al., 2023). Song et al. proposed a high-precision detection method based on attention 

generative adversarial networks (GANs) and few shot learning (Song et al., 2023). GANs are used to expand 

data and generate more training samples. Attention mechanisms are introduced to enable the model to focus 

more on important parts of the image, thereby improving model performance. Zhang et al. used transfer 

learning methods to retrain and fine-tune the MoblieNetV2 model on the corn disease dataset, achieving a 

final test accuracy of 96.83% (Zhang et al., 2022). The optimized corn disease recognition model was applied 

to application development. 

 The above studies indicate that object detection models based on deep learning significantly improve 

the accuracy and efficiency of disease recognition by automatically extracting image features (Redmon et al., 

2018; Ren et al., 2017). However, existing models are often designed for laboratory environments and face 

challenges such as large model size and high computational resource consumption when directly deployed on 

mobile devices (such as smartphones and drones). This makes it difficult to achieve real-time detection and 

offline deployment in field scenarios (Howard et al., 2017). Therefore, researching an efficient and accurate 

lightweight detection model for corn leaf disease adapted to mobile devices has become the key to breaking 

through the bottlenecks of traditional detection methods and promoting the implementation of smart agriculture. 

 With fast inference speed, high detection accuracy, and convenient training process, the YOLOv8 

model released by Ultralytics becomes a potential foundational model for mobile detection (Hussain et al., 

2023). Its efficient inference capability can alleviate the limitations of mobile computing resources, while high 

accuracy can meet the requirements for precise detection. To further reduce model size and power 

consumption, this study will conduct lightweight improvements on YOLOv8. The goal is to develop a real-time 

detection system for corn leaf disease that is compatible with portable intelligent detection devices, thereby 

providing technical support for the implementation of smart agriculture. 

 

MATERIALS AND METHODS 

Dataset construction 

 In this study, corn leaf disease images from the PlantDoc dataset (Singh et al., 2020) were selected 

as the experimental dataset. The dataset includes 116 images of corn leaf blight, 70 images of corn gray leaf 

spot, and 114 images of corn rust. Fig. 1 shows sample images of different leaf diseases. 

 

 

(a) corn leaf blight 

 

(b) corn gray leaf spot 

 

(c) corn rust 

Fig. 1 - Sample images of different leaf diseases 

 

To address the potential issues of model convergence difficulties and overfitting caused by insufficient 

training data, various image augmentation techniques (such as scaling and cropping, color tone, saturation, 

and brightness random adjustments) were employed to expand the corn disease image dataset. The expanded 

dataset contains 1470 images (486 for leaf blight disease, 500 for gray leaf spot disease, and 484 for rust 

disease). The dataset was divided into training, validation, and test sets in an 8:1:1 ratio, and the numbers of 

different disease labels in each dataset are shown in Table 1. 
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Table 1 

Number of annotations of different diseases 

Disease Training set Validation set Test set Total 

corn leaf blight 813 71 96 980 

corn gray leaf spot 529 56 72 657 

corn rust 453 56 50 559 

Total 1795 183 218 2196 

 

Improved YOLOv8 Model 

Based on the advantages of speed and accuracy of YOLOv8 model, the lightweight version YOLOv8n 

is chosen as the base model in this paper. To achieve lightweight detection of corn leaf diseases, the 

Lightweight Shared Convolutional Separable Batch normalization Detection (LSCSBD) is employed to optimize 

the detection head component. 

 YOLOv8 model 

The YOLOv8 model adopts the classic three-stage structure of "Backbone-Neck-Head" for object 

detection. The backbone network is responsible for fundamental feature extraction, the neck network performs 

multi-scale feature fusion, and the detection head performs object detection based on the fused features. Fig. 

2 shows the architecture of the YOLOv8 model. 

Input: Denotes the input RGB images with a fixed resolution of 640×640 pixels.  

ConvModule: Represents a convolutional module consisting of 2D convolution, batch normalization, 

and SiLU activation, responsible for basic feature transformation and nonlinear enhancement.  

C2f: Refers to the improved C3 module with enhanced gradient flow; it splits feature maps into two 

branches for partial fusion, balancing computational efficiency and feature integrity.  

SPFF: Stands for Spatial Pyramid Feature Fusion, a multi-scale pooling module that aggregates 

contextual information to capture objects of different sizes.  

PAN-FPN: Indicates the hybrid feature fusion architecture combining Path Aggregation Network (PAN) 

and Feature Pyramid Network (FPN), enabling bidirectional feature transmission. 

Detect: Denotes the detection head module in the model, which is responsible for outputting final 

detection results (including object categories, bounding box coordinates, and objectness scores). 
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Fig. 2 - YOLOv8 network structure 
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The key design of YOLOv8 model includes:  

(1) Backbone: Based on the CSP (Cross Stage Partial) concept, ConvModule, C2f, and SPFF 

modules are integrated to improve feature extraction efficiency while ensuring stability.  

(2) Neck: Drawing on the PAN-FPN architecture, the convolution in the upsampling stage is simplified, 

and C2f is used, optimizing the feature fusion process.  

(3) Head: The Detect module adopts a decoupled head structure to separate classification and 

detection tasks, effectively capturing multi-scale targets and improving detection accuracy. 

Detect_LSCSBD 

The detection head is a core component of the model, responsible for predicting the class and location 

information of targets from feature maps. The YOLOv8 detection head adopts an anchor-free design, reducing 

the computational load associated with anchor generation and enhancing the detection ability for targets of 

different shapes and sizes. As shown in Fig. 2, the neck network performs multi-scale feature fusion, extracting 

information from P3, P4, and P5 feature layers to generate multi-scale feature maps for multi-scale target 

detection by the detection head. Additionally, the classification and regression tasks are decoupled in the 

detection head, employing Binary Cross-Entropy (BCE) loss for classification and Complete Intersection over 

Union (CIoU) loss for regression, combined with task alignment matching strategies to further optimize 

detection performance.  

Although the YOLOv8 detection head performs well, its computational load and complexity constrain 

real-time deployment. To address this, the LSCSBD is used to improve the detection head, called 

Detect_LSCSBD. As shown in Fig.3, the key design of the detection head is as follows: 

(1) Multi-scale feature preprocessing: For the P3/P4/P5 multi-scale features output by the neck 

network, Detect_LSCSBD employs independent 1x1 convolution to achieve channel dimensionality reduction 

and feature calibration. This design preserves the independence of features at each scale, thereby avoiding 

the loss of small target information caused by direct mixing of cross scale features. 

(2) Shared Convolution and Normalization: Detect_LSCSBD uses two sets of shared 3×3 

convolution kernels to process multi-scale features, significantly reducing the number of parameters through 

parameter reuse and forcing cross-scale feature learning of universal patterns. Each scale is equipped with 

an independent normalization layer to ensure that the distributions of features at different scales are calibrated 

separately, ensuring training stability. 

(3) Task decoupling and scale adaptation: Classification and regression tasks are decoupled 

through independent branches, reducing mutual interference. For the different receptive field characteristics 

of P3/P4/P5, independent scale adjustment modules (Scale) are designed to ensure adaptability for detecting 

objects of different sizes. 

Conv

1*1

Conv

1*1

Conv

1*1

P3

P4

P5

Shared Conv

3*3

BatchNorm2d
Conv_Reg Scale

Conv_Cls 

BatchNorm2d
Conv_Reg Scale

Conv_Cls 

BatchNorm2d
Conv_Reg Scale

Conv_Cls x2

Not shareShare
 

Fig. 3 - Detect_LSCSBD Structure 

 

Experimental Platform and Network Parameter Settings 

This study was conducted on the Windows 11 operating system. The hardware configuration includes 

an Intel Core i5 processor, 16GB of RAM, and an NVIDIA GeForce RTX3050Ti GPU. The programming 

language used is Python 3.12.7, with PyCharm serving as the integrated development environment (IDE) for 

Python. The deep learning framework employed is PyTorch with CUDA version 12.4. 

The key training parameters for the experiments are set as follows: input image size is uniformly scaled 

to 640 × 640 pixels. The number of training epochs is set to 200. The range for random scaling augmentation 

of images is set to 0.9 (i.e. the image size is randomly adjusted within a range of 0.9 times the original size). 

The application probability of mosaic data augmentation strategy is set to 100%. 
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Model evaluation metrics 

To evaluate the performance of the model, several metrics are employed, including Precision (P), 

Recall (R), P-R curve, mean Average Precision (mAP), and model size. Precision (P) measures the accuracy 

of model predictions, and a high precision means that the model has fewer false positives when predicting 

targets. The calculation formula is shown in equation (1): 

TP
P=

TP+FP
                         (1) 

where: TP (True Positive) represents the number of correctly predicted positive samples, and FP (False 

Positive) represents the number of incorrectly predicted positive samples. 

Recall (R) measures the completeness of the model's targets detection, and a high recall means that 

the model can discover as many targets as possible, reducing false negatives. The calculation formula is 

shown in equation (2): 

TP
R=

TP+FN                          (2) 

where: FN (False Negative) represents the number of positive samples incorrectly predicted as negative. 

The P-R curve is constructed by plotting P values against their corresponding R values across different 

decision thresholds, directly reflecting the dynamic trade-off between the two metrics. 

The mAP comprehensively considers the average detection accuracy of the model across multiple 

classes. For each class, Average Precision (AP) is computed as the area under the P-R curve, and mAP is 

the mean of AP values across all classes, serving as a core metric for overall performance in object detection. 

Model size refers to the storage space required by the detection model (usually measured in MB). A smaller 

model can be adapted to devices with limited resources, thereby reducing hardware costs and improving real-

time performance, which meets the requirements of lightweight deployment. 

 

RESULTS 

Comparative analysis of training strategies 

Learning rate, optimizer, and pre-trained weights are core parameters in the training process, directly 

influencing the convergence speed, detection accuracy, and generalization ability of the model. This 

experiment conducts comparative analysis from these three dimensions to provide a basis for parameter 

selection and model optimization. 

Performance analysis of different learning rates 

 The learning rate plays a crucial regulatory role in balancing model lightweight process and high 

accuracy, and its impact on model convergence stability and high precision is fully tested. To analyze the 

performance differences of YOLOv8 under different learning rates, the Stochastic Gradient Descent (SGD) 

algorithm was chosen as the optimizer, with learning rates set to 1e-4, 1e-3, 1e-2, and 1e-1, respectively. 

As shown in Table 2, when the learning rate was 1e-4, underfitting was caused by slow updates, 

resulting in an mAP@0.5:0.95 of only 0.712. Conversely, when the learning rate was 1e-1, instability was 

caused by a large step size, yielding an mAP@0.5:0.95 of only 0.755. The performance was similar for learning 

rates of 1e-3 and 1e-2, but the overall performance at 1e-2 was superior to that at 1e-3. Therefore, a learning 

rate of 1e-2 was used for subsequent training in this experiment. 

Table 2 

Detection results of different learning rates 
Learning rate Categories P R mAP@0.5 mAP@0.5:0.95 

1e-4 

Corn leaf blight 0.82 0.69 0.829 0.571 

Corn gray leaf spot 0.954 0.746 0.883 0.769 

Corn rust leaf 0.919 0.87 0.917 0.794 

all 0.898 0.769 0.876 0.712 

1e-3 

Corn leaf blight 0.918 0.893 0.939 0.781 

Corn gray leaf spot 0.983 0.935 0.971 0.891 

Corn rust leaf 0.962 0.942 0.981 0.89 

all 0.954 0.924 0.964 0.854 

1e-2 

Corn leaf blight 0.928 0.921 0.961 0.802 

Corn gray leaf spot 1 0.965 0.979 0.914 

Corn rust leaf 0.981 0.981 0.991 0.905 

all 0.97 0.956 0.977 0.874 
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Learning rate Categories P R mAP@0.5 mAP@0.5:0.95 

1e-1 

Corn leaf blight 0.847 0.759 0.834 0.612 

Corn gray leaf spot 0.944 0.841 0.937 0.807 

Corn rust leaf 0.975 0.889 0.964 0.846 

all 0.922 0.83 0.912 0.755 

 

Performance analysis of different optimizers 

Different optimizers use different algorithms to update model parameters, which have a significant 

impact on model performance. The experiment compared SGD, AdamW, and NAdam. 

As shown in Table 3, in the corn leaf disease detection experiment (dataset: corn leaf disease images 

from PlantDoc, fixed hyperparameters:1e-2 learning rate), the SGD optimizer demonstrated significantly 

superior performance across all metrics compared to AdamW and NAdam. It particularly exhibited strong data 

fitting capabilities and efficient convergence across various categories during detection. Therefore, the SGD 

optimizer was used for subsequent training in this experiment.  

 Table 3 

Detection results of different optimizers 
Optimizer Categories P R mAP@0.5 mAP@0.5:0.95 

AdamW 

Corn leaf blight 0.868 0.857 0.904 0.689 

Corn gray leaf spot 0.949 0.887 0.958 0.827 

Corn rust leaf 0.919 0.907 0.949 0.867 

all 0.912 0.884 0.937 0.795 

NAdam 

Corn leaf blight 0.859 0.786 0.87 0.663 

Corn gray leaf spot 0.964 0.847 0.939 0.797 

Corn rust leaf 0.956 0.907 0.954 0.846 

all 0.927 0.847 0.921 0.768 

SGD 

Corn leaf blight 0.928 0.921 0.961 0.802 

Corn gray leaf spot 1 0.965 0.979 0.914 

Corn rust leaf 0.981 0.981 0.991 0.905 

all 0.97 0.956 0.977 0.874 

 

Performance analysis of different pre-trained weight models 

To evaluate the effect of various pre-trained weights on the transfer learning performance of YOLOv8 

model, the variants of YOLOv8 (n/s/m/l/x) were used for comparative experiments. The variants of YOLOv8 

belong to the same generation of iterative designs (not multi-generation iterations) and have a "scaled-up" 

relationship. This scaling is achieved by adjusting the network’s depth (number of layers) and width (number 

of feature channels), while the core architecture remains unchanged. They mainly differ in model scale, 

computational cost, and detection performance. 

As shown in Table 4, the P, R, mAP@0.5, and mAP@0.5:0.95 of YOLOv8n achieved 0.97, 0.956, 

0.977, and 0.874, respectively. YOLOv8n demonstrated significantly superior performance metrics across both 

individual categories and overall results compared to the s \ m \ l \ x, demonstrating a good balance between 

lightweight and high precision. Therefore, YOLOv8n is the optimal pre-trained weight model for this 

experimental dataset.  

Table 4 
Detection results of different pre-trained weight models 

Model Categories P R mAP@0.5 mAP@0.5:0.95 

YOLOv8n 

Corn leaf blight 0.928 0.921 0.961 0.802 

Corn gray leaf spot 1 0.965 0.979 0.914 

Corn rust leaf 0.981 0.981 0.991 0.905 

all 0.97 0.956 0.977 0.874 

YOLOv8s 

Corn leaf blight 0.888 0.777 0.867 0.652 

Corn gray leaf spot 0.91 0.889 0.945 0.826 

Corn rust leaf 0.936 0.926 0.973 0.874 

all 0.911 0.864 0.929 0.784 

YOLOv8m 

Corn leaf blight 0.902 0.768 0.878 0.67 

Corn gray leaf spot 0.949 0.886 0.957 0.843 

Corn rust leaf 0.943 0.926 0.967 0.855 

all 0.931 0.86 0.934 0.789 
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Model Categories P R mAP@0.5 mAP@0.5:0.95 

YOLOv8l 

Corn leaf blight 0.802 0.786 0.818 0.599 

Corn gray leaf spot 0.919 0.896 0.956 0.816 

Corn rust leaf 0.964 0.889 0.943 0.837 

all 0.895 0.857 0.906 0.751 

YOLOv8x 

Corn leaf blight 0.918 0.741 0.874 0.649 

Corn gray leaf spot 0.973 0.841 0.958 0.858 

Corn rust leaf 0.976 0.926 0.962 0.849 

all 0.956 0.836 0.931 0.786 

 

Comparative analysis of different detection heads 

By adjusting the detection head in terms of its structure design, feature utilization, and computational 

efficiency, model size can be compressed using lightweight techniques while maintaining accuracy. This 

project compared the performance of RSCD, LSCD, and LSCSBD detection head optimization models. 

As indicated in Table 5, the RSCD, LSCD, and LSCSBD models were each smaller than the original 

YOLOv8 model by 17.5%, 20.6%, and 20.6% respectively. The model using RSCD detection head showed 

decreases in P, R mAP@0.5 and mAP@0.5 0.95. The model using LSCD detection head showed decreases 

in R, mAP@0.5, and mAP@0.5:0.95. The model with LSCSBD reduced the model size by 20.6% (to 5.0 MB), 

with performance metrics comparable to those of YOLOv8, making it the optimal solution balancing 

“lightweight” and “high accuracy”. 

Table 5 
Detection results of different detection heads 

Detection head Categories P R mAP@0.5 mAP@0.5:0.95 Model size/MB 

Original 

Corn leaf blight 0.928 0.921 0.961 0.802 

6.3 
Corn gray leaf spot 1 0.965 0.979 0.914 

Corn rust leaf 0.981 0.981 0.991 0.905 

all 0.97 0.956 0.977 0.874 

RSCD 

Corn leaf blight 0.962 0.895 0.954 0.799 

5.2 
Corn gray leaf spot 0.967 0.968 0.968 0.9 

Corn rust leaf 0.948 0.981 0.989 0.89 

all 0.959 0.948 0.97 0.863 

LSCD 

Corn leaf blight 0.947 0.902 0.936 0.781 

5.0 
Corn gray leaf spot 0.993 0.968 0.985 0.928 

Corn rust leaf 0.981 0.977 0.987 0.904 

all 0.974 0.949 0.969 0.871 

LSCSBD 

Corn leaf blight 0.945 0.938 0.961 0.799 

5.0 
Corn gray leaf spot 0.984 0.946 0.982 0.928 

Corn rust leaf 1 0.978 0.99 0.891 

all 0.976 0.954 0.977 0.873 

 

To better evaluate the performance of detection models, the results of optimizing models for different 

detection heads were visualized. As shown in Fig. 4, different detection heads can effectively identify different 

leaf diseases, and LSCSBD has better detection accuracy than RSCD and LSCD. 

Original Image 

   

YOLOv8n 
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YOLOv8n-RSCD 

   

YOLOv8n-LSCD 

   

YOLOv8n-LSCSBD 

   

 (a) corn leaf blight   (b) corn gray leaf spot (c) corn rust 

Fig. 4 - Visual comparison of different detection heads 

 

Comparative analysis of different network models 

The YOLO series models continue to iterate in the field of object detection, and different versions have 

been optimized in terms of accuracy, speed, and model size. To compare the effectiveness of the improved 

model more clearly, the performance of YOLOv8n, YOLOv10n, YOLOv11n, and YOLOv8n-LSCSBD were 

compared. 

As shown in Table 6, the YOLOv8n-LSCSBD model performs best in all performance metrics. The 

model size of YOLOv8n-LSCSBD decreased by 20.6%, 13.8%, and 9.1% compared to YOLOv8n, YOLOv10n, 

and YOLOv11n, respectively. 

Table 6 
Detection results of different models 

Model Categories P R mAP@0.5 mAP@0.5:0.95 Model size/MB 

YOLOv8n 

Corn leaf blight 0.82 0.69 0.829 0.571 

6.3 
Corn gray leaf spot 0.954 0.746 0.883 0.769 

Corn rust leaf 0.919 0.87 0.917 0.794 

all 0.898 0.769 0.876 0.712 

YOLOv10n 

Corn leaf blight 0.807 0.485 0.679 0.497 

5.8 
Corn gray leaf spot 0.864 0.714 0.827 0.725 

Corn rust leaf 0.795 0.815 0.871 0.779 

all 0.822 0.671 0.792 0.667 

YOLOv11n 

Corn leaf blight 0.866 0.69 0.814 0.567 

5.5 
Corn gray leaf spot 0.965 0.794 0.914 0.784 

Corn rust leaf 0.934 0.87 0.924 0.809 

all 0.922 0.785 0.884 0.72 

YOLOv8n-LSCSBD 

Corn leaf blight 0.945 0.938 0.961 0.799 

5.0 
Corn gray leaf spot 0.984 0.946 0.982 0.928 

Corn rust leaf 1 0.978 0.99 0.891 

all 0.976 0.954 0.977 0.873 

 

To better evaluate the performance of detection models, the results of different models were visualized. 

As shown in Fig. 5, YOLOv8n-LSCSBD has a good detection effect on different leaf diseases. 
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Original Image 
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YOLOv10n 

   

YOLOv11n 

   

YOLOv8n+LSCSBD 

   

 (a) corn leaf blight (b) corn gray leaf spot (c) corn rust  

 Fig. 5 - Visual comparison of different models  
 

 

 

CONCLUSIONS 

(1) A lightweight detection model YOLOv8n-LSCSBD was proposed. This design utilizes cross scale 

shared convolution parameter reuse, independent normalization layer calibration, and task decoupling to 

reduce computational and parameter complexity while maintaining detection accuracy and improving real-time 

deployment efficiency. 

(2) By comparing different learning rates (1e-4, 1e-3, 1e-2, 1e-1), optimizers (SGD, AdamW, NAdam), 

and pre training weights (YOLOv8n, s, m, l, x), the optimal training strategy was determined. The optimal 

combination was identified as a learning rate of 1e-2, optimizer of SGD, and pre-trained weight of YOLOv8n, 

which improved mAP@0.5 0.95 by 1.8% compared to the default configuration. 

(3) Comparisons among different detection head schemes showed that the LSCSBD model reduced 

the model size to 5.0 MB. Furthermore, the performance metrics of YOLOv8n-LSCSBD were on par with the 

original YOLOv8.  

Compared to YOLOv8n, YOLOv10n, and YOLOv11n, the YOLOv8n-LSCSBD model achieved size 

reductions of 20.6%, 13.8%, and 9.1%, respectively, while its mAP@0.5:0.95 improved by 16.1, 20.6, and 15.3 

percentage points, respectively. This validates the comprehensive advantages of the lightweight design in 

accuracy and efficiency. 
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