Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

DESIGN AND TEST OF PATH TRACKING CONTROL SYSTEM FOR SOYBEAN
WEEDING ROBOT
/

A BB EYFANBBRGEHRI RS

Nai-chen ZHAO", Gang CHE*"2), Lin WAN"2), Shuai ZANG"), Chun-sheng WU® Zong-jun GUO"
" College of Engineering, Heilongjiang Bayi Agricultural University, Daging 163319, China
2 Key Laboratory of Intelligent Agricultural Machinery Equipment in Heilongjiang Province, Daging 163319, China
% Jiamusi Branch of Heilongjiang Academy of Agricultural Machinery Sciences, Jiamusi 154004,China
Tel:+86-459-13836961617;E-mail: chegang180@126.com
Corresponding author: Gang CHE
DOI: https://doi.org/10.35633/inmateh-77-122

Keywords: LADRC, Pure Pursuit algorithm, INGO optimization, speed stability control, lateral error reduction

ABSTRACT

To mitigate tracking degradation caused by unstable speeds in weeding robots, this study integrates Linear
Active Disturbance Rejection Control (LADRC) with the Pure Pursuit (PP) algorithm. An Improved Northern
Goshawk Optimization (INGO) algorithm is employed to optimize the LADRC parameters, enabling more
precise speed regulation. Field experiments conducted at speeds of 0.5, 0.8, and 1.0 m/s compared the
proposed approach with a conventional PID-PP controller. The results demonstrate that the proposed method
reduced the maximum lateral tracking error by 9.67%, 19.0%, and 20.5%, respectively, while consistently
improving both MAE and RMSE. These findings confirm that the proposed control strategy effectively
enhances path tracking stability and precision, thereby improving the autonomous navigation performance of
weeding robots.
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INTRODUCTION

Soybean, as a crucial food, oilseed, and feed crop in China, holds an irreplaceable strategic position
in ensuring national food security, maintaining edible oil supply, and supporting sustainable livestock
development (Liu et al., 2025). Heilongjiang Province accounts for over 40% of China's total soybean yield
and cultivated area, making it the major soybean producing region nationwide. With increasing attention to
green and organic certified foods, the cultivated area of such soybeans has continuously expanded. Compared
to conventional soybean cultivation, green and organic production requires multiple weeding operations.
However, traditional tractor-drawn weeding machinery presents problems such as soil compaction and high
labor intensity. Therefore, developing intelligent weeding robots is significant for improving mechanical
weeding quality and reducing labor costs.

The autonomous operation system of agricultural machinery comprises automatic navigation control
and automatic operation control (Liu et al., 2018). As a critical component, navigation tracking control has
received widespread research attention. Classic control algorithms include Pure Pursuit (Macenski et al., 2023;
Ahn et al., 2021; Jain et al., 2024), Stanley (AbdEImoniem et al., 2020; Wang et al., 2022), PID (Deshmukh et
al., 2025; Farag et al., 2020), LQR (Ni et al., 2022), and Model Predictive Control (Peicheng et al., 2022;
Rokonuzzaman et al., 2023). The Pure Pursuit algorithm, with its simple structure and fast response speed, is
widely used in agricultural machinery navigation systems with relatively low operating speeds.
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However, it has limitations including the inability to adjust look-ahead distance in real time and low
tracking accuracy at high speeds.

Researchers have recently proposed improvements to the Pure Pursuit algorithm. Xiao et al. (2023)
designed a segmented Pure Pursuit control algorithm adapting to different turning radii and lateral errors,
improving path tracking accuracy by 30.9%, though the switching process reduced system response speed.
Shen et al. (2024) corrected RTK coordinates and used an evaluation function quantifying errors to search for
the optimal target point, obtaining the optimal look-ahead distance. Li et al. (2013) utilized fuzzy rules to
adaptively determine look-ahead distance online. Zhang et al. (2021) designed a fuzzy adaptive Pure Pursuit
control system for a tracked rapeseed direct seeder. Pan et al. (2022) introduced a front wheel compensation
angle using a fuzzy-like method. Zhang et al. (2016) proposed a Pure Pursuit method based on a support
vector regression inverse model, improving straight-line path tracking capability. Zhang et al. (2020) and Fu et
al. (2023) determined look-ahead distance in real-time based on improved particle swarm optimization,
improving driving accuracy. Li et al. (2018) incorporated real-time operating speed and target path curvature
into the look-ahead distance relationship, dynamically adjusting it to improve algorithm accuracy. Yang et al.
(2022) established an evaluation function for finding the optimal target point based on kinematic models and
adaptively adjusted the look-ahead distance.

This study develops a compact weeding robot for ridge-planting soybean cultivation in Northeast
China. To improve path tracking accuracy, a navigation control system based on the LADRC-PP algorithm is
developed. Simulation experiments comparatively analyze the improved and original controllers. Field
experiments verify the control system's stability, providing a foundation for subsequent robot development.

MATERIALS AND METHODS

Determination of Technical Specifications

Soybean cultivation in Northeast China commonly uses a high-platform ridge planting pattern. The
ridges measure 1.1 m in width and 0.2-0.25 m in height. Depending on the characteristics of different soybean
varieties, two or three rows are planted on each ridge, with an inter-row spacing of 0.420-0.450 m. Field weed
control involves multiple operations, combining manual hoeing and mechanical cultivation. Mechanical
weeding is conducted 3—4 times from pre-emergence to the first trifoliate leaf stage. During the growing
season, manual weeding is performed three times, followed by one manual removal of large weeds in the late
growth stage.
Structure and Working Principle

Based on these parameters, the weeding robot's chassis and weeding unit structures are designed.
The main parameters of the chassis are shown in Table 1:

Table 1
Chassis main parameters

Parameter Value
Overall dimensions (m x m x m) 2.2x1.3x1
Traveling mode Wheeled
Drive wheel radius (m) 0.425
Wheel track (m) 1.1
Wheelbase (m) 1.1
Ground clearance (m) 0.425
Total mass (kg) 300.5
Drive motor power (kW) 3
Maximum speed (m/s) 1

Working Principle

The weeding robot drives the chassis through a DC brushless motor coupled with a reducer connected
to the drive shaft. Steering is achieved by a stepper motor and reducer driving the steering mechanism. The
weeding lifting module uses an electric push rod to adjust the lifting structure, and weeding operations can be
performed by mounting different weeding units. The entire machine consists of a drive system, steering
system, power module, visual recognition module, wireless remote control module, lifting module, and weeding
module. The three-dimensional structure of the complete machine is shown in Fig. 1.
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Fig. 1 - Schematic diagram of weeding robot structure
1- Camera; 2- DC brushless motor; 3- Reduction gearbox; 4- Steering motor; 5- Host computer; 6- Battery box;
7- Control box; 8- Lifting push rod; 9- Weeding unit

Structure Composition of Autonomous Operation System

The autonomous operation system of the weeding robot mainly consists of an information acquisition
module, a control module, a motion module, and a weeding execution module. The working principle is shown
in Fig. 2. The information acquisition module mainly consists of a camera and a front wheel angle sensor; the
control module consists of a laptop computer, a wireless remote controller, and an STM32 microcontroller; the
motion module and weeding execution module consist of DC brushless motors, stepper motors, motor drivers,
and lifting electric push rods.

During weeding, a camera continuously captures seedling row images. A laptop computer uses deep
learning algorithms to identify seedling rows and extract navigation lines, extracting lateral and heading
deviations between the robot's path and the navigation line. This deviation data is sent to a microcontroller unit
(MCU). The MCU then applies a path tracking control algorithm to generate real-time control signals, adjusting
the front wheel steering angle and operational speed for accurate path tracking. The relationship between the

motor rotational speed and the weeding robot's operational speed is as follows:
__ nxmxd
Ly (1)
where: 7 is the motor speed [r/min]; d is the drive wheel diameter[m]; k is the reducer reduction ratio; and v is

the speed [m/s].
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Fig. 2 - Schematic diagram of working principle of weeding robot

Navigation Controller Design

The weeding robot designed in this study employs an Ackermann steering model, where the left and
right wheels exhibit identical motion characteristics. Considering the relatively flat terrain of Northeast China's
soybean fields and the robot's low-speed, small-angle adjustments during operation, sideslip effects are
neglected. The weeding robot is simplified into a two-wheel model, where the centers of the front and rear
axles are hypothetically represented as single wheels to describe their respective motions (Wang et al., 2019).
The two-wheel model is illustrated in Fig. 3.
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The control system of the two-wheel kinematic model alters the vehicle's position and heading by

controlling the input velocity v,; and front wheel steering angle 8. Its kinematic model can be expressed as:

__ Vg _vgtané
P=rT 1

X4 =vg4c0s0 (2)
Vg = Vg Sin6
where:

@ is the Yaw angular velocity; x4 is the X-axis velocity component; and yq is the Y-axis velocity
component.

The Pure Pursuit algorithm is a geometry-based path tracking control method primarily applied in
agricultural machinery operating at low speeds. It selects a target point on the desired path at a look-ahead
distance from the vehicle's rear axle center. During operation, sensors continuously calculate the robot's lateral
and heading deviations from the desired path, then compute the required front wheel steering angle for path
tracking (Zhang et al., 2020).

The Pure Pursuit model is illustrated in Fig. 4. In the figure, P represents the planar coordinate position
of the weeding robot, Pd is the look-ahead point, Rd is the turning radius to reach the desired path, Ly is the
look-ahead distance, a is the deviation angle between the vehicle body and the target path point, & is the path

curvature to reach the desired path point, & is the heading deviation between the weeding robot and the desired
path, and d is the lateral deviation between the weeding robot and the desired path.
ri ri

X
Fig. 3 - Two-wheeler model Fig. 4 - Pure tracking model
According to the geometric relationship in Figure 4, the curvature of the arc to the target point is

determined by the look-ahead distance L, and the lateral error d. By combining the Ackerman steering
geometry, the final front wheel steering angle required for path tracking can be expressed as (Zhang et al.,

2020):
arctan(2L(d cos 8- /LZ —d? sin 9))
5= ‘

2
Ly

®)

where: ¢ is the front wheel steering angle.

The equation above shows that the front wheel steering angle control variable depends on the look-
ahead distance L,, lateral error d, and heading error 0. During weeding, d and 0 are calculated from the
deviation between the seedling row navigation line (captured by the robot's camera) and its current position.
Thus, L, is the sole adjustable parameter in the Pure Pursuit model, and its proper selection enhances path
tracking stability.

According to the geometric characteristics of the Pure Pursuit model, a small look-ahead distance L,
increases lateral deviation control effort, causing the robot to approach the target with a larger curvature k.
However, this increases heading deviation 8 upon reaching the target, leading to oscillations and degraded
tracking. Conversely, a large L, results in a smaller curvature k and reduced heading deviation, which prevents
oscillations near the target. However, it increases system response time (latency) and also degrades
performance.

Consequently, a dynamically adjustable look-ahead distance L, is crucial for varying deviation
conditions. While methods like proportional control, Particle Swarm Optimization (PSO), and fuzzy control
exist, PSO demands high computational resources and introduces latency, and fuzzy control requires complex
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rule formulation and extensive experience. To simplify control, reduce computational load, and minimize
latency, this study employs a proportional control method (Yu et al., 2022) for L, selection, given by:
L;=Gv+ L (4)
where: G is the Adjustment ratio coefficient; and L is the Preset lead distance [m].
The analysis shows that lateral deviation depends on L4, operational speed v, turning radius, and

wheelbase. As wheelbase is fixed, turning radius and L selection are linked to operational speed. Thus, stable
operational speed directly impacts lateral deviation control and path tracking performance.

Weeding robots, typically electric motor-driven, face varying resistance from soil compaction during
inter-row weeding. This causes sudden motor load changes, leading to fluctuations in motor speed and,
consequently, robot operational speed. Therefore, a motor speed control algorithm with enhanced anti-
interference capability is essential for stable operation in complex field environments.

Operational Speed Control System

Linear Active Disturbance Rejection Control (LADRC) (Yuan et al., 2013) is a bandwidth-based control
strategy derived from the Nonlinear Active Disturbance Rejection Control (ADRC) technique. LADRC
comprises a Tracking Differentiator (TD), a Linear Extended State Observer (LESO), and a Linear State Error
Feedback (LSEF) control law. LADRC can theoretically adapt to multi-order or high-order systems. As the
motor in this study is a second-order control plant, the structure of the second-order LADRC is presented
below.

Let the uncertain second-order control plant model be represented as:

y = f(x1,x,x,w,t) + bu (5)

where: u is the System Input; y is the System Output; w is the External disturbances to the system; b is the

Control gain; and x;,x is the System Parameters.

The LADRC system comprises a Linear Extended State Observer (LESO) and a Linear State Error
Feedback (LSEF) controller. The LESO estimates the internal and external disturbances in real-time,
aggregating them into a total disturbance state.

Despite LADRC having fewer parameters (six) than ADRC, its tuning is more complex than traditional
PID controllers. To address this, this paper proposes using an improved Northern Goshawk Optimization
(NGO) algorithm to optimize LADRC's control parameters, aiming for superior performance.

Improved Northern Goshawk Optimization Algorithm

The Northern Goshawk Optimization (NGO) algorithm, proposed by Mohammad Dehghani et al.
(2021), is a swarm intelligence optimization algorithm. It simulates Northern Goshawk behaviors—prey
identification (exploration), attack, pursuit, and escape (exploitation)—to find optimal solutions. NGO offers
advantages like fast convergence, fewer control parameters, and robustness, adapting to specific problem
characteristics with universality. Compared to traditional swarm intelligence algorithms, NGO better balances
global and local exploration, quickly identifying optimal search regions for fine-grained searches.

Despite its strengths, NGO has limitations. Random, uneven initial solution distribution can reduce
population diversity, and insufficient global search during prey identification often leads to local optima.

To address the aforementioned issues, this paper proposes the following improvements to the NGO
algorithm:

First, initial population positions are randomly generated using a chaotic Tent map. This ensures a
more uniform distribution, accelerates convergence, helps escape local optima, maintains diversity, and
enhances global search.

Second, the Sine Cosine Algorithm (SCA) is integrated into NGO's prey identification phase. SCA
leverages sine and cosine oscillatory characteristics to influence discoverer positions, maintaining diversity
and improving global search capability by performing global and local optimization based on these oscillations
to find the overall optimal value.

Standard NGO relies on stochastic exploration, which can lead to local optima. To enhance the global
search capability, the Sine Cosine Algorithm (SCA) strategy is integrated into the exploration phase. The
improved position update formula, which replaces the standard exploration mechanism, is expressed as:
P _ {w “Xijtresin g - |ry - Xpee — X j|, R < ST

2 W X;j+1 €087y |13 Kooy — Xijl, R = ST

(6)
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where:

w is the proportional factor for position adjustment; 7; is the step-size search factor that decreases
linearly with iterations; 72, r3 are random numbers within the range [0,21]; R is a random number within the
range [0,1]; ST is the threshold determining the selection of the cosine strategy; and Xy, is the Current Optimal
Position.

This study uses the Integral of Time-weighted Absolute Error (ITAE) as the comprehensive evaluation
metric, or fitness value. ITAE, a time-weighted integral of absolute error, is commonly used in optimized
controller design to achieve smoother system responses. Minimizing ITAE allows for parameter adjustment to
achieve superior system responses. The calculation formula is:

ITAE = [ tle(t)| dt @)

where: tis the time; and e(?) is the system error at time ¢.

RESULTS
Simulation Analysis

To verify the LADRC speed control algorithm's impact on path tracking, a comparative analysis was
conducted between the traditional PID-based Pure Pursuit and LADRC-based Pure Pursuit algorithms,
evaluating their characteristics and effectiveness.

Operational Speed Control Simulation

As the weeding robot's operational speed directly relates to motor rotational speed, operational speed
control is essentially motor speed control. First, separate Simulink models for LADRC and PID motor speed
control were established, as shown in Fig. 5. Then, NGO and INGO algorithms optimized their respective
parameters to obtain optimal control settings. Using these parameters, operational speed control was
performed for each controller, and their effects were compared. Both NGO and INGO used a population size
of 30 and 100 maximum iterations. The Simulink sampling time was 0.01 s, with a step response input of 561,
corresponding to 1 m/s operational speed.

—)'D'(z’

f.

LADRC1

Fig. 5 - Simulink simulation model of LADRC and PID controller

Before optimization, LADRC and PID parameter ranges were manually tuned to reduce iterative
optimization time. The Simulink simulation models for the LADRC and PID controllers are shown in Figure 5.
The electrical parameters of the DC brushless motor are listed in Table 2.

Table 2
DC Brushless Motor Parameters
DC Brushless Motor Parameters value
Types of Electric Motors Three-phase brushless DC motor
Moment of inertia J / (kg-m?) 5.3x103
Torque coefficient Kr / (N-m/A) 1.66
Reverse Voltage Constant ke/ (V:m/r) 0.96
Armature Inductance La/ (H) 0.1
Armature resistance ra, (Q) 0.1
Damping coefficient B 2x104
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After these preparations, program execution results were analyzed. Fig. 6 shows the optimized fithess
values for both controllers, obtained by NGO and INGO, while Figure 7 depicts the step response curves.
LADRC's optimized fitness values were 0.0092 (NGO) and 0.0056 (INGO), while PID's were 1.0365 (NGO)
and 1.0359 (INGO). Fig. 6 shows that INGO achieved smaller initial fithess values and converged faster than
NGO, demonstrating its advantages in parameter optimization speed and local optima escape.

Due to INGO's superior optimization, INGO-optimized LADRC and PID parameters were directly used
in the simulation for step response comparison. The step response curves show that LADRC reached steady-
state earlier (0-0.05s) with 0.01% overshoot, compared to PID's 0.77%. This indicates LADRC's faster initial
response, achieving the setpoint quicker with less overshoot.

To compare disturbance rejection, a 7-unit external disturbance was introduced at 0.2 s. Fig. 7 shows
LADRC's motor speed overshot by 0.14% (0.2-0.2002 s) and largely recovered to steady-state by 0.2015 s.
PID, however, saw overshoot increase to 5.91% (0.2-0.208 s), recovering only around 0.26 s. Thus, LADRC
demonstrates faster recovery and stronger stability under disturbances in operational speed control.
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Fig. 6 - Fitness value change curve Fig. 7 - Step response curve

Path Tracking Simulation

The weeding robot's structural parameters (length, wheelbase) were input into MATLAB to establish
the path tracking model. A 122.83 m S-shaped path, comprising three straight and two curved segments, was
defined. Initial lateral and heading deviations were set to 1 m and 1.15°, respectively.

Operational speed control, set at 1 m/s using the optimized motor speed model, included disturbances:
a continuous 10 N-m on straight segments and a sinusoidal torque (5 N-m amplitude, 5 N-m offset, 1 rad/s
frequency) at turns to simulate turning effects. The path tracking curve and lateral error curve are shown in
Fig. 8 and Fig. 9, respectively. The results of the lateral error analysis are presented in Table 3.
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Fig. 8 - Path tracking driving trajectory Fig. 9 - Lateral error in path tracking
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Table 3
Lateral Error Statistics
Algorithm Maximum error / m Absolute Mean Error / m Root Mean Square Error / m
PID-PP 0.2832 0.1512 0.2119
LADRC-PP 0.2820 0.1466 0.2066

Simulation results show that both LADRC-PP and PID-PP had an initial convergence time of 5.23 s.
This consistency is attributed to fewer disturbances and similar speeds during this phase, resulting in
comparable path tracking performance.

As shown in Figure 10 and Table 3, LADRC-PP significantly reduced lateral error compared to PID-
PP. Specifically, LADRC-PP's RMSE, MAE, and maximum error were reduced by 2.5%, 3%, and 0.42%,
respectively. The small reduction in maximum error suggests similar performance under high-curvature paths,
where both algorithms' response capabilities saturated. Overall, LADRC-PP demonstrated superior
performance in maximum, mean absolute, and root mean square lateral errors, despite similar initial
convergence times. This leads to better path tracking performance.
Field Experiments

Field experiments validating LADRC-PP's path tracking performance were conducted on June 12,
2023, at Heilongjiang Bayi Agricultural University's experimental farm. The experimental field had a ridge width
of 1.1 m and a ridge height of 0.2 m. The cultivated crop was soybean, planted using a large ridge double-row
method. The growth stage was the second node stage, with an average plant spacing of 4 cm. During the
experimental tests, the weeding robot prototype was driven to the vicinity of the desired path's starting point.
The field experiment setup for automatic navigation is shown in Fig. 10.

o ) e 44

v op . ST

Fig. 10 - Field automatic navigation

During the experiments, the weeding robot's initial position relative to the path was set with a lateral
deviation of 0.3 m and a heading deviation of 15°. The weeding robot performed path tracking on soybean
seedling rows using both PID-PP and LADRC-PP algorithms at operational speeds of 1 m/s, 0.8 m/s, and 0.6
m/s. Three experimental sets were conducted for each algorithm, and average values were recorded.
Evaluation metrics included initial convergence time, maximum lateral tracking error after stable convergence,
mean absolute tracking error, and root mean square error. Results are in Table 4.

Table 4
Test results
Control Operating speed / Maximum error/ | Absolute Mean Error | Root Mean Square Error
Algorithm (m/s) m I'm I'm
1 0.0526 0.0283 0.0305
0.8 0.0474 0.0252 0.0277
PID-PP

0.6 0.0362 0.0164 0.0178
mean 0.0454 0.0233 0.0253
1 0.0418 0.0211 0.0232
LADRC- 0.8 0.0384 0.0192 0.0213
PP 06 0.0327 0.0137 0.0144
mean 0.0376 0.018 0.0196
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Table 4 shows LADRC-PP reduced maximum lateral error by 20.5%, 19%, and 9.67% at 1, 0.8, and
0.6 m/s, respectively, compared to PID-PP. Mean absolute error decreased by 25.4%, 23.8%, and 16.5%, and
RMSE by 23.9%, 23.1%, and 19.1%. LADRC-PP's performance advantage diminishes at lower speeds
because the vehicle's slower dynamic response and smaller tracking errors at low speeds allow PID to perform
more effectively. In such low-speed environments, LADRC-PP's disturbance rejection and dynamic
compensation benefits are less pronounced, reducing the performance difference between the algorithms.
Overall, LADRC-PP's evaluation metrics consistently surpassed PID-PP's, validating its effectiveness.

However, it is important to note that the field experiments were conducted on relatively flat terrain. In
extreme agricultural environments characterized by steep slopes or severe tire slip, the simplified kinematic
model might be compromised, potentially limiting tracking stability.

CONCLUSIONS

(1) A path tracking control method based on the LADRC-PP algorithm was designed. The LADRC
controller was used for real-time control of the weeding robot's motor speed, and the INGO optimization
algorithm was employed to optimize the LADRC controller parameters. Compared to traditional PID controllers,
the LADRC controller, by real-time estimation and compensation of external disturbances, can respond more
quickly and recover to a normal state when facing disturbances. The LADRC-PP algorithm reduced path
tracking errors caused by unstable operational speed, thereby improving overall path tracking performance.

(2) Simulation analysis of the control algorithms (before and after improvement) was conducted using
MATLAB. The simulation results indicated that under the same initial deviation conditions, the LADRC-PP
algorithm reduced the root mean square error of lateral deviation by 2.5%, the mean absolute error by 3.0%,
and the maximum error by 0.42% compared to the PID-PP algorithm.

(3) Field experiments demonstrated that compared to the PID-PP path tracking algorithm, the LADRC-
PP path tracking algorithm reduced the maximum lateral error by 20.5%, 19%, and 9.67% at operational
speeds of 1 m/s, 0.8 m/s, and 0.6 m/s, respectively. The mean absolute error was reduced by 25.4%, 23.8%,
and 16.5%, respectively, and the root mean square error by 23.9%, 23.1%, and 19.1%, respectively. The
LADRC-PP path tracking algorithm exhibited advantages over the PID-PP path tracking algorithm in terms of
maximum lateral error and root mean square error, with this advantage gradually diminishing as the operational
speed decreased. It can be concluded that under actual field operating conditions, the LADRC-PP path
tracking algorithm possesses stronger disturbance rejection capability against changes in resistance during
operation. However, the advantage of the proposed algorithm diminishes at lower operating speeds. Future
work will focus on validating the system in more complex terrains and varying soil conditions to further assess
its robustness.
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