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ABSTRACT  

Automated detection of tomato ripeness is crucial for achieving precise harvesting and enhancing agricultural 

productivity. However, detecting tomatoes in natural scenes poses challenges such as missed detections and 

false positives due to significant variations in target scale, frequent occlusions, and complex backgrounds. 

Additionally, existing detection models face limitations when deployed on mobile devices. To address these 

issues, this paper proposes SFH-YOLOv11, a lightweight detection model based on an improved YOLOv11n. 

Building upon YOLOv11n, this model achieves lightweight performance while maintaining high accuracy 

through three key enhancements: introducing an attention mechanism in the backbone network to strengthen 

feature selection capabilities, designing lightweight convolutional modules to reduce model complexity, and 

reconstructing the feature pyramid network in the neck to enhance multi-scale feature fusion. Experimental 

results demonstrate that SFH-YOLOv11 outperforms other algorithms, achieving mAP50 and mAP50-95 

scores of 91.8% and 78.2%, respectively—representing improvements of 1.7% and 1.0% over the original 

model. While enhancing performance, SFH-YOLOv11 reduces the number of parameters, computational 

complexity, and model size by 37.2%, 15.9%, and 34.5%, respectively, compared to the original model. This 

research provides effective technical support for lightweight maturity detection tasks in complex agricultural 

scenarios. 

 

摘要 

西红柿成熟度的自动化检测对于实现精准采摘和提升农业生产效率具有重要意义。然而，自然场景下的西红柿

图像检测存在目标尺度变化大、遮挡频繁和背景复杂引发的漏检与误检问题，以及现有检测模型在移动端部署

的局限性。为此，本文提出一种基于改进YOLOv11n的轻量化检测模型SFH-YOLOv11。该模型在YOLOv11n

的基础上，通过在主干网络中引入注意力机制以强化特征选择能力、设计轻量化卷积模块以降低模型复杂度、

在颈部网络中重构特征金字塔网络以增强多尺度特征融合能力这 3 个方面进行改进，使得模型在保持高性能的

同时实现轻量化。实验结果表明，SFH-YOLOv11的性能优于其他算法，mAP50和mAP50-95分别达到91.8%

和 78.2%，相较于原模型分别提升了 1.7%和 1.0%。在性能提升的同时，SFH-YOLOv11 的参数量、计算量和

模型大小相较原模型分别下降了 37.2%、15.9%和 34.5%。本研究为复杂农业场景下的轻量化成熟度检测任务

提供了有效的技术支持。 

 

 

INTRODUCTION 

 As a globally cultivated fruit and vegetable with exceptionally high consumption rates (Wang et al., 

2025), tomatoes hold critical economic significance in agricultural production and food supply chains (Yan et 

al., 2023). Their ripeness determines optimal harvest timing, post-harvest quality, transport losses, and market 

value. Traditional ripeness assessment relies primarily on manual visual inspection (Badeka et al., 2023), 

where fruit maturity is judged through observation of color, size, and shape. This method is not only highly 

dependent on individual experience but also suffers from significant subjectivity, inconsistent evaluation 

criteria, and low efficiency, making it difficult to meet the demands of large-scale, precision agriculture. 

Therefore, against the backdrop of rapid smart agriculture development, achieving automated, precise, and 

non-destructive monitoring of fruit and vegetable growth conditions has become an essential requirement for 

enhancing agricultural production efficiency and core competitiveness (Zhao et al., 2024; Lu et al., 2021; Jia 

et al., 2022). 
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 In recent years, with the rapid advancement of artificial intelligence technologies, particularly the 

widespread application of convolutional neural networks (CNNs) in object detection (Qian et al., 2023), 

significant potential has been demonstrated in agricultural vision tasks. Within smart agriculture's object 

detection domain, deep convolutional neural network-based detection algorithms have become the core 

technology for achieving automated, intelligent analysis (El Sakka et al., 2025). Based on the algorithmic 

workflow, CNNs are categorized into two-stage detectors and single-stage detectors. Two-stage detection 

models, exemplified by the R-CNN series (Fast R-CNN, Faster R-CNN, Mask R-CNN), typically excel in 

detection accuracy—particularly in precise object localization—due to their secondary refinement of candidate 

regions and specialized feature extraction. These models are widely applied in agriculture (Zhang et al., 2025). 

Wang et al. proposed an improved Faster R-CNN model for tomato ripeness detection. Experimental results 

show an average precision of 96.14% in complex scenarios, outperforming common object detection models 

(Wang et al., 2022). Tang et al. enhanced the Mask R-CNN model by incorporating self-calibrating 

convolutions for precise strawberry ripeness identification. Results indicate improved model performance, 

achieving an average precision of 0.937 (Tang et al., 2023). Zhang et al. proposed an enhanced algorithm 

named MRS Faster R-CNN for strawberry recognition and ripeness classification. Experimental validation 

demonstrated that the optimized model achieved average precision improvements of 0.26% and 5.34%, along 

with precision gains of 0.81% and 6.34%, respectively, compared to the original model in detecting ripe and 

unripe strawberries (Zhang et al., 2023). Zhang et al. designed an improved Faster R-CNN rice spike detection 

model based on enhanced fast regions. The modified model achieved an average precision of 92.47%, 

representing a significant improvement over the original Faster R-CNN model (average precision: 40.96%) 

(Zhang et al., 2022). Although R-CNN series models offer high accuracy advantages in agricultural maturity 

detection scenarios, their high computational load and large model size pose major obstacles for deployment 

on resource-constrained edge devices (Liu et al., 2020). In contrast, single-stage detectors reformulate object 

detection as an end-to-end regression problem. Such models, exemplified by the YOLO series and SSD, are 

well-suited for real-time detection and lightweight scenarios. Among these, the YOLO series is widely adopted 

for agricultural object detection due to its balanced trade-off between speed and accuracy (Wang et al., 2024). 

Zhu et al. constructed the YOLO-LM detection model by integrating CAA, ASFF, and GSConv modules, 

achieving an mAP50 of 93.18% that outperformed baseline models (Zhu et al., 2024). Wang et al. proposed 

an enhanced YOLO-ALW detection model based on YOLOv8n for chili pepper ripeness detection. Compared 

to the baseline model, the improved model achieved 3.4%, 5.1%, and 9.0% increases in mean average 

precision, precision, and recall, respectively (Wang et al., 2025). Zhao et al. proposed YOLO-DGS, a 

lightweight and efficient ripeness detection algorithm. Based on YOLOv10, its improvements significantly 

enhanced model performance with a 2% increase in mean average precision. Concurrently, inference speed 

improved by 12.5% and parameters were reduced by 26.3%, making it suitable for lightweight deployment 

(Zhao et al., 2025). Chen et al. integrated the ACmix attention mechanism, FreqFusion-BiFPN architecture, 

and Inner-Focaler-IoU loss function into the YOLOv11 model to develop AFBF-YOLO for detecting cherry 

tomato ripeness. Experimental results showed an mAP50 of 85.6%, outperforming multiple mainstream YOLO 

models (Chen et al., 2025). 

 Despite the optimizations applied to the aforementioned models, they still exhibit significant limitations 

in scenarios involving severe occlusion and overlap, variable target scales, complex environmental 

interference, and lightweight requirements. Therefore, this study proposes an improved YOLOv11n model 

algorithm. By introducing the SimAM attention mechanism, the model's focus on key features is enhanced; it 

designs the C3k2_FDP module to reduce computational complexity while increasing feature extraction 

flexibility; and incorporates the HSFPN architecture to lessen computational burden while improving multi-

scale feature fusion capabilities. This enhances the model's accuracy and efficiency in detecting tomato 

ripeness within complex field environments. 

 
MATERIALS AND METHODS 

Data Sources 

 The dataset used in this experiment was sourced from the Tomatoes public dataset on the Roboflow 

platform. This tomato dataset encompasses key factors such as different growth stages of the fruit, occlusion 

levels, variations in lighting, and complex environments. It comprises 819 real-world tomato images, each with 

a resolution of 640×640 pixels and saved in JPG format. 
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Data Preprocessing 

 This experiment employed LabelImg software to manually annotate the image dataset in YOLO format, 

yielding the raw dataset. Following the national standard GH/T 1193—2021, fruit maturity was categorized 

based on morphological characteristics and color into the following stages: unripe, green-ripe, color-changing, 

early red-ripe, mid-red-ripe, and late red-ripe. This experiment integrates maturity into three categories: unripe 

and green ripe fruits with green skin are classified as immature (marked as unripe). Fruits with a coloring area 

of less than 10% from the color changing period to the mid-red ripening period are classified as semi-ripe 

(marked as semi-ripe). Fruits with a coloring area exceeding 70% in the late stage of red ripening are classified 

as ripe (marked as ripe). After annotation completion, generate a text annotation file with the same name as 

the image file. The file contains category labels and annotation box coordinates. Randomly split the dataset 

into a training set (573 images) and a validation set (246 images) at a 7:3 ratio. To prevent overfitting and poor 

generalization caused by insufficient training data, the dataset was augmented using a combination of 

techniques, including Gaussian blurring, noise addition, brightness adjustment, rotation, cropping, translation, 

and mirroring. It should be specifically noted that all data augmentation operations are applied only to the 

training set during the model training phase. The validation set evaluation uses the original images without any 

augmentation, thereby ensuring the fairness and reliability of the model performance assessment. The 

augmented training set comprises 2,292 images, as illustrated in Fig. 1. 

 
Fig. 1 - Image data augmentation 

(a) Original image; (b) Reduce brightness+rotation; (c) Mirror+reduce brightness; (d) Gaussian blur+rotation 

 

YOLOv11n Model Architecture 

 YOLOv11n is a lightweight variant within the YOLO series, featuring a core structure comprising a 

backbone network, neck network, and detection head, as illustrated in Fig. 2. The backbone network primarily 

consists of standard convolutional modules (Conv), C3k2 modules, SPPF modules, and C2PSA modules, 

tasked with extracting multi-scale feature information from input images. The neck network fuses the multi-

scale features extracted by the backbone to generate a feature pyramid rich in semantic and localization 

information. The detection head employs a decoupled head structure, separately predicting categories and 

bounding boxes to enhance detection accuracy. YOLOv11n strikes a balance between speed and accuracy, 

making it suitable for complex multi-class detection tasks and an ideal baseline model for this study. 

Improvement of the YOLOv11n Model 

 The task of accurately and efficiently detecting tomato ripeness in natural field environments presents 

several challenges: variable target scales and morphologies, overlapping and occlusion among fruits, 

background interference caused by lighting variations and dense foliage, and the requirement for lightweight 

models in practical applications. To address these issues, a lightweight SFH-YOLOv11 model is proposed 

based on YOLOv11n. The optimized SFH-YOLOv11 model architecture is illustrated in Fig. 2. 

 First, to enhance the model's ability to focus on key maturity features, SimAM is introduced in the deep 

layers of the backbone network (after the last two C3k2 modules). This module dynamically recalibrates feature 

maps via an energy function without adding extra parameters, significantly improving the model's feature 

discrimination and expression capabilities. Second, to simultaneously address high model complexity and 

weak feature adaptability, a Convolutional Module (FDPConv) that integrates partial convolutions with a 

frequency-domain dynamic mechanism was designed. This module replaces standard convolutions within the 

Bottleneck structure and is embedded into the C3k2 module. It effectively reduces computational complexity 

and parameter count while enhancing feature extraction flexibility. Finally, to optimize the efficiency and 

accuracy of multi-scale feature fusion, an HSFPN is introduced into the neck network. This architecture 

achieves more efficient and discriminative multi-scale feature fusion, thereby improving detection performance 

for objects of varying sizes and occlusion levels.  These three improved modules sequentially operate on the 

critical stages of feature enhancement, feature extraction, and feature fusion, collectively forming a lightweight 

object detection model that balances high accuracy and computational efficiency. 
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Fig. 2 - SFH-YOLOv11 Network Architecture 

 

Simple Attention Module（SimAM） 

 To address the issue of insufficient feature selectivity in the model and difficulty in focusing on key 

regions of fruit maturity from complex backgrounds, and considering the need for lightweight design, this study 

introduced parameter-free SimAM attention modules at the deep feature positions of the backbone network 

(after the last two C3k2 modules), as shown in Fig. 3. 

 
Fig. 3 - SimAM attention module structure 

 

 SimAM is a conceptually simple yet highly efficient parameter-free attention module inspired by the 

spatial inhibition theory in neuroscience (Webb et al., 2005). Yang et al. proposed SimAM in 2021 (Yang et al., 

2021). Its core idea is to define an energy function for each neuron in the feature map. By minimizing this 

energy function, the distinctiveness of a neuron relative to all other neurons within the same channel can be 

quantified. The energy function of SimAM is shown in Equation (1). 

𝑒𝑡(𝑤𝑡, 𝑏𝑡, 𝑦, 𝑥𝑖) = (1 − (𝑤𝑡𝑡 + 𝑏𝑡))
2
+

1

𝑀 − 1
∑(−1 − (𝑤𝑡𝑥𝑖 + 𝑏𝑡))

2
𝑀−1

𝑖=1

+ 𝜆𝑤𝑡
2 (1) 

where: t represents the target neuron, xi represents other neurons, wt denotes the weight, bt denotes the bias, 

and M denotes the total number of neurons. 

 By minimizing the above energy function, analytical solutions for wt and bt can be obtained by taking 

the derivative and setting it to zero, as shown in Equations (2) and (3). 

𝑤𝑡 = −
2(𝑡 − 𝜇𝑡)

(𝑡 − 𝜇𝑡)
2 + 2𝜎𝑡

2 + 2𝜆
(2) 

𝑏𝑡 = −
1

2
(𝑡 + 𝜇𝑡)𝑤𝑡 (3) 

 Substituting the solution into the energy function yields the minimum energy for target neuron t, as 

shown in Equation (4). 
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𝑒𝑡
∗ =

4(𝜎̂2 + 𝜆)

(𝑡 − 𝜇̂)2 + 2𝜎̂2 + 2𝜆
(4) 

 Deep features in the network contain rich semantic information associated with the target's category 

and state. Introducing the SimAM attention module at the aforementioned position enables the model to 

automatically enhance its response to fruit regions—particularly their surface color and texture features—both 

spatially and across channels, while simultaneously suppressing interference from irrelevant background 

elements. 

C3k2FDP module structure 

 The C3k2 module, as the core unit for feature extraction and fusion in YOLOv11, relies on standard 

convolution for its BottleNeck structure, which has the following problems: firstly, standard convolution 

performs intensive calculations on all input channels. In pursuit of lightweight goals, there is still parameter and 

computational redundancy in its internal convolution operations, and there is still room for optimization in 

computational efficiency. Secondly, fixed-weight convolution kernels cannot dynamically adjust based on the 

content of the input image, resulting in insufficient flexibility in feature extraction. In order to cope with the 

interference of target scale changes and complex backgrounds in feature extraction, and to reduce 

computational costs and achieve lightweight requirements, this study introduces the C3k2FDP module, as 

shown in Fig. 4(a). Its core is to fuse Frequency Dynamic Convolution (FDConv) and Partial Convolution 

(PConv) to design the FDPConv module, and based on this, systematically reconstruct the key components 

Bottleneck, C3k, and C3k2 of the model. 

 The FDPConv module deeply integrates the strengths of FDConv (Chen et al., 2025) and PConv (Chen 

et al., 2023), as shown in Fig. 4(b). This module employs an efficient channel processing strategy: for the input 

feature map, only a portion of the channels (e.g., 1/4 of the total channels) are fed into the FDConv module for 

processing, while the remaining channels are directly retained. The FDConv module performs dynamic 

convolution and modulation of features in the frequency domain, enabling adaptive enhancement or 

suppression of different frequency components to capture target feature information with greater precision. 

The remaining channels bypass complex computations and flow directly to the output. Finally, the processed 

feature channels are concatenated with the retained original channels in the channel dimension. This design 

achieves more powerful feature extraction capabilities at a low computational cost. 

 Building upon this foundation, the original Bottleneck architecture was restructured to propose the 

Bottleneck_FDPConv, as shown in Fig. 4(c). Specifically, both standard convolutional layers (cv1 and cv2) 

within it were replaced with the aforementioned FDPConv module. This modification enables features to 

undergo two rounds of adaptive frequency-domain modulation within the Bottleneck architecture with minimal 

additional parameters and computational overhead, significantly enriching feature hierarchy and 

expressiveness. Finally, replacing the Bottleneck within the C3k2 module with Bottleneck_FDPConv forms the 

C3k2_FDP module. The module's initialization process flexibly selects the specific Bottleneck type through 

conditional checks (c3k), as shown in Fig. 4(d), preserving the architecture's extensibility. 

 
Fig. 4 - Module structure 

(a) C3k2FDP module structure; (b) FDPConv module structure; (c) BottleNeck_SDPConv module structure;  
(d) C3k_FDPConv module structure 
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High-level Screening-feature Fusion Pyramid Network (HSFPN) 

 The neck network is responsible for fusing multi-scale features, and its structural design is crucial for 

detecting fruits of varying sizes. While the PAN-FPN architecture in YOLOv11 enables multi-scale feature 

fusion, it exhibits limitations when confronting tomato detection tasks characterized by significant target size 

variations, severe occlusions, and cluttered backgrounds. To address this issue, this paper introduces the 

HSFPN architecture (Chen et al., 2024). This structure takes multi-scale features extracted by the backbone 

network as input, sequentially processes them through feature selection and feature fusion modules, and 

ultimately outputs multi-level feature maps rich in semantic information with precise spatial details. These 

feature maps provide high-quality representations for subsequent detection heads. The structural diagram of 

HSFPN is shown in Fig. 5(a). 

 
Fig. 5 - High-level Screening-feature Fusion Pyramid Network 
(a) The structure of HSFPN; (b) The structure of CA; (c) Structure of SFF 

 

 For the feature selection module, the Channel Attention (CA) module serves as the core component 

for feature filtering in HSFPN. First, the CA module performs global average pooling and global max pooling 

operations, calculating the mean and maximum responses for each channel, respectively. These statistical 

values are input into a channel attention module to generate weight vectors matching the number of high-level 

feature channels, which are then normalized to the [0,1] range via a Sigmoid function. Finally, the original 

feature map is multiplied channel-wise by the weight vector to achieve feature selection and enhancement. Its 

structure is illustrated in Fig. 5(b). 

 For the feature fusion module, HSFPN employs a Selective Feature Fusion (SFF) mechanism to 

synergistically integrate high-level semantic information with low-level spatial information. Its structure is 

illustrated in Fig. 5(c). First, high-level features undergo upsampling via transposed convolutions. 

Subsequently, the upsampled high-level features serve as weight maps for element-wise multiplication with 

low-level features. Finally, the filtered low-level features undergo residual addition with the high-level features, 

generating fused features that combine precise localization capabilities with rich semantic information. 

 

Experimental Platform Configuration and Training Strategy 

 This study was conducted in a standardized experimental environment. The operating system used 

was Windows 11 Professional Workstation Edition. The hardware configuration included: Intel® Xeon® 

Platinum 8270 CPU @2.70GHz (2 processors), NVIDIA GeForce RTX 4090 D GPU, and 128GB RAM. The 

programming language used was Python 3.9.24, integrated with CUDA 11.8 for accelerated model training, 

and the deep learning framework was built using PyTorch 2.0.1. 

 All models in this experiment were trained and evaluated using the same experimental configuration 

environment and training strategy. The input image resolution (image_size) for all models was set to 640×640 

pixels, with a batch size (batch_size) of 32 and 300 training epochs (epoch), employing an early stopping 

mechanism. Stochastic Gradient Descent (SGD) was selected as the optimizer. The initial learning rate 

(learning_rate) was set to 0.01, the momentum coefficient (momentum) to 0.937, and the weight decay 

coefficient (weight_decay) to 0.0005. 
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Evaluation Metrics 

 To scientifically and objectively quantify and compare the comprehensive performance of the proposed 

lightweight tomato ripeness detection model, an evaluation framework combining accuracy metrics with 

efficiency metrics is adopted. Accuracy metrics include: Precision (P ), Recall (R), Mean Average Precision 

(mAP50 and mAP50-95). Efficiency metrics encompass: Parameters (Params), Floating Point Operations 

(FLOPs), and Model Size (Size). AP is defined as the area under the Precision-Recall curve. For the multi-

class detection task in this study, mAP provides a more comprehensive reflection of the model's overall 

performance (Meng et al., 2025). The calculation formulas for P, R, and mAP are shown in (5) to (8). 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑟
1

0

(7) 

𝑚𝐴𝑃 =
1

𝑛
∑𝐴𝑃𝑖

𝑛

𝑖=1

(8) 

where: TP denotes the number of positive samples correctly detected, FP denotes the number of samples 

falsely classified as negative, and FN denotes the number of true positive samples that were not detected. 

 

RESULTS 

Ablation Studies 

 To scientifically and systematically validate the effectiveness and necessity of the three proposed 

improvement modules, and to deeply analyze their independent contributions and synergistic effects on model 

performance (accuracy and efficiency), a series of rigorous ablation experiments was designed. All 

experiments were conducted on the same preprocessed dataset, maintaining identical hyperparameter 

settings and training strategies to ensure comparability of results. Using the YOLOv11n model as the baseline, 

a comparative analysis was conducted by progressively introducing each enhancement module. “” indicates 

the model incorporates the corresponding module. Detailed results are summarized in Table 1. Experiment 1 

validates the baseline performance of YOLOv11n in detection tasks. Experiments 2, 3, and 4 demonstrate the 

effects of integrating SimAM, C3k2_FDP, and HSFPN into YOLOv11n, respectively. Experiments 5 and 6 

showcase the performance gains achieved through the sequential integration of these enhancement modules. 

 
Table 1 

The ablation experiment results of each improved module 

Number 
Base
Line 

SimAM 
C3k2_
FDP 

HSFPN 
P R mAP50 

mAP5
0-95 

Params FLOPs Size 

[%] [%] [%] [%] [M] [G] [MB] 

1     85.4 84.6 90.1 77.2 2.58 6.3 5.5 

2     83.9 85.9 91.8 77.8 2.58 6.3 5.5 

3     85.3 82.7 90.9 76.9 2.19 5.4 4.7 

4     81.2 87.4 90.9 77.7 1.82 5.1 3.9 

5     84.8 86.8 91.9 78.2 2.19 5.4 4.7 

6     82.0 88.2 91.8 78.2 1.62 5.3 3.6 

 

 First, through experiments independently introducing each improvement module, the core functions and 

contribution directions of each module can be clearly identified. The results of Experiment 2 demonstrate that 

introducing the SimAM attention mechanism deep within the backbone network (after the last two C3k2 

modules) significantly improves the model's accuracy metrics. The mAP50 increased from the baseline 90.1% 

to 91.8%, representing a 1.7% improvement, while mAP50-95 also rose by 0.6%. This improvement was 

achieved without altering the model's efficiency metrics (parameter count, computational complexity, model 

size), demonstrating that the SimAM module effectively enhances classification and localization accuracy by 

boosting the model's ability to focus on discriminative features, while adhering to lightweight design principles.  
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 Experiment 3 demonstrates that replacing all C3k2 modules in the model with C3k2_FDP yields an 

mAP50 of 90.9%, representing a 0.8% improvement over the baseline. Concurrently, the number of 

parameters decreased by 15.1%, computational complexity dropped by 14.2%, and model size shrank by 

14.5%. This indicates that the model achieves synergistic optimization of efficiency and accuracy while 

maintaining high precision. Experiment 4 highlights the module's exceptional capabilities in feature fusion and 

model compression. It achieves a 0.8% increase in mAP50 and a 0.5% increase in mAP50-95, while 

significantly reducing parameters by 29.5%, model size by 29.1%, and computational complexity by 19.1%. 

This confirms that HSFPN can aggregate multi-scale features to enhance detection performance while 

streamlining the parameters and computational overhead of the neck network. 

 Second, through modular combination experiments, in-depth analysis of the interactions and synergistic 

effects among the various improvement modules can be conducted. Further analysis of Experiments 2, 3, and 

5 indicates that progressively introducing the SimAM and C3k2_FDP modules onto the baseline model, 

respectively, improves mAP50 and mAP50-95 by 1.7% and 1%, while reducing the number of parameters by 

15.1%, computational complexity by 14.2%, and model size by 14.5%. These results demonstrate positive 

synergistic effects, reflecting the complementary enhancement between feature selection and dynamic feature 

extraction. Experiment 6 integrates all three improvements, achieving 1.7% and 1% gains in mAP50 and 

mAP50-95, respectively, compared to the baseline model. Concurrently, the model achieves extreme 

lightweighting with a substantial 37.2% reduction in parameters, 15.9% decrease in computational cost, and 

34.5% reduction in model size. By comparing the heatmaps of the YOLOv11n, SFH-YOLOv11, and YOLOv12n 

models across different scenarios. As shown in Fig. 6(a) and (c), it is observed that the detection performance 

of the YOLOv11n and YOLOv12n models is unstable detection performance in complex environments and 

small object detection tasks. Particularly in scenarios with cluttered backgrounds, varying object scales, or 

occlusions, the heatmap response intensity distribution becomes uneven. This leads to incomplete coverage 

or misalignment of critical targets, consistent with the missed detections and false positives observed in 

practical detection scenarios. In contrast, the SFH-YOLOv11 model consistently maintains high and stable 

detection performance under identical conditions, demonstrating superior attention to tomatoes amidst multi-

scale target variations and complex scenes compared to the baseline model. As shown in Fig. 6(b), the 

improved model generates heatmaps that show significantly more concentrated and stable high-response 

regions under identical conditions, enabling consistent and accurate coverage of tomato targets. This indicates 

that the proposed enhancement module mitigates the impact of complex backgrounds and multi-scale variations, 

enabling more effective capture of key features related to ripeness to meet the demands of maturity detection. 

 
Fig. 6 - Comparison of visualized heatmaps of partial models 

(a) YOLOv11n; (b) SFH-YOLOv11; (c) YOLOv12n 

 

 In summary, the ablation experiments rigorously demonstrated that each improvement module 

effectively addresses specific limitations of the original model through systematic comparison, while also 

quantifying their respective contributions. 
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Detection Results of SFH-YOLOv11 

 To visually evaluate the training dynamics and final performance of the improved model, this section 

conducts an in-depth analysis of key metric changes during training and the model's overall performance on 

the validation set. 

 Changes in key metrics during training quantify the model's performance improvement process, as 

shown in Fig. 7(a). Both precision and recall exhibit a steady upward trend throughout training, stabilizing in 

the later stages at 82.0% and 88.2%, respectively. During training, the model's key metrics rose synchronously 

and ultimately converged, remaining stable in the later stages without showing any decline.  

 These phenomena collectively indicate that the data augmentation strategy and model refinement 

methods employed in this study are effective. While learning features from the training set, the model did not 

overfit to the training data and demonstrated strong generalization capabilities. Additionally, the Precision-

Recall Curve evaluates the model's detection performance across categories, as illustrated in Fig. 7(b). The 

three curves correspond to different maturity categories, with the area under each curve representing the 

average precision for that category. Results indicate that the “immature” category achieved the highest AP 

value at 95.3%, followed by the ‘mature’ category at 92.7%, while the “semi-mature” category had a relatively 

lower AP value of 87.4%. The PR curves for all categories cluster predominantly in the upper-right quadrant 

of the coordinate plot, indicating the model maintains high precision across various recall levels. The model's 

comprehensive performance metric, mAP50, reached 91.8%. This demonstrates that the improved YOLOv11n 

model possesses high-precision, robust tomato ripeness detection capabilities overall. 

 
Fig. 7 - Curve changes during training 

(a) Changes in key indicators; (b) PR curve 

Comparative Experiment 

 To objectively evaluate the performance of the proposed improved model among mainstream lightweight 

detection models, a comprehensive comparative experiment was conducted using the same tomato ripeness 

detection dataset. The model was compared against multiple representative lightweight versions from the 

YOLO series, including YOLOv5n, YOLOv8n, YOLOv10n, YOLOv11n, and YOLOv12n. The results of the 

comparative experiment are shown in Table 2. 

Table 2 

Performance comparison of different models 

Number Model 
P R mAP50 

mAP50-
95 

Params FLOPs Size 

[%] [%] [%] [%] [M] [G] [MB] 

1 YOLOv5n 85.5 81.0 89.8 76.6 2.50 7.1 5.3 

2 YOLOv8n 81.6 85.2 89.8 76.0 3.00 8.1 6.3 

3 YOLOv10n 86.2 78.8 87.5 75.2 2.26 6.5 5.8 

4 YOLOv11n 85.4 84.6 90.1 77.2 2.58 6.3 5.5 

5 YOLOv12n 80.5 87.0 89.3 76.7 2.55 6.3 5.5 

6 SFH-YOLOv11 82.0 88.2 91.8 78.2 1.62 5.3 3.6 
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First, analyzing both accuracy and efficiency, the improved model achieved the best overall 

performance among all comparison models in detection accuracy. Its mAP50 reached 91.8%, representing a 

1.7% improvement over the original baseline YOLOv11n and significantly outperforming all other comparison 

models. For the mAP50-95 metric, the improved model achieved 78.2%, surpassing YOLOv11n's 77.2% and 

other comparison models. This indicates not only high classification accuracy but also precise bounding box 

localization. Second, the improved model demonstrates even more pronounced advantages in computational 

efficiency. Its parameter count and model size are only 1.62 million parameters and 3.6 MB, respectively—the 

lowest among all comparison models. Compared to YOLOv10n, which has the closest parameter count, the 

improved model reduces parameters by 28.3% and shrinks model size by 37.9%. Furthermore, its 

computational load is only 5.3 FLOPs, also the lowest among the comparison models.  

This demonstrates that the improved model achieves the highest detection accuracy while possessing 

the smallest complexity and storage overhead, making it suitable for deployment on resource-constrained 

devices. As shown in Table 2, the YOLOv11n and YOLOv12n models exhibit high similarity in terms of FLOPs 

and Size. This is primarily because YOLOv12n, as a subsequent iteration of YOLOv11n, focuses its lightweight 

design optimizations on training strategies, loss functions, or architectural fine-tuning. Consequently, both 

models share comparable theoretical computational complexity. 

To visually demonstrate the performance differences between models in real-world scenarios, Fig. 8 

presents a visual comparison of detection results in simple versus complex scenes. In simple scenes (as 

shown in the upper half of Fig. 8, where fruits are clearly visible and unobstructed), all compared models 

achieve relatively accurate detection with negligible performance differences. This confirms that under ideal 

conditions, mainstream lightweight models possess fundamental object detection capabilities. However, in 

complex scenes (as depicted in the lower half of Fig. 8, featuring dense foliage occlusions, overlapping fruits, 

and uneven lighting), significant performance disparities emerge among the models. As shown in Fig. 8(b), 

YOLOv5n exhibited notable false negatives and false positives, particularly failing to recognize some obscured 

or overlapping shaded fruits while misclassifying leaves as fruits. As shown in Fig. 8(c), (d), and (e), although 

the YOLOv8n, YOLOv11n, and YOLOv12n models did not exhibit false detections, they missed overlapping 

fruits. In contrast, the improved model developed in this study demonstrated exceptional stability in complex 

scenarios, achieving more complete detection of occluded targets while effectively suppressing background 

interference, as shown in Fig. 8(a). 

 
Fig. 8 - Partial model detection results 

(a) SFH-YOLOv11n; (b) YOLOv5n; (c) YOLOv8n; (d) YOLOv11n; (e) YOLOv12n 

 

Tomato Ripeness Detection 

To visually validate and demonstrate the practical application potential of the improved model 

developed in this study, a tomato ripeness detection system was designed and implemented. This system 

provides a user-friendly interface for the model, serving as a reference for subsequent deployment on edge or 

embedded devices.  

As shown in Fig. 9, users select locally stored tomato images or video files via the graphical interface 

and input the data into the trained model. The system then automatically invokes the algorithm to identify fruits 

within the input footage. Real-time visualization highlights each fruit with colored bounding boxes 

corresponding to its maturity category, while also enabling users to save the annotated results locally. 
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Fig. 9 - Detection system 

 
 
 

CONCLUSIONS 

  This study proposes a lightweight deployment-oriented tomato ripeness detection model that 

demonstrates significant performance improvements in complex field environments. Building upon YOLOv11n, 

the integration of the SimAM attention mechanism module, C3k2_FDP module, and HSFPN feature fusion 

architecture achieves enhanced detection accuracy in complex scenarios while substantially reducing model 

complexity. 

 Ablation experiments demonstrate that each improved module contributes distinct performance 

gains and efficiency optimizations, validating the feasibility of synergistic optimization across deep feature 

selection, dynamic feature extraction, and multi-scale feature fusion. Comparative experiments further 

demonstrate that the proposed improved model outperforms current mainstream lightweight models in both 

accuracy and efficiency. The improved model demonstrates significant advantages in both detection accuracy 

(mAP50 reaching 91.8%) and model complexity (parameter count reduced by 37.2%). Additionally, its 

lightweight benefits—including low memory consumption, reduced computational load, and ease of 

integration—provide technical support for addressing edge device deployment challenges. This provides a 

reference for achieving real-time, accurate maturity analysis on computationally constrained field mobile 

devices or embedded systems. 

 Based on the above work, future research directions focus on the following aspects: transferring the 

proposed improvement strategy to other agricultural vision tasks to validate its generalization capability; 

deploying the model on actual embedded devices for field performance testing and optimization, thereby 

advancing the development of intelligent agricultural detection. 
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