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ABSTRACT 

To mitigate tracking degradation caused by unstable speeds in weeding robots, this study integrates Linear 

Active Disturbance Rejection Control (LADRC) with the Pure Pursuit (PP) algorithm. An Improved Northern 

Goshawk Optimization (INGO) algorithm is employed to optimize the LADRC parameters, enabling more 

precise speed regulation. Field experiments conducted at speeds of 0.5, 0.8, and 1.0 m/s compared the 

proposed approach with a conventional PID-PP controller. The results demonstrate that the proposed method 

reduced the maximum lateral tracking error by 9.67%, 19.0%, and 20.5%, respectively, while consistently 

improving both MAE and RMSE. These findings confirm that the proposed control strategy effectively 

enhances path tracking stability and precision, thereby improving the autonomous navigation performance of 

weeding robots.  

 

摘要 

为解决除草机器人因速度不稳定导致的路径跟踪性能下降问题，本文将线性自抗扰控制（LADRC）与纯追踪

（PP）相结合。利用改进的北方苍鹰优化算法（INGO）优化 LADRC 参数以实现精确的速度控制。在 0.5、

0.8 和 1.0 m/s 速度下的田间试验表明，与 PID-PP 控制器相比，该方法将最大横向误差分别降低了 9.67%、

19.0% 和 20.5%，且 MAE 和 RMSE 均持续改善。结果证实该算法有效提升了自动除草作业的路径跟踪稳定性

与精度。 

 

INTRODUCTION 

 Soybean, as a crucial food, oilseed, and feed crop in China, holds an irreplaceable strategic position 

in ensuring national food security, maintaining edible oil supply, and supporting sustainable livestock 

development (Liu et al., 2025). Heilongjiang Province accounts for over 40% of China's total soybean yield 

and cultivated area, making it the major soybean producing region nationwide. With increasing attention to 

green and organic certified foods, the cultivated area of such soybeans has continuously expanded. Compared 

to conventional soybean cultivation, green and organic production requires multiple weeding operations. 

However, traditional tractor-drawn weeding machinery presents problems such as soil compaction and high 

labor intensity. Therefore, developing intelligent weeding robots is significant for improving mechanical 

weeding quality and reducing labor costs. 

 The autonomous operation system of agricultural machinery comprises automatic navigation control 

and automatic operation control (Liu et al., 2018). As a critical component, navigation tracking control has 

received widespread research attention. Classic control algorithms include Pure Pursuit (Macenski et al., 2023; 

Ahn et al., 2021; Jain et al., 2024), Stanley (AbdElmoniem et al., 2020; Wang et al., 2022), PID (Deshmukh et 

al., 2025; Farag et al., 2020), LQR (Ni et al., 2022), and Model Predictive Control (Peicheng et al., 2022; 

Rokonuzzaman et al., 2023). The Pure Pursuit algorithm, with its simple structure and fast response speed, is 

widely used in agricultural machinery navigation systems with relatively low operating speeds.  
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 However, it has limitations including the inability to adjust look-ahead distance in real time and low 

tracking accuracy at high speeds. 

 Researchers have recently proposed improvements to the Pure Pursuit algorithm. Xiao et al. (2023) 

designed a segmented Pure Pursuit control algorithm adapting to different turning radii and lateral errors, 

improving path tracking accuracy by 30.9%, though the switching process reduced system response speed. 

Shen et al. (2024) corrected RTK coordinates and used an evaluation function quantifying errors to search for 

the optimal target point, obtaining the optimal look-ahead distance. Li et al. (2013) utilized fuzzy rules to 

adaptively determine look-ahead distance online. Zhang et al. (2021) designed a fuzzy adaptive Pure Pursuit 

control system for a tracked rapeseed direct seeder. Pan et al. (2022) introduced a front wheel compensation 

angle using a fuzzy-like method. Zhang et al. (2016) proposed a Pure Pursuit method based on a support 

vector regression inverse model, improving straight-line path tracking capability. Zhang et al. (2020) and Fu et 

al. (2023) determined look-ahead distance in real-time based on improved particle swarm optimization, 

improving driving accuracy. Li et al. (2018) incorporated real-time operating speed and target path curvature 

into the look-ahead distance relationship, dynamically adjusting it to improve algorithm accuracy. Yang et al. 

(2022) established an evaluation function for finding the optimal target point based on kinematic models and 

adaptively adjusted the look-ahead distance. 

 This study develops a compact weeding robot for ridge-planting soybean cultivation in Northeast 

China. To improve path tracking accuracy, a navigation control system based on the LADRC-PP algorithm is 

developed. Simulation experiments comparatively analyze the improved and original controllers. Field 

experiments verify the control system's stability, providing a foundation for subsequent robot development.        

 

MATERIALS AND METHODS 

 

Determination of Technical Specifications 

 Soybean cultivation in Northeast China commonly uses a high-platform ridge planting pattern. The 

ridges measure 1.1 m in width and 0.2–0.25 m in height. Depending on the characteristics of different soybean 

varieties, two or three rows are planted on each ridge, with an inter-row spacing of 0.420–0.450 m. Field weed 

control involves multiple operations, combining manual hoeing and mechanical cultivation. Mechanical 

weeding is conducted 3–4 times from pre-emergence to the first trifoliate leaf stage. During the growing 

season, manual weeding is performed three times, followed by one manual removal of large weeds in the late 

growth stage. 

Structure and Working Principle 

 Based on these parameters, the weeding robot's chassis and weeding unit structures are designed. 

The main parameters of the chassis are shown in Table 1: 

Table 1 
Chassis main parameters 

Parameter Value 

Overall dimensions (m × m × m) 2.2×1.3×1 

Traveling mode Wheeled 

Drive wheel radius（m） 0.425 

Wheel track（m） 1.1 

Wheelbase（m） 1.1 

Ground clearance（m） 0.425 

Total mass（kg） 300.5 

Drive motor power (kW) 3 

Maximum speed（m/s） 1 

 

 

Working Principle 

 The weeding robot drives the chassis through a DC brushless motor coupled with a reducer connected 

to the drive shaft. Steering is achieved by a stepper motor and reducer driving the steering mechanism. The 

weeding lifting module uses an electric push rod to adjust the lifting structure, and weeding operations can be 

performed by mounting different weeding units. The entire machine consists of a drive system, steering 

system, power module, visual recognition module, wireless remote control module, lifting module, and weeding 

module. The three-dimensional structure of the complete machine is shown in Fig. 1. 
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Fig. 1 - Schematic diagram of weeding robot structure 

1- Camera; 2- DC brushless motor; 3- Reduction gearbox; 4- Steering motor; 5- Host computer; 6- Battery box;  
7- Control box; 8- Lifting push rod; 9- Weeding unit 

 
Structure Composition of Autonomous Operation System 

 The autonomous operation system of the weeding robot mainly consists of an information acquisition 

module, a control module, a motion module, and a weeding execution module. The working principle is shown 

in Fig. 2. The information acquisition module mainly consists of a camera and a front wheel angle sensor; the 

control module consists of a laptop computer, a wireless remote controller, and an STM32 microcontroller; the 

motion module and weeding execution module consist of DC brushless motors, stepper motors, motor drivers, 

and lifting electric push rods. 

 During weeding, a camera continuously captures seedling row images. A laptop computer uses deep 

learning algorithms to identify seedling rows and extract navigation lines, extracting lateral and heading 

deviations between the robot's path and the navigation line. This deviation data is sent to a microcontroller unit 

(MCU). The MCU then applies a path tracking control algorithm to generate real-time control signals, adjusting 

the front wheel steering angle and operational speed for accurate path tracking. The relationship between the 

motor rotational speed and the weeding robot's operational speed is as follows: 

𝑣 =
𝑛∗𝜋∗𝑑

60𝑘
                                                                      (1) 

where:  n is the motor speed [r/min]; d is the drive wheel diameter[m]; k is the reducer reduction ratio; and v is 

the speed [m/s]. 

 
Fig. 2 - Schematic diagram of working principle of weeding robot 

 

Navigation Controller Design 

 The weeding robot designed in this study employs an Ackermann steering model, where the left and 

right wheels exhibit identical motion characteristics. Considering the relatively flat terrain of Northeast China's 

soybean fields and the robot's low-speed, small-angle adjustments during operation, sideslip effects are 

neglected. The weeding robot is simplified into a two-wheel model, where the centers of the front and rear 

axles are hypothetically represented as single wheels to describe their respective motions (Wang et al., 2019). 

The two-wheel model is illustrated in Fig. 3. 
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 The control system of the two-wheel kinematic model alters the vehicle's position and heading by 

controlling the input velocity 𝑣𝑑 and front wheel steering angle θ. Its kinematic model can be expressed as: 

 {
φ =

𝑣𝑑

𝑅
=

𝑣𝑑 𝑡𝑎𝑛𝛿

𝐿

𝑥𝑑 = 𝑣𝑑 𝑐𝑜𝑠 𝜃
𝑦𝑑 = 𝑣𝑑 𝑠𝑖𝑛 𝜃

                                                                                   (2) 

where: 

 φ is the Yaw angular velocity; xd is the X-axis velocity component; and yd is the Y-axis velocity 

component. 

 The Pure Pursuit algorithm is a geometry-based path tracking control method primarily applied in 

agricultural machinery operating at low speeds. It selects a target point on the desired path at a look-ahead 

distance from the vehicle's rear axle center. During operation, sensors continuously calculate the robot's lateral 

and heading deviations from the desired path, then compute the required front wheel steering angle for path 

tracking (Zhang et al., 2020). 

 The Pure Pursuit model is illustrated in Fig. 4. In the figure, P represents the planar coordinate position 

of the weeding robot, Pd is the look-ahead point, Rd is the turning radius to reach the desired path, Ld is the 

look-ahead distance, α is the deviation angle between the vehicle body and the target path point, k is the path 

curvature to reach the desired path point, θ is the heading deviation between the weeding robot and the desired 

path, and d is the lateral deviation between the weeding robot and the desired path. 

               
Fig. 3 - Two-wheeler model                               Fig. 4 - Pure tracking model  

 
 According to the geometric relationship in Figure 4, the curvature of the arc to the target point is 

determined by the look-ahead distance Ld and the lateral error d. By combining the Ackerman steering 

geometry, the final front wheel steering angle required for path tracking can be expressed as (Zhang et al., 
2020):  

𝛿 =
𝑎𝑟𝑐𝑡𝑎𝑛(2𝐿(𝑑 𝑐𝑜𝑠 𝜃−√𝐿𝑑

2−𝑑2 𝑠𝑖𝑛 𝜃))

𝐿𝑑
2                                                                  (3) 

where:  δ is the front wheel steering angle. 

 The equation above shows that the front wheel steering angle control variable depends on the look-

ahead distance Ld, lateral error d, and heading error θ. During weeding, d and θ are calculated from the 

deviation between the seedling row navigation line (captured by the robot's camera) and its current position. 

Thus, Ld is the sole adjustable parameter in the Pure Pursuit model, and its proper selection enhances path 

tracking stability. 

 According to the geometric characteristics of the Pure Pursuit model, a small look-ahead distance Ld 

increases lateral deviation control effort, causing the robot to approach the target with a larger curvature k. 

However, this increases heading deviation θ upon reaching the target, leading to oscillations and degraded 

tracking. Conversely, a large Ld results in a smaller curvature k and reduced heading deviation, which prevents 

oscillations near the target. However, it increases system response time (latency) and also degrades 

performance. 

 Consequently, a dynamically adjustable look-ahead distance Ld is crucial for varying deviation 

conditions. While methods like proportional control, Particle Swarm Optimization (PSO), and fuzzy control 

exist, PSO demands high computational resources and introduces latency, and fuzzy control requires complex 
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rule formulation and extensive experience. To simplify control, reduce computational load, and minimize 

latency, this study employs a proportional control method (Yu et al., 2022) for Ld selection, given by: 

𝐿𝑑 = 𝐺𝑣 + 𝐿0                                                                                                   (4) 

where:  G is the Adjustment ratio coefficient; and L0 is the Preset lead distance [m]. 

 The analysis shows that lateral deviation depends on Ld, operational speed v, turning radius, and 

wheelbase. As wheelbase is fixed, turning radius and Ld selection are linked to operational speed. Thus, stable 

operational speed directly impacts lateral deviation control and path tracking performance. 

 Weeding robots, typically electric motor-driven, face varying resistance from soil compaction during 

inter-row weeding. This causes sudden motor load changes, leading to fluctuations in motor speed and, 

consequently, robot operational speed. Therefore, a motor speed control algorithm with enhanced anti-

interference capability is essential for stable operation in complex field environments. 

 

Operational Speed Control System 

 Linear Active Disturbance Rejection Control (LADRC) (Yuan et al., 2013) is a bandwidth-based control 

strategy derived from the Nonlinear Active Disturbance Rejection Control (ADRC) technique. LADRC 

comprises a Tracking Differentiator (TD), a Linear Extended State Observer (LESO), and a Linear State Error 

Feedback (LSEF) control law. LADRC can theoretically adapt to multi-order or high-order systems. As the 

motor in this study is a second-order control plant, the structure of the second-order LADRC is presented 

below. 

 Let the uncertain second-order control plant model be represented as: 

 y = 𝑓(𝑥1, 𝑥2𝑥,𝑤, 𝑡) + 𝑏𝑢                                                                          (5) 

where:  u is the System Input; y is the System Output; w is the External disturbances to the system; b is the 

Control gain; and x1,x2 is the System Parameters. 

 The LADRC system comprises a Linear Extended State Observer (LESO) and a Linear State Error 

Feedback (LSEF) controller. The LESO estimates the internal and external disturbances in real-time, 

aggregating them into a total disturbance state.  

 Despite LADRC having fewer parameters (six) than ADRC, its tuning is more complex than traditional 

PID controllers. To address this, this paper proposes using an improved Northern Goshawk Optimization 

(NGO) algorithm to optimize LADRC's control parameters, aiming for superior performance. 

 

Improved Northern Goshawk Optimization Algorithm 

 The Northern Goshawk Optimization (NGO) algorithm, proposed by Mohammad Dehghani et al. 

(2021), is a swarm intelligence optimization algorithm. It simulates Northern Goshawk behaviors—prey 

identification (exploration), attack, pursuit, and escape (exploitation)—to find optimal solutions. NGO offers 

advantages like fast convergence, fewer control parameters, and robustness, adapting to specific problem 

characteristics with universality. Compared to traditional swarm intelligence algorithms, NGO better balances 

global and local exploration, quickly identifying optimal search regions for fine-grained searches. 

 Despite its strengths, NGO has limitations. Random, uneven initial solution distribution can reduce 

population diversity, and insufficient global search during prey identification often leads to local optima. 

 To address the aforementioned issues, this paper proposes the following improvements to the NGO 

algorithm: 

 First, initial population positions are randomly generated using a chaotic Tent map. This ensures a 

more uniform distribution, accelerates convergence, helps escape local optima, maintains diversity, and 

enhances global search. 

 Second, the Sine Cosine Algorithm (SCA) is integrated into NGO's prey identification phase. SCA 

leverages sine and cosine oscillatory characteristics to influence discoverer positions, maintaining diversity 

and improving global search capability by performing global and local optimization based on these oscillations 

to find the overall optimal value. 

 Standard NGO relies on stochastic exploration, which can lead to local optima. To enhance the global 

search capability, the Sine Cosine Algorithm (SCA) strategy is integrated into the exploration phase. The 

improved position update formula, which replaces the standard exploration mechanism, is expressed as: 

𝑋𝑖,𝑗
new,𝑃1 = {

𝜔 ⋅ 𝑋𝑖,𝑗 + 𝑟1 ⋅ sin⁡ 𝑟2 ⋅ |𝑟3 ⋅ 𝑋best − 𝑋𝑖,𝑗|, 𝑅 < 𝑆𝑇

𝜔 ⋅ 𝑋𝑖,𝑗 + 𝑟1 ⋅ cos⁡ 𝑟2 ⋅ |𝑟3 ⋅ 𝑋best − 𝑋𝑖,𝑗|, 𝑅 ⩾ 𝑆𝑇
                                                    (6) 
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where:  

 ω is the proportional factor for position adjustment; r1 is the step-size search factor that decreases 

linearly with iterations; r2, r3 are random numbers within the range [0,2π]; R is a random number within the 

range [0,1]; ST is the threshold determining the selection of the cosine strategy; and Xbest is the Current Optimal 

Position. 

 This study uses the Integral of Time-weighted Absolute Error (ITAE) as the comprehensive evaluation 

metric, or fitness value. ITAE, a time-weighted integral of absolute error, is commonly used in optimized 

controller design to achieve smoother system responses. Minimizing ITAE allows for parameter adjustment to 

achieve superior system responses. The calculation formula is: 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|
∞

0
𝑑𝑡                                                                             (7) 

where:  t is the time; and e(t) is the system error at time t. 

 

RESULTS 

Simulation Analysis 

 To verify the LADRC speed control algorithm's impact on path tracking, a comparative analysis was 

conducted between the traditional PID-based Pure Pursuit and LADRC-based Pure Pursuit algorithms, 

evaluating their characteristics and effectiveness. 

 

Operational Speed Control Simulation 

 As the weeding robot's operational speed directly relates to motor rotational speed, operational speed 

control is essentially motor speed control. First, separate Simulink models for LADRC and PID motor speed 

control were established, as shown in Fig. 5. Then, NGO and INGO algorithms optimized their respective 

parameters to obtain optimal control settings. Using these parameters, operational speed control was 

performed for each controller, and their effects were compared. Both NGO and INGO used a population size 

of 30 and 100 maximum iterations. The Simulink sampling time was 0.01 s, with a step response input of 561, 

corresponding to 1 m/s operational speed. 

 
Fig. 5 - Simulink simulation model of LADRC and PID controller 

  

 Before optimization, LADRC and PID parameter ranges were manually tuned to reduce iterative 

optimization time. The Simulink simulation models for the LADRC and PID controllers are shown in Figure 5. 

The electrical parameters of the DC brushless motor are listed in Table 2. 

Table 2 
DC Brushless Motor Parameters 

DC Brushless Motor Parameters value 

Types of Electric Motors Three-phase brushless DC motor 

Moment of inertia J / (kg·m2) 5.3×10-3 

Torque coefficient KT  / (N·m/A) 1.66 

Reverse Voltage Constant ke / (V·m/r) 0.96 

Armature Inductance LA / (H) 0.1 

Armature resistance rA /  (Ω) 0.1 

Damping coefficient B 2×10-4 
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 After these preparations, program execution results were analyzed. Fig. 6 shows the optimized fitness 

values for both controllers, obtained by NGO and INGO, while Figure 7 depicts the step response curves. 

LADRC's optimized fitness values were 0.0092 (NGO) and 0.0056 (INGO), while PID's were 1.0365 (NGO) 

and 1.0359 (INGO). Fig. 6 shows that INGO achieved smaller initial fitness values and converged faster than 

NGO, demonstrating its advantages in parameter optimization speed and local optima escape. 

 Due to INGO's superior optimization, INGO-optimized LADRC and PID parameters were directly used 

in the simulation for step response comparison. The step response curves show that LADRC reached steady-

state earlier (0-0.05s) with 0.01% overshoot, compared to PID's 0.77%. This indicates LADRC's faster initial 

response, achieving the setpoint quicker with less overshoot. 

 To compare disturbance rejection, a 7-unit external disturbance was introduced at 0.2 s. Fig. 7 shows 

LADRC's motor speed overshot by 0.14% (0.2-0.2002 s) and largely recovered to steady-state by 0.2015 s. 

PID, however, saw overshoot increase to 5.91% (0.2-0.208 s), recovering only around 0.26 s. Thus, LADRC 

demonstrates faster recovery and stronger stability under disturbances in operational speed control. 

 

 
  Fig. 6 - Fitness value change curve                                        Fig. 7 - Step response curve 

 

 

Path Tracking Simulation 

 The weeding robot's structural parameters (length, wheelbase) were input into MATLAB to establish 

the path tracking model. A 122.83 m S-shaped path, comprising three straight and two curved segments, was 

defined. Initial lateral and heading deviations were set to 1 m and 1.15°, respectively. 

 Operational speed control, set at 1 m/s using the optimized motor speed model, included disturbances: 

a continuous 10 N·m on straight segments and a sinusoidal torque (5 N·m amplitude, 5 N·m offset, 1 rad/s 

frequency) at turns to simulate turning effects. The path tracking curve and lateral error curve are shown in 

Fig. 8 and Fig. 9, respectively. The results of the lateral error analysis are presented in Table 3. 

 

 
Fig. 8 - Path tracking driving trajectory                                    Fig. 9 - Lateral error in path tracking 
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Table 3 
Lateral Error Statistics 

Algorithm Maximum error / m Absolute Mean Error / m Root Mean Square Error / m 

PID-PP 0.2832 0.1512 0.2119 

LADRC-PP 0.2820 0.1466 0.2066 

 

 Simulation results show that both LADRC-PP and PID-PP had an initial convergence time of 5.23 s. 

This consistency is attributed to fewer disturbances and similar speeds during this phase, resulting in 

comparable path tracking performance. 

 As shown in Figure 10 and Table 3, LADRC-PP significantly reduced lateral error compared to PID-

PP. Specifically, LADRC-PP's RMSE, MAE, and maximum error were reduced by 2.5%, 3%, and 0.42%, 

respectively. The small reduction in maximum error suggests similar performance under high-curvature paths, 

where both algorithms' response capabilities saturated. Overall, LADRC-PP demonstrated superior 

performance in maximum, mean absolute, and root mean square lateral errors, despite similar initial 

convergence times. This leads to better path tracking performance. 

Field Experiments 

 Field experiments validating LADRC-PP's path tracking performance were conducted on June 12, 

2023, at Heilongjiang Bayi Agricultural University's experimental farm. The experimental field had a ridge width 

of 1.1 m and a ridge height of 0.2 m. The cultivated crop was soybean, planted using a large ridge double-row 

method. The growth stage was the second node stage, with an average plant spacing of 4 cm. During the 

experimental tests, the weeding robot prototype was driven to the vicinity of the desired path's starting point. 

The field experiment setup for automatic navigation is shown in Fig. 10. 

 
Fig. 10 - Field automatic navigation 

  

 During the experiments, the weeding robot's initial position relative to the path was set with a lateral 

deviation of 0.3 m and a heading deviation of 15°. The weeding robot performed path tracking on soybean 

seedling rows using both PID-PP and LADRC-PP algorithms at operational speeds of 1 m/s, 0.8 m/s, and 0.6 

m/s. Three experimental sets were conducted for each algorithm, and average values were recorded. 

Evaluation metrics included initial convergence time, maximum lateral tracking error after stable convergence, 

mean absolute tracking error, and root mean square error. Results are in Table 4. 

Table 4 
Test results 

Control 
Algorithm 

Operating speed / 
(m/s) 

Maximum error / 
m 

Absolute Mean Error 
/ m 

Root Mean Square Error 
/ m 

PID-PP 

1 0.0526 0.0283 0.0305 

0.8 0.0474 0.0252 0.0277 

0.6 0.0362 0.0164 0.0178 

mean 0.0454 0.0233 0.0253 

LADRC-
PP 

1 0.0418 0.0211 0.0232 

0.8 0.0384 0.0192 0.0213 

0.6 0.0327 0.0137 0.0144 

mean 0.0376 0.018 0.0196 
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 Table 4 shows LADRC-PP reduced maximum lateral error by 20.5%, 19%, and 9.67% at 1, 0.8, and 

0.6 m/s, respectively, compared to PID-PP. Mean absolute error decreased by 25.4%, 23.8%, and 16.5%, and 

RMSE by 23.9%, 23.1%, and 19.1%. LADRC-PP's performance advantage diminishes at lower speeds 

because the vehicle's slower dynamic response and smaller tracking errors at low speeds allow PID to perform 

more effectively. In such low-speed environments, LADRC-PP's disturbance rejection and dynamic 

compensation benefits are less pronounced, reducing the performance difference between the algorithms. 

Overall, LADRC-PP's evaluation metrics consistently surpassed PID-PP's, validating its effectiveness. 

 However, it is important to note that the field experiments were conducted on relatively flat terrain. In 

extreme agricultural environments characterized by steep slopes or severe tire slip, the simplified kinematic 

model might be compromised, potentially limiting tracking stability. 

 

CONCLUSIONS 

 (1) A path tracking control method based on the LADRC-PP algorithm was designed. The LADRC 

controller was used for real-time control of the weeding robot's motor speed, and the INGO optimization 

algorithm was employed to optimize the LADRC controller parameters. Compared to traditional PID controllers, 

the LADRC controller, by real-time estimation and compensation of external disturbances, can respond more 

quickly and recover to a normal state when facing disturbances. The LADRC-PP algorithm reduced path 

tracking errors caused by unstable operational speed, thereby improving overall path tracking performance. 

 (2) Simulation analysis of the control algorithms (before and after improvement) was conducted using 

MATLAB. The simulation results indicated that under the same initial deviation conditions, the LADRC-PP 

algorithm reduced the root mean square error of lateral deviation by 2.5%, the mean absolute error by 3.0%, 

and the maximum error by 0.42% compared to the PID-PP algorithm. 

 (3) Field experiments demonstrated that compared to the PID-PP path tracking algorithm, the LADRC-

PP path tracking algorithm reduced the maximum lateral error by 20.5%, 19%, and 9.67% at operational 

speeds of 1 m/s, 0.8 m/s, and 0.6 m/s, respectively. The mean absolute error was reduced by 25.4%, 23.8%, 

and 16.5%, respectively, and the root mean square error by 23.9%, 23.1%, and 19.1%, respectively. The 

LADRC-PP path tracking algorithm exhibited advantages over the PID-PP path tracking algorithm in terms of 

maximum lateral error and root mean square error, with this advantage gradually diminishing as the operational 

speed decreased. It can be concluded that under actual field operating conditions, the LADRC-PP path 

tracking algorithm possesses stronger disturbance rejection capability against changes in resistance during 

operation. However, the advantage of the proposed algorithm diminishes at lower operating speeds. Future 

work will focus on validating the system in more complex terrains and varying soil conditions to further assess 

its robustness. 
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