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ABSTRACT

To achieve mobile deployment of corn leaf disease detection, this study proposes a lightweight method,
YOLOv8n-LSCSBD. The Lightweight Shared Convolutional Separable Batch normalization Detection
(LSCSBD) is used to achieve cross-scale feature sharing convolution and independent normalization, thereby
reducing computational complexity and preserving detection accuracy. Comparisons of YOLOvVS8 training
strategies show that using YOLOv8n as the initial model, with a learning rate of 1e-2 and an optimizer of SGD,
yields the best performance. Comparisons of different detection head schemes show that YOLOv8n-LSCSBD
reduces the model size by 20.6% (to 5.0MB) compared to the original YOLOv8n model. When compared to
YOLOv10n and YOLOv11n, the model size decreased by 13.8% and 9.1%, respectively. Notably, YOLOv8n-
LSCSBD achieves P of 97.6%, R of 95.4%, mAP@0.5 of 97.7%, and mAP@0.5:0.95 of 87.3%. This method
provides an efficient lightweight solution for mobile device deployment.
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INTRODUCTION

As one of the three major food crops in the world (Farooq et al., 2023; Khaki et al., 2020; Yang et al.,
2024), the yield and quality of corn are directly related to food security and agricultural economic development
(Song et al., 2023; Cui et al., 2023). According to the Food and Agriculture Organization of the United Nations
(FAQ), disease outbreaks can lead to a loss ranging from 20% to 40% in maize yield (FAO, 2020). There are
many types of corn diseases worldwide that are difficult to detect, among which leaf diseases such as leaf
blight disease, gray leaf spot disease, and rust disease are the most common (Zibanl et al., 2022). Traditional
disease detection mainly relies on field inspections by agricultural technicians. These inspections are limited
by subjective experience, high workload, and environmental conditions, resulting in low detection efficiency,
strong time lag, and limited coverage. These issues make it difficult to meet the demands of modern agricultural
precision management.

In recent years, breakthroughs in deep learning technology in the field of computer vision have
provided a new paradigm for agricultural disease detection (Shao et al., 2022). Sun et al. proposed a multi-
scale feature fusion instance detection method based on convolutional neural network (CNN) for detecting
maize leaf blight, achieving an mAP of 91.83%, which was about 20% higher than the original SSD algorithm
(Sun et al., 2020). Zhang et al. optimized CNN using multiple activation function (MAF) module to detect maize
leaf diseases. They employed transfer learning and warm-up methods to accelerate training, improving the
accuracy of traditional artificial intelligence methods (Zhang et al., 2021). Chen et al. proposed a lightweight
corn disease recognition model, DFCANet (dual fusion block with coordinate attention network), achieving an
average recognition accuracy of 98.47% (Chen et al., 2022).
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Bi et al. proposed the CD-Mobilenetv3 model to identify maize leaf diseases, replacing the SE module
of the original model with the EAC module, and introducing dilated convolution into the model (Bi et al., 2023).
The accuracy on open source datasets reached as high as 98.23%. Su et al. improved the YOLOVv5 algorithm
by adding a CA attention mechanism, replacing the original PANet with BiFPN, and introducing the Focal loU
Loss function (Su et al., 2023). The improved algorithm enhanced performance with only a minimal increase
in complexity. Dai et al. proposed a Multi-Task Deep-Learning-Based System for Enhanced Precision
Detection and Diagnosis of Corn Leaf Diseases (MTDL-EPDCLD) to enhance the detection and diagnosis of
corn leaf disease, and developed a mobile application using the cross platform software development
framework Qt (Dai et al., 2023). Song et al. proposed a high-precision detection method based on attention
generative adversarial networks (GANs) and few shot learning (Song et al., 2023). GANs are used to expand
data and generate more training samples. Attention mechanisms are introduced to enable the model to focus
more on important parts of the image, thereby improving model performance. Zhang et al. used transfer
learning methods to retrain and fine-tune the MoblieNetV2 model on the corn disease dataset, achieving a
final test accuracy of 96.83% (Zhang et al., 2022). The optimized corn disease recognition model was applied
to application development.

The above studies indicate that object detection models based on deep learning significantly improve
the accuracy and efficiency of disease recognition by automatically extracting image features (Redmon et al.,
2018; Ren et al., 2017). However, existing models are often designed for laboratory environments and face
challenges such as large model size and high computational resource consumption when directly deployed on
mobile devices (such as smartphones and drones). This makes it difficult to achieve real-time detection and
offline deployment in field scenarios (Howard et al., 2017). Therefore, researching an efficient and accurate
lightweight detection model for corn leaf disease adapted to mobile devices has become the key to breaking
through the bottlenecks of traditional detection methods and promoting the implementation of smart agriculture.

With fast inference speed, high detection accuracy, and convenient training process, the YOLOv8
model released by Ultralytics becomes a potential foundational model for mobile detection (Hussain et al.,
2023). lts efficient inference capability can alleviate the limitations of mobile computing resources, while high
accuracy can meet the requirements for precise detection. To further reduce model size and power
consumption, this study will conduct lightweight improvements on YOLOV8. The goal is to develop a real-time
detection system for corn leaf disease that is compatible with portable intelligent detection devices, thereby
providing technical support for the implementation of smart agriculture.

MATERIALS AND METHODS
Dataset construction

In this study, corn leaf disease images from the PlantDoc dataset (Singh et al., 2020) were selected
as the experimental dataset. The dataset includes 116 images of corn leaf blight, 70 images of corn gray leaf
spot, and 114 images of corn rust. Fig. 1 shows sample images of different leaf diseases.

(a) corn leaf blight (b) corn gray leaf spot (c) corn rust
Fig. 1 - Sample images of different leaf diseases

To address the potential issues of model convergence difficulties and overfitting caused by insufficient
training data, various image augmentation techniques (such as scaling and cropping, color tone, saturation,
and brightness random adjustments) were employed to expand the corn disease image dataset. The expanded
dataset contains 1470 images (486 for leaf blight disease, 500 for gray leaf spot disease, and 484 for rust
disease). The dataset was divided into training, validation, and test sets in an 8:1:1 ratio, and the numbers of
different disease labels in each dataset are shown in Table 1.
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Table 1
Number of annotations of different diseases

Disease Training set | Validation set Test set Total

corn leaf blight 813 71 96 980

corn gray leaf spot 529 56 72 657

corn rust 453 56 50 559

Total 1795 183 218 2196

Improved YOLOv8 Model

Based on the advantages of speed and accuracy of YOLOv8 model, the lightweight version YOLOv8n
is chosen as the base model in this paper. To achieve lightweight detection of corn leaf diseases, the
Lightweight Shared Convolutional Separable Batch normalization Detection (LSCSBD) is employed to optimize

the detection head component.

YOLOvV8 model

The YOLOv8 model adopts the classic three-stage structure of "Backbone-Neck-Head" for object
detection. The backbone network is responsible for fundamental feature extraction, the neck network performs
multi-scale feature fusion, and the detection head performs object detection based on the fused features. Fig.
2 shows the architecture of the YOLOv8 model.

Input: Denotes the input RGB images with a fixed resolution of 640%640 pixels.

ConvModule: Represents a convolutional module consisting of 2D convolution, batch normalization,
and SiLU activation, responsible for basic feature transformation and nonlinear enhancement.

C2f: Refers to the improved C3 module with enhanced gradient flow; it splits feature maps into two
branches for partial fusion, balancing computational efficiency and feature integrity.

SPFF: Stands for Spatial Pyramid Feature Fusion, a multi-scale pooling module that aggregates
contextual information to capture objects of different sizes.

PAN-FPN: Indicates the hybrid feature fusion architecture combining Path Aggregation Network (PAN)
and Feature Pyramid Network (FPN), enabling bidirectional feature transmission.

Detect: Denotes the detection head module in the model, which is responsible for outputting final
detection results (including object categories, bounding box coordinates, and objectness scores).
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Fig. 2 - YOLOV8 network structure
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The key design of YOLOv8 model includes:

(1) Backbone: Based on the CSP (Cross Stage Partial) concept, ConvModule, C2f, and SPFF
modules are integrated to improve feature extraction efficiency while ensuring stability.

(2) Neck: Drawing on the PAN-FPN architecture, the convolution in the upsampling stage is simplified,
and C2f is used, optimizing the feature fusion process.

(3) Head: The Detect module adopts a decoupled head structure to separate classification and
detection tasks, effectively capturing multi-scale targets and improving detection accuracy.

Detect_LSCSBD

The detection head is a core component of the model, responsible for predicting the class and location
information of targets from feature maps. The YOLOv8 detection head adopts an anchor-free design, reducing
the computational load associated with anchor generation and enhancing the detection ability for targets of
different shapes and sizes. As shown in Fig. 2, the neck network performs multi-scale feature fusion, extracting
information from P3, P4, and P5 feature layers to generate multi-scale feature maps for multi-scale target
detection by the detection head. Additionally, the classification and regression tasks are decoupled in the
detection head, employing Binary Cross-Entropy (BCE) loss for classification and Complete Intersection over
Union (CloU) loss for regression, combined with task alignment matching strategies to further optimize
detection performance.

Although the YOLOVS8 detection head performs well, its computational load and complexity constrain
real-time deployment. To address this, the LSCSBD is used to improve the detection head, called
Detect LSCSBD. As shown in Fig.3, the key design of the detection head is as follows:

(1) Multi-scale feature preprocessing: For the P3/P4/P5 multi-scale features output by the neck
network, Detect LSCSBD employs independent 1x1 convolution to achieve channel dimensionality reduction
and feature calibration. This design preserves the independence of features at each scale, thereby avoiding
the loss of small target information caused by direct mixing of cross scale features.

(2) Shared Convolution and Normalization: Detect LSCSBD uses two sets of shared 3x3
convolution kernels to process multi-scale features, significantly reducing the number of parameters through
parameter reuse and forcing cross-scale feature learning of universal patterns. Each scale is equipped with
an independent normalization layer to ensure that the distributions of features at different scales are calibrated
separately, ensuring training stability.

(3) Task decoupling and scale adaptation: Classification and regression tasks are decoupled
through independent branches, reducing mutual interference. For the different receptive field characteristics
of P3/P4/P5, independent scale adjustment modules (Scale) are designed to ensure adaptability for detecting
objects of different sizes.

P3 Comv | 77777077 —— 7 — Conv Reg J—»[ Scale J
- |
| | L—»{ Conv_Cls
e | . N
L[ ) | —» Conv_Reg —>» Scale
pa —> O > Sharg‘if o F BatchNorm2d / \ J
|
| | L—>» Conv_Cls
| |
| | p \
o | ) | —» Conv_Reg J—P[ Scale J
PS5 —>| - — —>» BatchNorm2d — P,
1*1 | X2 | —>» Conv_Cls
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—» Share —» Not share
Fig. 3 - Detect_LSCSBD Structure

Experimental Platform and Network Parameter Settings

This study was conducted on the Windows 11 operating system. The hardware configuration includes
an Intel Core i5 processor, 16GB of RAM, and an NVIDIA GeForce RTX3050Ti GPU. The programming
language used is Python 3.12.7, with PyCharm serving as the integrated development environment (IDE) for
Python. The deep learning framework employed is PyTorch with CUDA version 12.4.

The key training parameters for the experiments are set as follows: input image size is uniformly scaled
to 640 x 640 pixels. The number of training epochs is set to 200. The range for random scaling augmentation
of images is set to 0.9 (i.e. the image size is randomly adjusted within a range of 0.9 times the original size).
The application probability of mosaic data augmentation strategy is set to 100%.
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Model evaluation metrics

To evaluate the performance of the model, several metrics are employed, including Precision (P),
Recall (R), P-R curve, mean Average Precision (mAP), and model size. Precision (P) measures the accuracy
of model predictions, and a high precision means that the model has fewer false positives when predicting
targets. The calculation formula is shown in equation (1):

p= P (1)
TP+ FP
where: TP (True Positive) represents the number of correctly predicted positive samples, and FP (False
Positive) represents the number of incorrectly predicted positive samples.
Recall (R) measures the completeness of the model's targets detection, and a high recall means that
the model can discover as many targets as possible, reducing false negatives. The calculation formula is
shown in equation (2):

R=_ 1P
TP +FN (2)
where: FN (False Negative) represents the number of positive samples incorrectly predicted as negative.

The P-R curve is constructed by plotting P values against their corresponding R values across different
decision thresholds, directly reflecting the dynamic trade-off between the two metrics.

The mAP comprehensively considers the average detection accuracy of the model across multiple
classes. For each class, Average Precision (AP) is computed as the area under the P-R curve, and mAP is
the mean of AP values across all classes, serving as a core metric for overall performance in object detection.
Model size refers to the storage space required by the detection model (usually measured in MB). A smaller
model can be adapted to devices with limited resources, thereby reducing hardware costs and improving real-
time performance, which meets the requirements of lightweight deployment.

RESULTS
Comparative analysis of training strategies

Learning rate, optimizer, and pre-trained weights are core parameters in the training process, directly
influencing the convergence speed, detection accuracy, and generalization ability of the model. This
experiment conducts comparative analysis from these three dimensions to provide a basis for parameter
selection and model optimization.

Performance analysis of different learning rates

The learning rate plays a crucial regulatory role in balancing model lightweight process and high
accuracy, and its impact on model convergence stability and high precision is fully tested. To analyze the
performance differences of YOLOvV8 under different learning rates, the Stochastic Gradient Descent (SGD)
algorithm was chosen as the optimizer, with learning rates set to 1e-4, 1e-3, 1e-2, and 1e-1, respectively.

As shown in Table 2, when the learning rate was 1e-4, underfitting was caused by slow updates,
resulting in an mAP@0.5:0.95 of only 0.712. Conversely, when the learning rate was 1e-1, instability was
caused by a large step size, yielding an mAP@0.5:0.95 of only 0.755. The performance was similar for learning
rates of 1e-3 and 1e-2, but the overall performance at 1e-2 was superior to that at 1e-3. Therefore, a learning
rate of 1e-2 was used for subsequent training in this experiment.

Table 2
Detection results of different learning rates
Learning rate Categories P R mAP@0.5 | mAP@0.5:0.95

Corn leaf blight 0.82 0.69 0.829 0.571

1e-4 Corn gray leaf spot 0.954 0.746 0.883 0.769
Corn rust leaf 0.919 0.87 0.917 0.794

all 0.898 0.769 0.876 0.712

Corn leaf blight 0.918 0.893 0.939 0.781

1e-3 Corn gray leaf spot 0.983 0.935 0.971 0.891
Corn rust leaf 0.962 0.942 0.981 0.89

all 0.954 0.924 0.964 0.854

Corn leaf blight 0.928 0.921 0.961 0.802

1e-2 Corn gray leaf spot 1 0.965 0.979 0.914
Corn rust leaf 0.981 0.981 0.991 0.905

all 0.97 0.956 0.977 0.874
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Learning rate Categories P R mAP@0.5 | mAP@0.5:0.95
Corn leaf blight 0.847 0.759 0.834 0.612
1e-1 Corn gray leaf spot 0.944 0.841 0.937 0.807
Corn rust leaf 0.975 0.889 0.964 0.846
all 0.922 0.83 0.912 0.755

Performance analysis of different optimizers

Different optimizers use different algorithms to update model parameters, which have a significant
impact on model performance. The experiment compared SGD, AdamW, and NAdam.

As shown in Table 3, in the corn leaf disease detection experiment (dataset: corn leaf disease images
from PlantDoc, fixed hyperparameters:1e-2 learning rate), the SGD optimizer demonstrated significantly
superior performance across all metrics compared to AdamW and NAdam. It particularly exhibited strong data
fitting capabilities and efficient convergence across various categories during detection. Therefore, the SGD
optimizer was used for subsequent training in this experiment.

Table 3
Detection results of different optimizers

Optimizer Categories P R mAP@Q0.5 mAP@0.5:0.95
Corn leaf blight 0.868 0.857 0.904 0.689
Corn gray leaf spot 0.949 0.887 0.958 0.827
AdamW Comn rust leaf 0919 | 0.907 0.949 0.867
all 0.912 0.884 0.937 0.795
Corn leaf blight 0.859 0.786 0.87 0.663
NAdam Corn gray leaf spot 0.964 0.847 0.939 0.797
Corn rust leaf 0.956 0.907 0.954 0.846
all 0.927 0.847 0.921 0.768
Corn leaf blight 0.928 0.921 0.961 0.802
SGD Corn gray leaf spot 1 0.965 0.979 0.914
Corn rust leaf 0.981 0.981 0.991 0.905
all 0.97 0.956 0.977 0.874

Performance analysis of different pre-trained weight models

To evaluate the effect of various pre-trained weights on the transfer learning performance of YOLOvV8
model, the variants of YOLOvV8 (n/s/m/l/x) were used for comparative experiments. The variants of YOLOv8
belong to the same generation of iterative designs (not multi-generation iterations) and have a "scaled-up"
relationship. This scaling is achieved by adjusting the network’s depth (number of layers) and width (number
of feature channels), while the core architecture remains unchanged. They mainly differ in model scale,
computational cost, and detection performance.

As shown in Table 4, the P, R, mMAP@0.5, and mAP@0.5:0.95 of YOLOv8n achieved 0.97, 0.956,
0.977, and 0.874, respectively. YOLOv8n demonstrated significantly superior performance metrics across both
individual categories and overall results compared to the s \ m \ | \ x, demonstrating a good balance between
lightweight and high precision. Therefore, YOLOv8n is the optimal pre-trained weight model for this
experimental dataset.

Table 4
Detection results of different pre-trained weight models
Model Categories P R mAP@0.5 | mAP@0.5:0.95
Corn leaf blight 0.928 0.921 0.961 0.802
Corn gray leaf spot 1 0.965 0.979 0.914
YOLOvén Corn rust leaf 0.981 0.981 0.991 0.905
all 0.97 0.956 0.977 0.874
Corn leaf blight 0.888 0.777 0.867 0.652
Corn gray leaf spot 0.91 0.889 0.945 0.826
YOLOvss Corn rust leaf 0936 | 0926 | 0973 0.874
all 0.911 0.864 0.929 0.784
Corn leaf blight 0.902 0.768 0.878 0.67
Corn gray leaf spot 0.949 0.886 0.957 0.843
YOLOv8m Corn rust leaf 0943 | 0926 | 0967 0.855
all 0.931 0.86 0.934 0.789
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Model Categories P R mAP@0.5 | mAP@0.5:0.95
Corn leaf blight 0.802 0.786 0.818 0.599
Corn gray leaf spot 0.919 0.896 0.956 0.816
YOLOvsI Corn rust leaf 0.964 0.889 0.943 0.837
all 0.895 0.857 0.906 0.751
Corn leaf blight 0.918 0.741 0.874 0.649
Corn gray leaf spot 0.973 0.841 0.958 0.858
YOLOvax Corn rust leaf 0976 | 0926 | 0.962 0.849
all 0.956 0.836 0.931 0.786

Comparative analysis of different detection heads

By adjusting the detection head in terms of its structure design, feature utilization, and computational
efficiency, model size can be compressed using lightweight techniques while maintaining accuracy. This
project compared the performance of RSCD, LSCD, and LSCSBD detection head optimization models.

As indicated in Table 5, the RSCD, LSCD, and LSCSBD models were each smaller than the original
YOLOvV8 model by 17.5%, 20.6%, and 20.6% respectively. The model using RSCD detection head showed
decreases in P, R mAP@0.5 and mAP@0.5 0.95. The model using LSCD detection head showed decreases
in R, mMAP@0.5, and mAP@0.5:0.95. The model with LSCSBD reduced the model size by 20.6% (to 5.0 MB),
with performance metrics comparable to those of YOLOv8, making it the optimal solution balancing
“lightweight” and “high accuracy”.

Table 5
Detection results of different detection heads
Detection head Categories P R mAP@0.5 | mAP@0.5:0.95 | Model size/MB
Corn leaf blight 0.928 | 0.921 0.961 0.802
.. Corn gray leaf spot 1 0.965 0.979 0.914
Original Comnrustleaf | 0.981 | 0.981 | 0.991 0.905 63
all 0.97 | 0.956 0.977 0.874
Corn leaf blight 0.962 | 0.895 0.954 0.799
Corn gray leaf spot | 0.967 | 0.968 0.968 0.9
RSCD Corn rust leaf 0.948 | 0.981 0.989 0.89 52
all 0.959 | 0.948 0.97 0.863
Corn leaf blight 0.947 | 0.902 0.936 0.781
LSCD Corn gray leaf spot | 0.993 | 0.968 0.985 0.928 50
Corn rust leaf 0.981 | 0.977 0.987 0.904
all 0.974 | 0.949 0.969 0.871
Corn leaf blight 0.945 | 0.938 0.961 0.799
Corn gray leaf spot | 0.984 | 0.946 0.982 0.928
LSCSBD Corn rust leaf 1 0.978 0.99 0.891 5.0
all 0.976 | 0.954 0.977 0.873

To better evaluate the performance of detection models, the results of optimizing models for different
detection heads were visualized. As shown in Fig. 4, different detection heads can effectively identify different
leaf diseases, and LSCSBD has better detection accuracy than RSCD and LSCD.

Original Image

YOLOvVS8n
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YOLOv8n-RSCD

YOLOv8n-LSCD

YOLOvV8n-LSCSBD

(a) corn leaf blight (b) corn gray leaf spot (c) corn rust

Fig. 4 - Visual comparison of different detection heads

Comparative analysis of different network models

The YOLO series models continue to iterate in the field of object detection, and different versions have
been optimized in terms of accuracy, speed, and model size. To compare the effectiveness of the improved
model more clearly, the performance of YOLOv8n, YOLOv10n, YOLOv11n, and YOLOv8n-LSCSBD were
compared.

As shown in Table 6, the YOLOv8n-LSCSBD model performs best in all performance metrics. The
model size of YOLOv8n-LSCSBD decreased by 20.6%, 13.8%, and 9.1% compared to YOLOv8n, YOLOv10n,
and YOLOv11n, respectively.

Table 6
Detection results of different models
Model Categories P R mAP@0.5 | mAP@0.5:0.95 | Model size/MB

Corn leaf blight 0.82 0.69 0.829 0.571
Corn gray leaf spot 0.954 0.746 0.883 0.769

YOLOv&n Corn rust leaf 0919 | 087 0.917 0.794 6.3
all 0.898 0.769 0.876 0.712
Corn leaf blight 0.807 0.485 0.679 0.497
Corn gray leaf spot 0.864 0.714 0.827 0.725

YOLOviOn Corn rust leaf 0795 | 0815 | 0.871 0.779 58
all 0.822 0.671 0.792 0.667
Corn leaf blight 0.866 0.69 0.814 0.567
Corn gray leaf spot 0.965 0.794 0.914 0.784

YOLOv11n Corn rust leaf 0.934 0.87 0.924 0.809 55
all 0.922 0.785 0.884 0.72
Corn leaf blight 0.945 0.938 0.961 0.799
Corn gray leaf spot 0.984 0.946 0.982 0.928

YOLOv8n-LSCSBD Corn rust leaf 1 0.978 0.99 0.891 5.0
all 0.976 0.954 0.977 0.873

To better evaluate the performance of detection models, the results of different models were visualized.
As shown in Fig. 5, YOLOv8n-LSCSBD has a good detection effect on different leaf diseases.
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Original Image

YOLOvV8n
YOLOv10n
YOLOv11n
YOLOv8n+LSCSBD
(a) corn leaf blight (b) corn gray leaf spot (c) corn rust
Fig. 5 - Visual comparison of different models
CONCLUSIONS

(1) A lightweight detection model YOLOv8n-LSCSBD was proposed. This design utilizes cross scale
shared convolution parameter reuse, independent normalization layer calibration, and task decoupling to
reduce computational and parameter complexity while maintaining detection accuracy and improving real-time
deployment efficiency.

(2) By comparing different learning rates (1e-4, 1e-3, 1e-2, 1e-1), optimizers (SGD, AdamW, NAdam),
and pre training weights (YOLOvV8n, s, m, |, x), the optimal training strategy was determined. The optimal
combination was identified as a learning rate of 1e-2, optimizer of SGD, and pre-trained weight of YOLOv8n,
which improved mAP@0.5 0.95 by 1.8% compared to the default configuration.

(3) Comparisons among different detection head schemes showed that the LSCSBD model reduced
the model size to 5.0 MB. Furthermore, the performance metrics of YOLOv8n-LSCSBD were on par with the
original YOLOVS.

Compared to YOLOv8n, YOLOv10n, and YOLOv11n, the YOLOv8n-LSCSBD model achieved size
reductions of 20.6%, 13.8%, and 9.1%, respectively, while its MAP@0.5:0.95 improved by 16.1, 20.6, and 15.3
percentage points, respectively. This validates the comprehensive advantages of the lightweight design in
accuracy and efficiency.
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