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ABSTRACT

Real-time, high-precision detection of wheat grains is crucial for food security and intelligent management, yet
fully supervised methods require extensive annotations and struggle with occlusion and overlap. This paper
proposes a lightweight YOLOv8-CoT model based on EfficientTeacher. FasterNet is integrated with
CoTAttention to optimize the FC-C2f unit, enhancing channel-spatial feature representation, while a CBAM
module is inserted at the end of the neck to improve recognition of occluded and overlapping grains. A pseudo-
label self-training strategy is adopted using 80% unlabeled data and 20% labeled samples. The proposed
method achieves 91.7% accuracy in field scenarios, improves efficiency by 6.6%, and reduces annotation cost
to one-fifth.
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INTRODUCTION

Wheat, as a widely cultivated staple crop worldwide, has long ranked among the top three food crops
globally in terms of cultivation area and total production. Approximately one-third of the world’s population
relies on wheat as a primary food source, providing food security for about 30% of the global population (Adam,
2023). Increasing wheat yield per unit area remains a central objective of modern breeding programs (Bastos
etal., 2020). Automatic detection and counting of wheat grains can rapidly and accurately obtain grain number
and spatial distribution at the spike, plant, and population scales, thereby enabling refined characterization of
spike grain number, grain morphology, and fertility. This provides key parameters for estimating yield at the
plant, unit-area, and regional scales, and significantly improves the efficiency of germplasm screening, yield
component analysis, and field trial evaluation (Wu et al., 2020). With the continuous development of image
processing, machine learning, and deep learning, such artificial intelligence-based methods have been
increasingly applied in wheat yield prediction and multi-scale phenotypic analysis (Zaji et al., 2022).

In recent years, the YOLO series of models has been increasingly applied to agricultural object
detection. Li et al. (2024), introduced RGB-D depth information into an improved YOLOv7 framework to
achieve three-dimensional detection and localization of fruits such as strawberries, significantly improving
detection accuracy and pose estimation performance in harvesting scenarios and fully demonstrating the
advantages of integrating depth information into object detection networks. However, this approach relies on
relatively expensive depth sensors and fixed mechanical structures, making it difficult to scale to large-area
wheat fields. Focusing on greenhouse tomatoes and other fruit targets, Yang et al. (2023) performed
lightweight modifications to the feature extraction and attention modules of YOLOvVS8, substantially reducing
the number of parameters and computational cost while maintaining high accuracy, thus validating the
effectiveness of enhancing C2f structures through feature enhancement and attention mechanisms.
Nevertheless, such studies mainly target fruits with “rounded, single, and well-defined” shapes, and their
network designs and prior assumptions are not directly applicable to targets such as wheat spikes and grains,
which are “slender, extremely small, and densely overlapped.”
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Aiming at UAV-based field wheat ear detection and counting, Li et al. (2025) and Lin et al. (2025)
introduced P2 micro-scale detection layers, SPDConv, DySample, and efficient attention modules into the
YOLOv8 framework under fully supervised settings, significantly improving the detection accuracy and model
compactness for spike-level small targets and demonstrating the strong potential of YOLOVS in this domain.
However, these works primarily focus on spike-level targets in long-range aerial imagery, pay insufficient
attention to the segmentation and separation of grain-level tiny targets in close-range static images, and still
heavily depend on large-scale manual annotation.

In contrast, Zhang et al. (2025) incorporated the EfficientTeacher semi-supervised framework into an
improved YOLOv8-based wheat ear detector. By introducing SPDConv and PSA modules to fully exploit
unlabeled images, they further improved spike-level detection performance and initially verified the
effectiveness of semi-supervised strategies in agricultural object detection. However, their attention and
feature modules are still designed around spike-level targets, and the backbone and neck retain the original
C2f structure, which limits their ability to represent grain-level tiny objects under severe occlusion and strong
adhesion.

With the advancement of deep learning in agricultural research, some researchers have begun to
integrate YOLOV5 with semi-supervised “EfficientTeacher” learning frameworks to train robust detectors under
conditions of limited labeled data. Xu et al. (2023) proposed the EfficientTeacher semi-supervised object
detection framework, which designs modules such as Dense Detector, Pseudo Label Assigner, and Epoch
Adaptor to significantly improve the semi-supervised training efficiency and accuracy of YOLOv5-based single-
stage detectors on general datasets such as VOC and COCO, thereby demonstrating the feasibility and
generality of the EfficientTeacher concept in one-stage architectures. Building on this, Zhou et al. (2023)
developed SSDA-YOLO by combining YOLOv5 with domain adaptation and a Mean-Teacher-based
knowledge distillation framework. Through scene style transfer to generate cross-domain pseudo-images and
the introduction of consistency loss, they improved cross-domain detection performance from source to target
domains, indicating that semi-supervised EfficientTeacher mechanisms are also applicable to complex
scenarios with significant domain shifts. Furthermore, Lyu et al. (2022) coupled a teacher—student model with
a strip attention module and proposed a semi-supervised SPM-YOLOv5 for bagged citrus detection. By
embedding the strip attention module into the YOLOvV5 backbone to highlight strip-shaped citrus and branch
features, and using a small number of labeled samples together with large amounts of unlabeled images to
generate pseudo-labels, they significantly improved detection accuracy and recall while effectively reducing
annotation costs in agricultural scenarios. Overall, these methods have achieved remarkable results in
leveraging depth information, feature enhancement and attention mechanisms, multi-scale small object
detection, and semi-supervised EfficientTeacher learning. However, most of them focus on fruit or spike-level
targets, and still lack structural designs specifically tailored for wheat grains, which are smaller, denser, and
more prone to adhesion.

In summary, existing studies either rely on costly depth sensors, or adopt feature module designs that
better match fruit or spike-level targets, or remain at the level of generic semi-supervised detection based on
the YOLOV5 architecture. There is still a clear gap in dense semi-supervised detection methods specifically
targeting wheat grains as agricultural tiny objects. To address this limitation, this study proposes ECBAM-
YOLOvVS8 based on the YOLOvV8 and EfficientTeacher frameworks. The method, for the first time, embeds an
FC-C2f module tailored to slender textures together with CBAM simultaneously into the backbone and neck,
and uses wheat grain shape priors to jointly calibrate channel—spatial weights. Combined with a semi-
supervised training strategy that fully exploits unlabeled samples, the proposed approach substantially reduces
dependence on manual annotations while effectively improving the accuracy and robustness of wheat grain
detection and counting in densely adhered scenes.

MATERIALS AND METHODS
Data collection

The experiment was conducted from September 2023 to June 2024 at the Yangjiazhuang
Experimental Site (112.5°E, 37.4°N) of Shanxi Agricultural University. The area is located at an elevation of
approximately 800 m and features a typical warm-temperate continental climate, with an average annual
temperature of 11°C, a frost-free period of 176 days, and an annual precipitation of 498.85 mm, offering
abundant sunlight resources. The soil is calcareous cinnamon soil developed from loess parent material, with
moderate fertility: total nitrogen 1.09 g kg™, total phosphorus 1.32 g kg™, and total potassium 22.13 g kg™*.The
schematic diagram of the test site is shown in Fig.1.
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A completely randomized block design was adopted for the experiment, using the winter wheat cultivar
"Nongda 212" as the test material. This variety exhibits plump kernels and typical spike morphology, showing
no significant morphological differences from common winter wheat, thereby meeting the requirements for
kernel-spike feature extraction. Sowing was carried out on September 27, 2023, with a one-time application of
base fertilizers: nitrogen (urea) 120 kg ha™2, phosphorus 120 kg ha™2, and potassium (K,0) 120 kg ha™2, at an
organic-to-chemical fertilizer mass ratio of 1:3. No additional fertilizers were applied during the entire growth
period. Winter irrigation was completed on November 24.

LIS LivaL ) "J"‘w:.‘ kY

L 0 D i B o g
W AR T T cdvrnd TR LEEE *"’:‘ L

Fig. 1 - Schematic diagram of the test site

Data Processing

The fully matured grain samples were collected in July 2024. At this stage, the grains exhibited bright
coloration and a hard texture, facilitating the extraction of texture and morphological features. To enhance data
diversity, over 20 types of dark background fabrics with varying grayscale gradients were used for photography.
An iPhone 15 Pro Max was employed as the imaging device, with the lens positioned 25-30 cm vertically
above the samples and fixed at a 90° overhead angle to ensure clear delineation of grain edges.

To address the issue of reduced model accuracy caused by grain overlap, manual arrangement was
applied during photography to ensure grains were densely packed and stacked, with overlapping samples
accounting for >90% of the dataset. A total of 2,200 raw images were acquired. After rigorous screening and
augmentation strategies—including random rotation, mirroring, and brightness adjustment—the dataset was
expanded to 4,500 high-quality images for subsequent model training and validation.

Improved YOLOvS8 object detection algorithm
Principles of the YOLOVvS algorithm

YOLO, which stands for "You Only Look Once," is an end-to-end single-stage object detection model
(Redmon et al., 2016). The model primarily consists of three core components: the Backbone, the Neck, and
the Head. The Backbone extracts image features through a series of stacked convolutional neural network
layers and passes these features to the Neck for further processing. The Neck composed of a Feature Pyramid
Network (FPN) and a Path Aggregation Network (PAN), fuses and enhances multi-scale features to improve
detection capability for objects of varying sizes (Lin et al., 2017).

The Head then performs predictions on the three generated feature maps at different scales to produce
the final detection results. As the latest iteration in the series, YOLOVS is categorized into five variants—n, s,
m, |, and x—based on model width and depth, each with distinct parameter configurations (Jocher et al., 2023).
Among them, the YOLOv8n model has the fewest parameters and the fastest detection speed, making it highly
suitable for deployment on embedded devices.
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Improved YOLOvS8 object detection algorithm

To address the characteristics of wheat grain datasets - significant scale variations along with extensive
occlusion and overlapping phenomena - this study optimizes the YOLOv8n algorithm. First, an improved FC-
C2f module is introduced after convolutional layers to enhance small target feature extraction capability.
Subsequently, a CBAM attention module is incorporated at the end of YOLOv8's neck network. This
mechanism processes features to generate both channel-wise and spatial attention maps, which are then
multiplied with input features to achieve adaptive feature refinement. The CBAM module significantly
strengthens feature representation for occluded targets, improves precision in key feature extraction, while
suppressing interference from irrelevant features, thereby substantially enhancing grain detection accuracy.

Fig. 2 illustrates the architecture of the modified YOLOv8n algorithm after these improvements.
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Fig. 2 - Network structure of improved YOLOvS8 algorithm
FC-C2f module

To simultaneously reduce computational load and parameter quantity while preserving channel
information in object detection tasks, this study integrates the C2f module, FasterNet Block module, and
CoTAttention mechanism to construct a lightweight FC-C2f module. Through the synergistic effects of multi-
scale feature fusion and attention mechanisms, this module effectively enhances the model's detection
capability for small targets while maintaining high computational efficiency.

C2f Module

In the YOLOVS8 architecture, the C2f module improves object detection network performance through
multi-level cross-layer connections and optimized design. It incorporates the Bottleneck concept, splitting
feature maps for processing to reduce computational load and parameter quantity while enhancing the
nonlinear representation capability of features. This enables efficient fusion of multi-scale features.
Additionally, the C2f module introduces a split operation to improve the network's performance in capturing
multi-scale and semantic information. This design not only strengthens feature extraction but also optimizes
gradient flow, ensuring both model performance and efficiency improvements while reducing computational
requirements.

FasterNet Block Module

FasterNet, as an innovative rapid network architecture, is built upon the Partial Convolution (PConv)
module, achieving higher throughput with low latency. The PConv module significantly reduces redundant
computations and memory access costs by performing convolution operations only on partial input channels,
thereby improving hardware utilization efficiency for computational resources. The PConv structure and the
FasterNet Block structure are shown in Fig. 3.
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Fig. 3 - PConv Structure and FasterNet Block Structure

CoTAttention Mechanism

The CoTAttention mechanism successfully captures global dependencies among channels while
avoiding dimensionality reduction operations. Through iterative optimization of the chain-of-thought process,
it reduces redundant computations and enhances the model's sensitivity to fine-grained features (e.g.,
textures, edges). In high-resolution vision tasks (such as semantic segmentation and object detection),
CoTAttention achieves a balance between efficiency and performance. The network structure of the
CoTAttention module is illustrated in Fig. 4.
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Fig. 4 - CoTAttention Attention Network Structure
FC-C2f Module

The FasterNet Block module consists of one 3x3 PConv and two 1x1 Convs. The CoTAttention
mechanism was embedded after the first 3x3 convolution operation to form an FC-Bottleneck structure. By
replacing the original Bottleneck structure in the C2f module with the proposed FC-Bottleneck structure, an
innovative FC-C2f module was constructed. This module was then used to substitute the original C2f module
in YOLOv8's backbone network while maintaining consistent input/output channel dimensions across all
network layers. This improvement achieves both model lightweighting and enhanced image detection
performance while accelerating processing efficiency for small target detection tasks. Fig. 5 details the network
architecture of the FC-C2f module.
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In this study, four SPDConv layers were added following the Conv layers of the YOLOv8 backbone
network to enhance feature extraction. This approach takes the feature maps generated from the preceding
convolutional operations as input and utilizes the SPD layers to transform spatial dimensions into depth
dimensions, thereby increasing feature map depth without information loss. Subsequent consecutive Conv
layers then perform convolutional processing, enabling feature extraction without reducing feature map
dimensions while effectively preserving image details. Compared with traditional convolution operations, this
insertion method demonstrates superior efficiency in retaining intra-channel information, thereby significantly
enhancing feature extraction performance for small targets.

CBAM Attention Module

Woo et al. designed and developed an attention component for feed-forward convolutional neural
networks, i.e., the Convolutional Block Attention Module (CBAM), which consists of a channel attention part
and a spatial attention part, and its specific structure is shown in detail in Fig. 6.
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Fig. 6 - Structure of CBAM

This mechanism significantly enhances the feature representation of occluded targets, improves the
accuracy of key feature extraction, while suppressing interference from irrelevant features, thereby
substantially boosting grain detection accuracy. Experimental validation demonstrates that this structure
performs particularly well in identifying overlapping grains in complex scenarios, with markedly improved
recognition precision. Moreover, the additional computational overhead remains controllable, ensuring an
optimal balance between inference speed and accuracy. This approach provides a more reliable technical
solution for high-density crop grain detection.
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Optimization of EfficientTeacher object detection algorithm

For wheat grains, dataset collection is relatively straightforward. However, comprehensive annotation
incurs high labor costs due to the small size and dense distribution of targets in the scene. To address this
issue, this paper proposes a EfficientTeacher object detection algorithm based on an improved
EfficientTeacher. The architecture of the EfficientTeacher model is shown in Fig. 7.
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Fig. 7 - EfficientTeacher training framework

EfficientTeacher learning framework

First, labeled samples undergo Mosaic augmentation and are trained using supervised learning, while
unlabeled samples undergo both Mosaic augmentation and Strong augmentation for training with pseudo-
labels (Xu et al., 2021). After that, the pseudo-label is assigned as reliable and uncertain by high and low
screening thresholds 11 and 12, and the screening formula is shown in equation (1).
{Re liable, P, > 1,

(1)

Uncertain,t, < P, <1,

where P; represents the confidence score of the pseudo-labeling. Subsequently, the pseudo-labeled and
labeled truth values were used as a guide for training and parameter updating of the student model,
respectively, and finally the teacher model was updated by exponential moving average (EMA).

Although EfficientTeacher demonstrates significant improvements in detection accuracy compared to
SSOD and one-stage anchor-based detectors, it still faces notable challenges in small object detection
accuracy. These challenges primarily stem from the limited pixel occupancy of small objects in images, which
complicates feature extraction and consequently impacts detection precision. Despite its outstanding
performance in other aspects, EfficientTeacher requires further research and refinement to enhance its
capabilities in small object detection scenarios.

Improved EfficientTeacher object detection algorithm

EfficientTeacher provides implementation code for both YOLOv5 and YOLOv8. However, only the
EfficientTeacher version is available for YOLOv5. This paper extends the EfficientTeacher functionality to
YOLOVS8 through code architecture modifications. Since YOLOv5 employs an anchor-based design whereas
YOLOv8 adopts an anchor-free approach, it was necessary to adapt YOLOvVS into an anchor-based variant to
enable integration with the EfficientTeacher framework.

Given the current model's high compatibility with YOLOv5 but the absence of EfficientTeacher
implementation code for YOLOVS, this study designed a comparative experiment to evaluate the performance
of the EfficientTeacher model after incorporating YOLOv8n. The primary objective was to verify whether the adapted
code could operate stably while enhancing model precision. The experimental results are detailed in Table 1.

Table 1
EfficientTeacher experimental results of different models
Model mAP50 mAP50:95
YOLOv5s 0.833 0.473
YOLOVSI 0.825 0.466
YOLOv8n 0.881 0.493

The findings demonstrate that when using YOLOv8n as the base model, the algorithm achieved its peak
mAP50 score of 88.1% - representing a 4.8% improvement over YOLOv5s and a 5.6% increase compared to
YOLOVSI. These results confirm the significant effectiveness of our model replacement approach.
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Experimental Environment and Training Design

The experiments were conducted on a Windows 11 operating system, with the development
environment configured using Python 3.8, CUDA 11.1.0, and PyTorch 1.11.0. The training process was
executed on an NVIDIA GeForce RTX 4060 GPU. For the training, the YOLOv8n model was used as the
base model, with the input image size set to 640x640 pixels, a batch size of 32, and a weight decay
coefficient of 0.0005. In the fully supervised learning mode, the initial learning rate was set to 0.01, the
minimum learning rate to 0.002, and the learning rate adjustment strategy employed a cosine annealing
schedule, with a total of 40 training epochs. In the EfficientTeacher learning mode, the learning rate was
fixed at 0.01, and the training ran for a total of 300 epochs.

Experimental Dataset and Evaluation Metrics

To enhance the model's generalization capability, the dataset for this study was collected from mature
wheat grain samples at the Yangjiazhuang Experimental Base of Shanxi Agricultural University in July 2024.
During this period, the grains were firm, plump, and had distinct coloration, facilitating effective feature
extraction during model training. To ensure image diversity, the photography was primarily conducted against
dark backgrounds. After careful selection, over twenty different gradient shades of backgrounds were used.
For the image capture, an iPhone 15 Pro Max was employed, resulting in a total of 2,200 raw images. After
rigorous screening and augmentation using image enhancement techniques, the dataset was expanded to
4,500 images. All images were saved in JPG format. Using Labellmg software, the wheat spikes in the images
were annotated with rectangular bounding boxes and assigned only the "wheat" class label. The annotations
were then saved as "txt" files in YOLO format. Fig. 8 displays sample images from this dataset. The
comparative analysis of six sample images clearly demonstrates the differential effects of grain arrangement,
shooting height, and background color on imaging quality during winter wheat grain acquisition: (a) shows
sparsely and evenly distributed grains, (b) exhibits blurred grain details due to excessive shooting height, (c)
presents densely overlapping grain distribution, (d) displays aggregated clusters formed by adhering grains,
(e) employs a dark background to enhance grain contour features, and (f) uses a light background for contrast.
The study confirms that background color exerts decisive influence on the accuracy, robustness, and
processing efficiency of image recognition. By systematically introducing complex scene elements such as
high overlap and dark backgrounds, this experiment effectively enhances the generalization capability of the
deep learning model (Wang et al., 2025).

Fig. 8 - Example images of the datasets

The dataset used in this study comprises a total of 4,500 images, with 3,500 images designated as the
training set and the remaining 1,000 images serving as the validation set. In the fully supervised learning
experiments, 20% of the data—equivalent to 700 images—were randomly selected for training. For the
EfficientTeacher learning experiments, these 700 images were used as labeled data, while the remaining 2,800
images were treated as unlabeled, with 20% of them annotated for experimental purposes.
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In this study, a series of evaluation metrics recognized in the field of target detection, including Precision
(P), Recall (R), and mean Average Precision (mAP) at an loU threshold of 0.5 were used to determine the
mAPS50 by integrating the Precision-Recall (P-R) curve. The calculation in equation (2) - (3).

mAP =L 3 4P x100%

i (2)

AP = [} P(R)dR @)
The mAP50:95 was calculated in steps of 0.05 as the loU threshold was varied from 0.5 to 0.95. The
precision is the proportion of all detections judged to be positive samples in a given category that are actually
positive, which is more stringent than the mAP50. It is calculated by averaging mAPs over loU thresholds

ranging from 0.50 to 0.95 at intervals of 0.05, as in equation (4) - (5).
P

P=—x100%

1P + FP (4)
R=—12 . 100%

TP + FN (5)

EfficientTeacher Learning Experiments

This study conducted comparative experiments on the effectiveness of fully supervised and
EfficientTeacher training methods under different labeled sample ratios. The experimental results are
presented in Fig. 9. In the figure, the blue area on the left represents the mAP50 values obtained using fully
supervised training with all labeled samples, while the orange area on the right displays the mAP50 values
achieved by further applying EfficientTeacher training methods on top of the fully supervised training. Given
that the total number of training samples was 3,500, a 20% labeling ratio corresponds to 700 labeled samples
and 2,800 unlabeled samples, with other ratios adjusted accordingly.

Comparison of Fully Supervised and Efficient Teacher

Fully Supervised 94.2(+2.1) 93»7“0)94.3(4—1.1}
Efficient Teacher 91.7(+3.1) QGAZMFZ-EHZM 92.1(+0)
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82.2(+12.3)
801 76.1(+14.7)

69.9(+0)
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Fig. 9 - mAP50 metric of different annotation sample ratios

As can be observed from Fig. 9, when the labeled sample ratio is 5%, the fully supervised training yields
an mAP50 value of 61.4%. Through EfficientTeacher training, this value increases by 14.7%, reaching 76.1%,
surpassing the fully supervised training result of 69.9% achieved with a 10% labeled sample ratio. At other
labeling ratios, EfficientTeacher training improves accuracy by 1.5%, 0.5%, and 0.5%, respectively, compared
to fully supervised training. It can be seen that EfficientTeacher learning can reach a higher mAP50% when
the annotated image ratio is low, especially at the annotation ratio of 20%, the performance is close to that of
fully supervised learning, but the amount of annotated data used is greatly reduced, so it is the most cost-
effective.

With the increase of the proportion of annotated images, the performance improvement of
EfficientTeacher learning gradually flattened. Moreover, when the labeled sample ratio is low and the number
of unlabeled samples is high, the performance improvement from EfficientTeacher training is particularly
significant. This has a positive impact on wheat grain detection. The manually annotated images were
randomly divided into 10 groups, with each group containing 4 images for model evaluation.
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As shown in Table 2, the enhanced model demonstrated stable accuracy of approximately 90% in real-
world scenarios, achieving a peak detection precision of 91.72%.

Table 2
Accuracy Analysis of ECBAM-YOLOv8 Model Detection versus Manual Counting
Number of missed Omission Precision

NO. Manual count Model count detection factor ratio

1 359 321 38 10.63% 89.37%

2 421 379 42 10.06% 89.94%

3 433 391 42 9.68% 90.32%

4 217 196 21 9.59% 90.41%

5 189 172 17 9.15% 90.85%

6 285 259 26 8.98% 91.02%

7 295 269 26 8.83% 91.17%

8 311 285 26 8.28% 91.72%

9 463 421 42 9.13% 90.87%
10 354 324 30 8.43% 91.57%

RESULTS

Ablation Study and Algorithm Comparison Experiments
Ablation Study

In order to verify the effectiveness of the improvement strategy proposed in this paper in enhancing the
model accuracy, this study conducts ablation experiments with the YOLOv8n algorithm as a benchmark. The
experimental results are detailed in Table 3. where A represents the FC-C2f module replacing C2f, B
represents the introduced CBAM attention module, and C represents the EfficientTeacher target detection
method mentioned in this paper.

The objective of this research was to develop an efficient wheat head detection algorithm by modifying
the original YOLOV8 architecture. The improvements include: adjusting YOLOv8's network structure through
the FC-C2f module, incorporating the CBAM attention mechanism, and embedding these enhancements into
a EfficientTeacher learning framework. To elucidate the impact of each modification, ablation experiments
were performed under identical training environments and hyperparameter settings. In this section, the
YOLOv8n model serves as the baseline, with the aforementioned improvements implemented incrementally
for comparative analysis.

According to the data presented in Table 3, the detection performance shows significant improvement
with the progressive integration of enhancement modules into YOLOv8n. However, the proposed algorithm
does not achieve optimal performance in terms of recall rate. This phenomenon occurs because while
improving the feature extraction capability for small targets, the algorithm also optimizes computational
complexity and memory usage. Nevertheless, given that both the precision and mean average precision reach
their peak values, and considering the inherent trade-off between precision (P) and recall (R), the slight
decrease in recall rate remains acceptable.

Table 3
Ablation Study Results of ECBAM-YOLOvS8
Model A B c P R mAP50 mAP50:95
1 0.864 0.785 0.857 0.426
2 Y 0.901 0.845 0.909 0.491
3 \ 0.890 0.825 0.893 0.461
4 \ 0.825 0.716 0.797 0.309
5 Y \ 0.895 0.835 0.901 0.475
6 Y v 0.883 0.824 0.888 0.454
7 \ \ 0.890 0.832 0.895 0.465
8 y \ \ 0.909 0.855 0.917 0.502

Algorithm Comparison Experiment

To further validate the performance advantages of the proposed algorithm on the wheat head detection
dataset, comparative experiments were conducted against several commonly used object detection algorithms
as well as the EfficientTeacher baseline. For a fair comparison, the default input resolutions of all methods
were kept unchanged. The experimental results are detailed in Table 4.
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In this experiment, EfficientTeacher employed the YOLOv5s detector, while V8 represents the
EfficientTeacher training results using YOLOv8n as the baseline model. ECBAM-YOLOv8 denotes our
proposed EfficientTeacher training results based on the enhanced YOLOv8n baseline model. All fully
supervised object detection algorithms listed in the table were trained for 300 epochs without using pretrained weights.

As shown in Table 4, the improved YOLOv8n model achieved a mean average precision (mAP50) of
91.7% under EfficientTeacher training conditions, representing a 1.5% performance improvement over the
baseline EfficientTeacher model (EfficientTeacher) and a 1.0% improvement over the latest YOLOv11n
(mAP50=0.907). Notably, YOLOv11n, as the most advanced lightweight detector in the YOLO series, has
optimized network structure and loss function for small-object detection, yet our ECBAM-YOLOV8 still
outperforms it in both mAP50 and mAP50:95. Compared to all other fully supervised models in the table
(including YOLOv5s, Faster R-CNN, YOLOv10, and YOLOv11n), our approach demonstrated superior overall
accuracy, leading to the conclusion that the enhanced model developed in this study is particularly well-suited
for wheat grain detection applications.

Table 4
Comparison of Winter Wheat Grain Recognition Models

Model Size P R mAPS0 mAP50:95
YOLOvbs 1024 0.831 0.747 0.816 0.309
Faster R-CNN 1024 0.855 0.781 0.851 0.405
SSD 1024 0.883 0.814 0.884 0.451
YOLOv8n 1024 0.868 0.804 0.874 0.445
YOLOX 1024 0.891 0.825 0.893 0.461
YOLOv10 1024 0.901 0.845 0.909 0.491
EfficientTeacher 1024 0.896 0.828 0.897 0.465
V8 1024 0.895 0.835 0.902 0.477
YOLOv11n 1024 0.903 0.849 0.907 0.489
ECBAM-YOLOv8 1024 0.909 0.855 0.917 0.502

As evident from Fig. 10, all models demonstrate high accuracy in identifying uniformly distributed grains,
while exhibiting distinct advantages and disadvantages when processing images of grains under other
conditions.

Uniformly High shooting Stacked and Adhesive state
distributed altitude overlapping

YOLOv5s

Faster R-CNN

SSD
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Specifically: for grains captured at high shooting altitudes, YOLOv5s, Faster R-CNN, and YOLOv8n
show significantly higher false detection and missed detection rates compared to other models, which primarily
accounts for their final detection accuracy remaining below 88%; YOLOv11n performs better than these
models in this scenario but still lags behind ECBAM-YOLOVS8 due to insufficient adaptation to the slender and
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dense characteristics of wheat grains. In detecting stacked and adhesive grain states, ECBAM-YOLOV8
achieves notably higher accuracy than all comparative models, including YOLOv11n. Particularly for adhesive
grains, ECBAM-YOLOv8 maintains substantially lower false detection and missed detection rates, benefiting
from the tailored FC-C2f module and dual-embedded CBAM attention mechanism that enhance feature
representation for complex grain distributions.

In conclusion, the proposed ECBAM-YOLOv8 model not only outperforms traditional baseline models
but also surpasses the latest YOLOv11n detector in key metrics and complex scenario adaptability. It
demonstrates robust detection accuracy in practical tests and shows superior application value for grain
recognition in complex agricultural environments.

CONCLUSIONS

This study addresses the demand for high-throughput phenotyping of winter wheat, achieving
comprehensive optimization of the entire process from raw wheat grain image acquisition to final field grain
detection and counting. It focuses on two core issues: the missed detection of small objects in densely
occluded scenes and the high annotation costs associated with fully supervised methods. The experimental
system comprehensively covers 4,500 grain images from the Yangzhuang Experimental Station of Shanxi
Agricultural University, integrating the YOLOv8n baseline model, FC-C2f lightweight units, CBAM attention
modules, and the EfficientTeacher framework. To ensure the comprehensiveness of the evaluation, the latest
YOLOv11n is also included as a comparative baseline.

Under the EfficientTeacher framework with a 20% annotation ratio, the ECBAM-YOLOV8 grain detection
model achieves a precision of 91.7% and a recall of 85.5%, outperforming traditional baseline models such as
YOLOv5s and YOLOX as well as the latest YOLOv11n. It effectively mitigates the high false positive and false
negative rates caused by grain overlap and occlusion. Through EfficientTeacher training, this study maintains
the advantage of detection accuracy while reducing manual annotation costs to one-fifth of that of traditional
fully supervised schemes. This lays a technical foundation for the low-cost and large-scale deployment of
winter wheat high-throughput phenotyping platforms, and provides a new "lightweight-EfficientTeacher"
paradigm for real-time wheat grain detection.
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