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ABSTRACT

The identification of farmland weeds and variable rate herbicide spraying technology are core components of
precision agriculture, playing a significant role in enhancing agricultural productivity, reducing pesticide usage,
and protecting the ecological environment. Currently, global agriculture faces dual challenges of increasing
resource constraints and rising environmental protection demands. This technology, by precisely locating
weed distribution and adjusting pesticide application rates accordingly, has become a key approach to
breaking the vicious cycle of "pesticide overuse-weed resistance-ecological pollution.” Based on bibliometric
methods and using the Web of Science database as the data source, this study retrieved literature related to
farmland weed identification and variable rate herbicide spraying from 2005 to 2024. VOSviewer software
was employed for visual analysis, systematically examining the temporal evolution characteristics, regional
collaboration networks, institutional contributions, and keyword clustering patterns in this field. The results
indicate that research in this area entered a rapid development phase after 2018, driven significantly by
artificial intelligence technology. Research hotspots focus on image recognition algorithms, multi-source data
fusion, variable rate herbicide spraying system design, and field application validation. Current studies face
challenges in adaptability to complex environments and multi-scale data coordination. Future efforts should
strengthen lightweight recognition model optimization, space-air-ground integrated data fusion, cost-effective
smart equipment development, and interdisciplinary collaboration to provide technical support for the
sustainable development of precision agriculture.
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INTRODUCTION

Weeds compete with crops in terms of nutrient uptake, water absorption, and light utilization, making
them a significant factor in reduced crop yield and quality (Wang et al., 2019). In the field, weeds exhibit
irregular "patchy" and "pointed" distribution patterns. When herbicides are uniformly sprayed across the entire
farmland without considering the presence or density of weeds, a substantial amount of herbicide is applied to

UJin-yang LI, Ph.D.; Chun-tao YU, Ph.D.; Bo ZHANG, Ph.D.; Li-giang QI, Ph.D. Cheng-long WANG, master degree. Chen Zhao,
master degree.

1260



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

areas without weeds or with sparse weed growth, thereby reducing pesticide efficiency. Additionally,
prolonged uniform herbicide application leads to weed resistance, causing the entire weed population to
gradually develop tolerance to multiple herbicides over time, diminishing the effectiveness of weed control
(Saini and Nagesh, 2025).

The identification of farmland weeds and variable rate herbicide spraying technology, which precisely
targets weed distribution and applies pesticides on demand, serves as a crucial pathway to achieving green
agricultural development. With the continuous advancement of artificial intelligence, computer vision
technology has been widely applied in the agricultural sector for crop identification (Hamuda et al., 2016; Wu
et al., 2024). As a key method for revealing the developmental patterns of disciplines, bibliometrics has been
extensively utilized in agricultural research across various fields (Zha et al., 2023). It is an interdisciplinary
field that explores the structure, characteristics, and laws of science and technology, and quantitatively
analyzes knowledge carriers (Xu et al., 2024). However, systematic bibliometric analysis in the field of
farmland weed identification and variable rate herbicide spraying remains relatively scarce, particularly in
areas such as technological evolution trajectories, interdisciplinary characteristics, and future trend
forecasting. Therefore, this study examines global literature data from 2005 to 2024, employing bibliometric
analysis, visual mapping, and topic modeling to systematically review the current research status, hotspots,
and development trends in farmland weed identification and variable rate herbicide spraying. The purpose is
to provide reference for researchers to grasp research trends, enterprise layout technology research and
development, and policy makers to plan industrial development.

KNOWLEDGE GRAPH ANALYSIS BASED ON VOSVIEWER
Data source

A scientific literature database is a collection of disciplinary knowledge built by scholars in related fields,
responsible for recording and disseminating disciplinary knowledge (Bornmann., 2019). Conducting statistical
analysis on literature data can showcase current research hotspots, quickly grasp the latest research trends,
and efficiently predict future research trends (Garg and Kumar, 2016).

Using the Web of Science literature search platform, Science Citation Index Expanded and Social
Sciences Citation Index as citation indexes, and leveraging Boolean logic operation rules, based on TS =
( "weed recognition" OR "weed identification" OR "weed detection" OR "management zone" ) AND ( "variable
rate application" OR "variable rate application of pesticides" OR "precision pesticide use" OR "prescription
map" OR "weed zoning" OR "variable rate herbicide application" ) Search within the time range of January 1,
2005 to December 28, 2024, with a search date of December 28, 2024. Retaining Article and Review Article,
excluding irrelevant data such as Proceedings Paper, Early Access, Book Chapters, Data Paper, Retracted,
and Publication, after steps such as deduplication, completion, merging, and deletion of severely missing
fields, a total of 751 valid literatures were screened.

The publication time of 751 articles collected by Web of Science from 2005 to 2024 is shown in Fig.1.
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Fig. 1 - Number of publications of relevant literature over the years

The level of annual publication can serve as an important parameter for evaluating the level of research
and development in a certain field, and can to some extent reflect the growth and changing patterns of
knowledge in that field. According to the statistical data in Fig. 1, the number of published papers each year
from 2005 to 2016 did not exceed 20, with fluctuations in the number of publications.
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The cumulative number of publications in the past 12 years accounted for 19.97% of the total number
of publications. Between 2017 and 2024, there was a significant annual increase in the number of published
papers. In 2022, the annual growth rate of publications reached its highest point and exceeded 100 for the
first time. In 2023, the growth rate continued but was relatively low, and it continued to show a rapid growth
trend until 2024. This statistical data reflects that research in this field has entered a rapid development stage
since 2018, which is highly consistent with the timing of the third wave of artificial intelligence development. It
indicates that the rapid development of weed identification and variable rate herbicide spraying is driven by
artificial intelligence technology.

VOSviewer Analysis Methodology

To ensure the reproducibility of bibliometric visualization results, the following parameter settings and
analysis protocols were adopted in VOSviewer for multi-dimensional analysis. VOSviewer is a free
open-source software for bibliometrics and scientific visualization. It can be used for multi-dimensional
bibliometric analysis, including geographical, institutional, author, and keyword analysis. The 751 valid
literatures screened were exported from Web of Science in "Full Record and Cited References" format,
including metadata such as authors, affiliations, countries/regions, keywords, and citation information. Before
importing VOSviewer, duplicate entries in keywords were manually standardized to ensure consistency
across the dataset.

For the parameter settings of co-occurrence analysis, the minimum occurrence threshold was defined
differently by entity type: for keyword co-occurrence analysis, the minimum number of occurrences of a
keyword was set to 5 to exclude noise, while all countries/regions with published literature were retained (no
minimum threshold) to fully reflect the global collaboration network, and the minimum number of publications
by an institution was set to 10 to focus on core contributing institutions. The clustering resolution parameter
was set to 0.7, the default optimal value for VOSviewer, which balances the granularity of keyword clusters
(with values ranging from 0 to 1, where higher values result in more fragmented clusters). The "full counting”
method was adopted for all co-occurrence analyses, counting each co-occurrence relationship between two
entities (keywords, countries, institutions) as a complete connection to highlight strong collaborative
relationships and core research themes.

The type of analysis was tailored to research objectives: regional collaboration was analyzed using
"country/region co-occurrence" to visualize cross-national collaborative networks, institutional contribution
was analyzed using "affiliation co-occurrence" to identify core research institutions and their partnerships, and
keyword clustering was analyzed using "keyword co-occurrence" to explore research hotspots and thematic
clusters, with cosine similarity used to measure the correlation between entities based on their co-occurrence
frequency. For visualization settings, the size of nodes in the knowledge graph was proportional to the
frequency of occurrence, the color of nodes represented different clusters, and the thickness of connecting
lines corresponded to the strength of the co-occurrence relationship. The layout of the graph was generated
using the VOS clustering algorithm, which minimizes the distance between closely related entities to intuitively
display the structure of the network.

Regional co-occurrence knowledge graph and publication statistics
The regional co-occurrence knowledge graph is shown in Fig. 2.
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Fig. 2 - Regional co-occurrence knowledge graph
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As shown in Fig. 2, China is a central node in the figure, ranking first in terms of the number of
publications in this field, and has connections with many countries. Due to the frequent contact between
countries, which often involves knowledge sharing, joint research projects, etc., a large number of academic
literature is generated. Therefore, countries with more connections, such as the United States, India, and
France, also have higher publication volumes in related fields. Some countries in the figure that only have
connections with a few countries, such as Hungary and Kenya, have relatively low activity in related research
and publication due to their low participation in international cooperation networks. Therefore, their publication
volume in this field is relatively small.

The volume of publications in a specific region is calculated by accumulating the publications from
research institutions in that country. To understand the publication status of institutions, statistics were
collected on the publication status of research institutions in the field of weed identification and variable rate
application, as shown in Table 1.

Table 1
Top 15 institutions in terms of the number of international publications
Institution name Country of residence  Quantity Percentage%
Consejo Superior de Investigaciones Cientificas Spain 32 4.26
University of Florida the United States 25 3.33
Texas A&M University the United States 18 240
China Agricultural University China 18 2.40
South China Agricultural University China 17 2.26
Peking University China 16 213
University of Sydney Australia 16 213
Nanjing Forestry University China 15 2.00
Chinese Academy of Sciences China 14 1.86
United States Department ong.rlcuIture Agricultural the United States 14 186
Research Service
North Dakota State University the United States 14 1.86
Jiangsu University China 13 1.73
Jilin Agricultural University China 12 1.60
University of Copenhagen Denmark 12 1.60
Mississippi State University the United States 11 1.46

From Table 1, it can be seen that among the top 15 institutions in terms of publication volume, 7
institutions are from China and 5 institutions are from the United States. Their total publication volume
accounts for 13.98% and 10.91% of the top 15 institutions respectively, indicating to some extent that Chinese
institutions have conducted a lot of research in this field and achieved fruitful results.

Keyword co-occurrence analysis

Keyword co-occurrence analysis refers to the situation where keywords with the same or different types
of characteristics appear together in a document. In Fig. 3, a node represents a keyword, and the larger the
node, the higher the frequency of its appearance. The nodes are connected by lines, and the thicker the line,
the stronger the correlation between them.
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Fig. 3 - Keyword co-occurrence map
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As shown in Fig. 3, the keywords are divided into four clusters, each representing a research topic.
Table 2 lists the top four keywords that appear in different clusters.

Table 2
Keyword co-occurrence distribution
Clustering Top 4 keywords by frequency Total number of keywords
Classification (190), precision agriculture (160), remote sensing (51),
1 . 23
segmentation (50)
deep learning (163), weed identification (64), site-specific weed
2 ) ) 12
management (27), image segmentation (22)
machine learning (68), computer vision (61), artificial intelligence (34),
3 . . 12
unmanned aerial vehicle (28)
4 weed detection (267), machine vision (61), image processing (40), 9

weed recognition (290

Cluster 1 contains 23 keywords, with the core theme of building a precision agriculture technology
system. It covers artificial intelligence technologies such as "convolutional neural networks" and "neural
networks", which are applied in precision agriculture operations such as "precision agriculture", "prescription
map", and "variable rate application". Data is obtained through devices such as "remote sensing", and then
processed through "classification" and "segmentation". In addition, this cluster involves agricultural
management content such as "weed management" and "weed mapping", as well as the use of "vegetation
index" to assess crop growth.

Cluster 2 contains 12 keywords, with the core topic being weed identification technology driven by deep
learning. This involves deep learning techniques such as "deep learning" and "transfer learning", which are
applied to operations such as "weed classification" and "weed identification". The "image segmentation”
technique can be used to assist weed identification and localization, especially for "site-specific weed
management”. In addition, the "attention mechanism" helps to improve the accuracy of related models. In
terms of deep learning frameworks, "yolov5" and "yolov8" are mentioned, which are widely used in the field of
object detection and recognition.

Cluster 3 contains 12 keywords, with the core theme of integrated application of agricultural intelligent
technology, involving intelligent technologies such as "artificial intelligence", "machine learning", and
"computer vision". These technologies are applied to complete operations such as "image classification" and
"object detection", and are applied in fields such as "precision farming" and "smart agriculture", assisted by
devices such as "unmanned aerial vehicle".

Cluster 4 contains 9 keywords, with the core theme of precision weed control driven by image
technology. It covers image technologies such as "image analysis", "image processing", and "machine vision",
which are used in operations such as "patch spraying", "precision herbicide application", and "site-specific
weed control". These technologies enable functions such as "weed detection" and "weed recognition", which
help to precisely manage weeds and reduce herbicide abuse.

Based on the cluster analysis of the aforementioned keywords, current research on crop field weed
identification and variable rate herbicide spraying technology primarily focuses on data acquisition and
processing, algorithms, weed-related management, and precision agriculture applications. In terms of data
acquisition and processing, remote sensing, drones, and other equipment are used to obtain data. Image
processing, deep learning, and machine learning are applied as typical artificial intelligence algorithms for key
tasks such as weed classification and identification. The YOLO series of deep learning frameworks play an
important role in object detection and recognition tasks, especially with the integration of attention
mechanisms and other technologies. By enhancing the network's ability to capture key information, the
accuracy of the model is effectively improved. By evaluating crop growth conditions using vegetation indices,
combining weed distribution maps and prescription maps, variable rate herbicide spraying and other
operations, targeted spraying, precise herbicide application, and other methods are used to achieve weed
control in specific locations, thereby achieving precise weed management and reducing herbicide abuse.
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Analysis of main research directions

Through bibliometric analysis, it can be seen that the research on crop field weed identification and
variable rate herbicide spraying technology involves multiple key aspects, with a good development trend and
much attention. However, to further promote research and application in this field, it is particularly important to
deeply explore the specific research status of "crop field weed identification", "farmland precision
management zoning", and "variable rate herbicide spraying technology".

(1) Crop field weed identification: With the help of artificial intelligence algorithms such as image
processing, deep learning and machine learning, it is applied to key tasks such as weed classification and
identification.

(2) Precision management zoning of farmland: Based on the spatial variability exhibited by the fields
and actual needs, divide them into several sub-fields with different homogeneity, and adjust soil and crop
management measures according to specific formulas, timing, location and quantity.

(3) Variable rate herbicide spraying technology: Utilize satellite positioning system to receive
information, combine real-time feedback values of flow pressure in the pesticide supply system, generate
pesticide application instructions with the help of flow, pressure and other sensors, and carry out variable rate
herbicide spraying operations through a control system.

Although existing research has made significant progress in the above three directions, there are still
deficiencies in the deep integration of technology integration and practical application: a complete technical
system of "weed identification-zoning decision making-application execution" has not yet been formed, and
there are problems such as incompatible data interfaces between different links, inconsistent spatial and
temporal scales; in complex farmland environments, the accuracy and stability of multi-source data fusion are
insufficient, and the adaptability of different algorithms in different crop types has not been fully verified.
Therefore, an in-depth analysis of the current research status of the above core directions, clarifying
advantages and disadvantages, can provide a clear direction for subsequent research and is of great
significance for promoting the implementation of technology in this field.

PROGRESS ANALYSIS OF WEED IDENTIFICATION AND VARIABLE RATE HERBICIDE SPRAYING IN
FARMLAND
Research progress on weed identification in crop fields

As a new generation of information technology deeply integrates with agriculture, the sector has
entered a new era of digitalization and intelligence, with agricultural remote sensing and agricultural models
playing a crucial supporting role as key core technologies (Yun et al., 2024). Agricultural remote sensing
utilizes remote sensors, drones, and satellite remote sensing to monitor and collect crop growth data in
real-time within the farmland environment (Olson and Anderson, 2021).

To implement variable-rate pesticide application technology, accurately detecting and identifying weeds
is the primary step (Liu and Bruch, 2020). With the development of data collection platforms, sensors, and
data processing and analysis methods, high-throughput phenotyping technology has been widely applied
(Lobet, 2017). Crop field image acquisition devices with high-throughput, automation, and high-resolution
characteristics play a key role in accelerating crop improvement and breeding processes, increasing crop
yields, and enhancing resistance to pests and diseases. They are also important ways to construct crop
growth models and collect high-dimensional and rich phenotypic datasets of crops (Cheng et al., 2020).
Integrating crop image acquisition devices based on optical imaging principles with crop models and
accurately analyzing the acquired image data can lay the foundation for quantitative decision-making and
management in the process of agricultural development (Sun et al., 2020). By analyzing the current research
status of crop field weed identification, this paper provides references for the selection of field weed image
acquisition equipment and weed identification methods.

Research progress on weed identification methods based on image processing and machine learning

In the field of weed identification, image processing, machine learning, and deep learning are three
core technologies. Image processing technology performs pre-processing tasks such as denoising,
enhancement, and grayscale transformation on acquired images to improve image quality and clarity (Zhang
et al., 2024). Threshold segmentation, edge detection, and morphological operations are used to separate
weeds from background, other plants, and other interference factors, providing accurate target areas for
subsequent classification and identification (Montalvo et al., 2012). Generally, image processing technology is
combined with machine learning or deep learning to achieve more accurate weed identification.

1265



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

Fig. 4 shows the general process of weed identification based on image processing.
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Fig. 4 - General process of weed identification based on image processing

Machine learning technology utilizes feature data extracted from images to build various classifiers,
such as support vector machines, decision trees, and random forests. The focus of machine learning
technology is to help computers learn the potential relationship between input and output from given data and
make accurate predictions (Samuel., 2000). Machine learning uses statistical methods to learn from data
without requiring specific clear programming instructions (Mitchell., 1999).

In the research on weed identification using machine learning, Wu et al. (2009) proposed a corn and
weed identification scheme based on image processing and support vector machine (SVM) technology.
Based on the characteristics of color images of corn, weed and soil, an image graying method was designed
to denoise the grayscale image, thereby separating the target objects. The shape feature parameters of the
target objects were further extracted and used as input feature vectors. The recognition rate of this method
reached 98.3%. Wu et al. (2010) used shape features as inputs for SVM to identify corn and weed. The leaf
shape parameters were input into SVM models using RBF, sigmoid, and polynomial kernel functions,
respectively. The accuracy of RBF-SVM reached 96.50%, which was the best among these models in terms
of recognition performance. Ahmed et al. (2012) proposed an SVM algorithm for weed identification in pepper
field images. They used a binary segmentation technique based on global threshold to distinguish plants from
the ground and extract features. The features in each image were divided into color features, shape features,
and moment invariants. The experimental results showed that the overall accuracy of support vector machine
reached 97% on 224 test images. Bakhshipour et al. (2018) proposed a weed detection method in sugar beet
fields based on shape factors, moment invariants, and other shape features. They separated highly similar
sugar beets from weeds and used KNN and SVM classifiers to distinguish weeds and sugar beets, with
overall accuracies of 92.92% and 95%, respectively.

Machine learning, combined with image processing, boasts low computational resource requirements
and cost-effectiveness, making it suitable for low-cost embedded devices or small datasets with distinct
crop-weed morphological differences. However, it relies heavily on manual feature engineering, limiting
stability and generalization.

Research progress on weed identification methods based on deep learning

Deep learning is a key branch of machine learning. Compared to machine learning, deep learning can
directly learn and extract high-dimensional features from raw image data without requiring manual feature
selection and transformation (Rakhmatulin et al., 2021). This not only simplifies the algorithm implementation
process but also improves the algorithm's adaptability and generalization ability. Through deep neural
networks, deep learning can capture subtle differences and complex features in images, which has significant
advantages for weed identification tasks in real-time environments (Rai et al., 2023). Existing object detection
frameworks include two stage detectors (e.g., the R-CNN series) (Islam et al., 2025; Zhang et al., 2024) and
single-stage detectors (e.g., SSD and YOLO series) (Chen et al., 2022; Dang et al., 2023; Fan et al., 2024).
Model enhancement and feature optimization have become key research focuses in UAV based weed
detection (Das et al., 2025; Zheng et al., 2024). Carrying out weed identification work in complex farmland
environments faces many problems: due to fluctuations in light intensity, image quality is reduced, increasing
the difficulty of image preprocessing and recognition; weed species are diverse, morphologically varied, and
distributed in a chaotic manner in the field, placing higher demands on model accuracy and prone to
misjudgment and missed judgments; the farmland environment is complex and variable, such as soil color,
humidity, crop growth status, etc., which can cause some interference in weed identification.
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Scholars at home and abroad have adopted many solutions to address the existing problems of weed
identification in farmland environments. Fan et al. (2021) studied seven common weeds in cotton seedling
stage in Xinjiang cotton fields under natural conditions, using optimized Faster R-CNN and data augmentation
to effectively identify and locate weeds in different situations, such as weeds growing together with cotton
seedlings, sparse weed distribution, or dense weed distribution with numerous targets. Wang et al. (2022)
constructed a detection model YOLO-CBAM by fusing YOLOvV5 and attention mechanism. The recognition
accuracy in field experiments was 0.9465, and the recall rate was 0.9017. It can be applied to real-time
detection of invasive weed Solanum nigrum seedlings. The model has been further improved through
multi-scale training. Zhang et al. (2022) proposed a weed identification model based on YOLOv4-Tiny, which
integrates multi-scale detection and attention mechanism for weed detection in peanut fields. This model
improves the ability to identify small target weeds, avoids the problem of missed weed detection, and enables
the model to reach convergence faster. Although this study achieved a mAP of 94.54% in the test dataset, the
limited number of crops and weeds in the image and the limited recognition range restricted the application of
the model in large fields.

Compared with machine learning, deep learning autonomously extracts high-dimensional features,
achieving higher accuracy and stronger adaptability to complex environments. Its limitations lie in high
demands for datasets and computing power, requiring lightweight optimization for edge deployment. Deep
learning is preferred for large-scale farmlands and real-time detection, while machine learning is more
applicable for small-scale, simple scenarios.

Research progress of field weed image acquisition equipment

When acquiring field image information, commonly used equipment or technologies include satellite
remote sensing, Unmanned aerial vehicle (UAV) remote sensing, and ground image acquisition platforms
(Zhang and Zhao, 2023). As shown in Fig. 5, it is a part of the image acquisition platform.

(a) DJI Mavic 3M UAV platform (b) Outdoor fixed platform (c) Self-propelled collection device
(Li et al., 2024) (Friedli et al., 2016) (Yu et al., 2025)

Fig. 5 - Image acquisition platform

Satellite remote sensing utilizes sensors on satellites to acquire information about the Earth's surface,
with a wide coverage area but low spatial resolution and slow response to ground dynamic changes. The
ground image acquisition platform refers to equipment that is typically placed relatively close to the ground
and can be equipped with high-resolution cameras and sensors to better capture field image information.

Sun et al. (2019) used a Canon SX730 HS camera to collect crop images of broccoli seedlings during
the weed control period. These image samples covered various conditions such as different light intensities,
different soil moisture contents, and different weed densities, providing a reference for crop identification in
agricultural intelligent weed control operations.

Jiang et al. (2020) used an Intel Real Sense Depth Camera D435 camera to capture images of weeds
in a corn field at a distance of 1m from the ground under different light intensities and soil backgrounds. In the
field variable spraying experiment, the accuracy rate of accurately spraying on identified weeds was 85%,
meeting the control requirements of variable spraying of pesticides].

Zhang et al. (2023) developed a mobile robot platform that combines an improved YOLOv5 algorithm to
achieve weed detection in vegetable seedling fields. It can accurately segment and label weeds, providing a
reference for precise weed control operations.

UAV remote sensing involves equipping drones with various types of sensors to obtain crop images
and other relevant information at low altitudes without direct contact with crops. This effectively extracts
detailed information about crop morphology, nutritional status and other aspects, thereby completing an
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instant, non-destructive and reliable task of crop information collection (Khaki et al., 2021). Currently, research
teams have utilized UAV as high-throughput crop phenotype detection tools and conducted systematic testing
work (Feng et al., 2020), providing a new technological approach for achieving precise management in crop
fields. The deep integration of deep learning and UAV technology has broken through the limitations of
traditional weed identification in efficiency and scope, opening up a new path for field weed identification (Rai
et al., 2023). At present, the sensors used in plant phenotype analysis research using UAV remote sensing
mainly include digital cameras, multispectral cameras, hyperspectral cameras, lidar and thermal imagers (Liu
et al., 2016). Through the use of advanced sensors with UAV, plant phenotype research can be improved in a
more efficient and environmentally friendly way (Mohidem et al., 2021), which is the technological focus for
improving efficiency, sustainability, technological innovation and agricultural modernization.

Satellite offers wide coverage, ideal for regional-scale weed distribution trend analysis, but suffers from
low resolution and is unsuitable for seedling-stage detection. UAV combines high resolution, wide coverage,
and fast data acquisition, outperforming satellites in large-scale farmland weed mapping and dynamic
monitoring. Ground platforms provide high-precision local data for small-scale test fields or precise surveys,
yet face limitations like narrow coverage, lighting interference, or soil compaction. In summary: satellites for
regional trends, UAVs for large-scale operations, and ground platforms for small-scale precision detection.

Current research status of precision management zoning in farmland

Precision management zoning is based on the spatial variability and actual demand conditions of the
fields, dividing the fields into several sub-fields with different homogeneity. For these sub-fields, soil and crop
management measures are adjusted according to specific formulas, timing, fixed points, and quantities. It is a
key link in precision agriculture (Ferguson et al., 2002). The goal of carrying out precision management
zoning is to achieve precision variable operation, thereby reducing agricultural input, improving soil quality,
and maximizing the potential of arable land resources. This measure is of great significance in improving land
productivity and ensuring food security (Bao et al., 2021), thus promoting the natural environmental system
and ecosystem in the region to maintain a dynamic balance state (Koch et al., 2004). In the research process
of management zoning at the field scale, most studies focus on the differences in soil conditions (fertility,
moisture content) and crop growth conditions (seedling growth, pest and disease conditions) within the field to
set basic management units within the field (Huang et al., 2020). By combining variable operation, precise
application of fertilizer, water, and pesticides is promoted (Ding, 2019).

Current research status of management zoning based on vegetation index

In recent years, the main source of input for precision management zoning has been data obtained
from remote sensing technology. These remote sensing data contain rich information about land features,
among which vegetation-related information is crucial for precision management zoning.

Liu et al. (2018) effectively improved the precision and accuracy of cotton field zoning by combining
object-oriented hyperspectral image segmentation technology with vegetation indices such as NDVI and
OSAVI, based on the characteristics and differences of different management areas. This approach enhanced
crop yields and land use efficiency. The study found that the selection and weight allocation of different
vegetation indices could affect zoning results, and the high cost of hyperspectral image acquisition and
processing limited the widespread application of this technology.

Liu et al. (2021) obtained Sentinel-2 A satellite remote sensing image data of corn emergence over
many years, from which they extracted the normalized difference vegetation index (NDVI). They used
object-oriented segmentation to implement precise management zoning operations. After completing the
zoning, the coefficient of variation of NDVI decreased within the range of 70.690%-76.420%. This research
provides a reference for the effective connection between precise management zoning and field variable
management measures such as precise fertilization and precise pesticide application. NDVI plays a key role
in regional detection work, providing strong support for precise management zoning operations based on
NDVI. However, some related research has pointed out that single-period NDVI spatial data contains limited
information and considers insufficient factors, resulting in a decrease in the accuracy of precise zoning. In
contrast, the zoning results obtained from integrating multi-period image information are significantly better
than those from single-period zoning (Li et al., 2012). Therefore, in another study by Liu et al. (2019), they
integrated soil organic matter spatial data, topographic data, and spatial data such as NDVI extracted from
SPOT-6 remote sensing images, which are closely related to zoning, and used object-oriented segmentation
to carry out zoning work for typical black soil areas.
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The results showed that the accuracy reached its highest when using comprehensive four-period NDVI
spatial information for zoning. This achievement provides a reference for data selection in the process of
precise management zoning.

Guo et al. (2023) proposed a method for obtaining the influence weight of environmental variables
using the normalized vegetation index NDVI. By screening out 15 key environmental variables closely related
to NDVI and their weights, they used the K-means clustering method to divide the rubber plantation into six
zones, effectively distinguishing the levels of soil nutrient abundance and deficiency. The differences in
environmental variables between each zone showed a significant state (P<0.05), providing a practical and
reliable approach for soil management zoning work. In addition, this study looked forward to the potential of
other vegetation indices in indicating vegetation conditions, proposing to carry out zoning research using
other vegetation indices in the future and verifying their feasibility. Chen et al. (2022) obtained NDVI data for
soybeans and corn by using a built-up platform for collecting spectral information from crop canopies. They
applied a model-based fuzzy C-means clustering algorithm to divide the fertilization management zones for
soybeans and corn. When analyzing the NDVI data for soybeans and corn, they found that when the number
of soybean zones was greater than 2 and the number of corn zones was greater than 3, the decrease in the
sum of squared errors was no longer significant, and the subsequent curve tended to be smooth. At this point,
the number of zones was considered reasonable. Taking into account the specific conditions of the crop
fertilization site and past fertilization experience on the farm, it was ultimately determined to set the number of
fertilization management zones for soybeans and corn to 4. Breunig et al. (2020) used remote sensing data
from the Planet Scope satellite to predict crop biomass using surface reflectance and vegetation index as
predictors. Based on the prediction results, they implemented precise management zoning using fuzzy
C-means clustering and verified it using yield data.
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Fig. 6 - Soybean fertilization management zoning map based on NDVI (Chen et al., 2022)

Vegetation indices are generally calculated based on spectral characteristics and are mainly used to
assess the growth status, coverage and health of vegetation. Given the high similarity in morphological and
physiological characteristics between seedling crops and weeds, their spectral characteristics are not
significantly different, resulting in a high degree of overlap or difficulty in distinguishing between the calculated
vegetation indices. Therefore, using vegetation indices as input features for clustering algorithms may
increase the complexity and uncertainty of the algorithm during the recognition process.

Current research status of management zoning based on clustering algorithms

By using only clustering algorithms and focusing on non-spectral feature extraction and analysis, it is
possible to deeply explore and utilize differences in non-spectral features such as morphology, texture, and
growth patterns between seedling crops and weeds, thereby providing a more reliable and effective basis for
clustering algorithms. Davatgar et al. (2012) used fuzzy clustering methods to define different fertility level
areas based on soil fertility characteristics and proposed targeted nutrient management strategies for rice
planting areas, which can effectively improve nutrient utilization efficiency and crop yield, providing a scientific
basis and technical path for sustainable nutrient management in rice fields.
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Chen et al. (2008) used Fuzzy C-Means clustering to divide 176 soil data points in the oasis cotton
region of Xinjiang into four zones, with significant differences in soil properties between each zone. The
zoning results can be used as individual operation units for variable fertilization to carry out farming
management work. However, the current zoning results do not yet cover the specific field management
measures formulation issues between zones.

An et al. (2011) used real-time data on cotton yield as the data source and used K-Means clustering
algorithm to divide the management zones of oasis farmland in Xinjiang, evaluating the effectiveness of
management zone division using variance reduction rate change. When the number of management zones is
four, the variation degree of cotton yield within each zone is relatively small, while the variation degree of
cotton yield between zones is relatively large. Therefore, it is suitable to carry out variable operations at this
zoning scale.

Zhu et al. (2018) proposed a density map method, which combines dimensionality reduction with
qualitative analysis to form a gradual subdivision method. Using this method, 315 administrative village units
in Xinzheng City were divided into six types of farmland consolidation areas. There are significant differences
in grain yield and its influencing factors among different types of areas, and the focus of farmland
consolidation project construction also varies among different types of areas. The proposed method is
suitable for farmland consolidation type area division work in multi-factor and large sample situations, and can
provide key reference for farmland consolidation planning and design.

Zhang et al. (2022) established a zoning evaluation index system from three dimensions: ecological
sensitivity, land suitability, and consolidation urgency. They applied a two-level selective clustering integration
method to carry out spatiotemporal allocation of agricultural land consolidation in Huaihua City, Hunan
Province, dividing 300 clustering units in Huaihua City into five consolidation area types. This indicates that
the two-level selective clustering integration method can balance cluster quality recognition and geographical
spatial advantages, and is suitable for situations with many clustering units and complex attribute spaces.

Chen et al. (2019) used the Fuzzy C-Means clustering algorithm to divide the corn field into three
management zones. During the crop growth period, crop height, leaf area index, and soil moisture content
showed significant differences in different zones. Based on the different soil properties and nutrient conditions
within the zones, scientific guidance can be provided for formulating different irrigation and fertilization
systems.
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Fig. 7 - Weed distribution map (Yue et al., 2025)

In summary, vegetation indices are computationally simple and timely, suitable for rapid large-scale
zoning or mature-stage crops with obvious spectral differences. However, their accuracy declines in seedling
stages due to overlapping crop-weed spectral features. Clustering algorithms utilize non-spectral features,
improving zoning precision in complex scenarios. Compared with vegetation indices, clustering algorithms
require more comprehensive data and parameter tuning but adapt better to seedling-stage farmlands.
Vegetation indices excel in automated large-scale zoning, while clustering algorithms are preferred for
medium-to-small-scale fine management.

Research progress on variable rate herbicide spraying technology

Variable rate herbicide spraying technology aims to improve pesticide utilization and moderately reduce
pesticide use (Smedbol et al., 2020; Swarnkar and Verma, 2014). It is a key topic in the field of precision
agriculture and a development trend in pesticide application technology (Feng et al., 2021).

1270



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

Variable rate herbicide spraying technology relies on the decision-making and execution process (Zhao
et al., 2025). Based on the satellite positioning system and the information received by the system, combined
with the real-time feedback values of flow pressure obtained from the pesticide supply system, various
sensors such as flow and pressure sensors generate specific pesticide application instructions. The control
system then carries out variable rate herbicide spraying operations. This technology is mainly divided into
machine vision-based variable rate herbicide spraying technology and prescription map-based variable rate
herbicide spraying technology (Wei et al., 2011).

Research progress on variable rate herbicide spraying technology based on machine vision

Variable rate herbicide spraying technology based on machine vision is the core technology for
achieving precise, efficient, and environmentally friendly crop pest and weed control. This technology utilizes
a machine vision system to analyze crop growth conditions, pest and disease conditions, and environmental
factors in real time, automatically adjusting the amount and method of pesticide application. During operation,
visual sensors, ultrasonic sensors, infrared sensors, laser sensors, and other devices are used to obtain
information such as the spray target contour, position, and density. The control system analyzes and
processes the acquired information to determine the specific amount of pesticide to be applied, further
forming a pesticide application decision-making plan, thus achieving precise pesticide application, improving
control effectiveness while reducing pesticide use.

Guo (2023) developed a set of real-time target-oriented spraying equipment based on machine vision,
deeply integrating deep learning object detection technology, electronic control technology, and agricultural
spraying machinery. By improving and optimizing the YOLOv5 model, precise identification of field weeds was
achieved. A precise control algorithm for target-oriented spraying with real-time delay compensation was
designed, which corrects the matching grid position by predicting weed position information and system
execution time, thus achieving precise spray control.

Liu et al. (2013) developed an infrared target-oriented detection system based on simulated sine
modulation. This system uses infrared light to illuminate target objects, and receives the reflected infrared
light through a receiver to determine the target position. By combining automation technology with spray
technology, the pesticide application method for crops is transformed from continuous application to
intermittent target-oriented spraying, greatly improving pesticide utilization efficiency.

Lei (2002) developed an intelligent spraying system based on visual sensors by combining a single
nozzle controller with a real-time visual sensing system. The controller of this system can independently
control each individual nozzle, and combined with a GPS system, it can achieve precise positioning of field
weeds. Based on visual sensors, it can estimate the density and position of field weeds in real time, and
decide whether to turn on or turn off the nozzles based on this information, thus achieving precise pesticide
application and improving spray accuracy and pesticide effective utilization efficiency.

Variable rate herbicide spraying technology based on machine vision has been widely used in the field
of variable rate herbicide spraying due to its high accuracy and strong real-time performance. However, this
technology is still constrained by some factors. For example, the variable spraying weed control equipment
based on machine vision designed by R.D. Lamm et al. (2002) and T. Bakker et al. (2010) has low weed
recognition rate and long processing time. The probability of misjudgment is high during the recognition
process, especially in complex environments, and there is still room for improvement in recognition accuracy.
In addition, the resolution of sensors, image processing effect, speed sensor measurement time, and
computer processing time all have a direct impact on the control accuracy of the system nozzle application
amount.

Research progress on variable rate herbicide spraying technology based on prescription maps

The variable rate herbicide spraying technology based on prescription maps is a personalized spraying
method that is field-wide and based on the diagnosis and control of plant pests and diseases (Liu et al., 2024).
Through professional technical means, pests and diseases are diagnosed, and targeted control measures are
formulated based on the actual distribution of weeds, pests, and diseases in the field. Using precision
spraying devices, spraying operations are carried out according to pre-set prescriptions, achieving efficient
and precise control of pests and diseases (Romero and Heenkenda, 2024).

As shown in Fig. 8, a variable rate herbicide spraying prescription map is constructed to implement this
technology.
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Fig. 8 - Variable rate herbicide spraying prescription map (Conceigao et al., 2025)

In the application of variable rate herbicide spraying technology, UAV remote sensing as an emerging
technology demonstrates numerous advantages. It can conduct multiple monitoring of farmland at different
growth stages and dynamically update prescription map information. Not only can it grasp weed growth
dynamics in real time, but it can also adjust pesticide application strategies in a timely manner based on weed
growth conditions. By obtaining high-resolution images of farmland through UAV and using deep learning
technology to deeply mine and analyze the images, precise weed information can be identified, providing
more targeted decision-making basis for variable rate herbicide spraying (Munir et al., 2024).

Bento et al. (2023) obtained multispectral images of coffee plantations using drones and, based on
crop spectral characteristics, employed the random forest algorithm to classify and identify coffee, weeds, and
soil. They mapped the weed distribution in the study area and, according to the weed distribution map,
applied pesticides only in weed-covered areas, resulting in a 92.68% savings in pesticide use compared to
applying pesticides across the entire study area.

Guo et al. (2024) constructed a rice paddy weed recognition model based on YOLOv8n DT, generated
an actual weed distribution map of the rice paddy based on the recognition results, determined the specific
dosage of pesticides by counting the number of weeds in each experimental plot, and generated a
prescription map accordingly, achieving variable spraying operations. The accuracy of YOLOv8n-DT in
recognizing weeds in rice paddies reached 0.82, saving about 15.28% of herbicides. However, despite the
excellent performance in saving herbicides in the above two studies, there is still much room for improvement
in the effectiveness of weed recognition models, which requires further refinement.

Sapkota et al. (2023) proposed a threshold segmentation method that can remove corn rows from
drone images while classifying the remaining vegetation as weeds, thereby generating spatial distribution
information of field weeds. Based on this, a grid-based prescription map for pesticide application was created,
and variable pesticide application operations were carried out using commercial sprayers. Although this study
achieved a 26.2% savings in the area of herbicides sprayed, the relatively fixed threshold used may increase
the risk of misidentifying corn and weeds to some extent.

Machine vision-based technology enables real-time response, suitable for dynamic weed distribution
with high spraying accuracy. However, it has higher requirements for sensor resolution and processing speed,
with potential misjudgment in complex environments. Prescription map-based technology is efficient for
large-scale commercial farms, utilizing UAV remote sensing for weed mapping, but lacks real-time
adaptability and requires timely updates. Machine vision suits small-to-medium-scale dynamic scenarios,
while prescription maps are optimal for large-scale, stable weed distribution.

CONCLUSIONS AND PROSPECTS
Characteristics and breakthroughs of technological evolution

The development of farmland weed identification and variable rate herbicide spraying technology has
shown a clear path of technological iteration. In terms of weed identification, early machine learning methods
relying on manual feature extraction required the design of proprietary feature engineering for different crop
and weed combinations, limiting their generalization ability. Deep learning, which learns high-dimensional
features autonomously, performs well in detecting small target weeds and in occluded scenes. Among them,
the combination of attention mechanism and multi-scale training enhances the model's ability to capture key
regional features and reduces the missed detection rate.
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Variable rate herbicide spraying technology has formed two parallel paths: "real-time response" and
"global planning". Real-time target-specific technology based on machine vision achieves dynamic response
by spraying as soon as weeds appear through the closed-loop linkage of sensor-controller-actuator.
Prescription-based application technology utilizes drone remote sensing to map weed distribution over a large
area, suitable for large-scale farmland. In recent years, the two paths have shown a trend of integration, such
as using real-time identification data to update prescription maps and dynamically adjust application
strategies to further improve application accuracy. In addition, the combination of lightweight hardware and
algorithms has promoted the miniaturization and low cost of variable rate herbicide spraying systems.

Current issues and challenges

Despite significant progress in farmland weed identification and variable rate application technology,
there are still three core challenges in practical applications that restrict the large-scale promotion of the
technology:

(1) Inadequate adaptability to complex environments. Models constructed under laboratory conditions
often exhibit performance degradation in field environments, primarily due to the following reasons: drastic
changes in illumination (such as strong sunlight at noon on a clear day and weak light on a cloudy day) cause
fluctuations in image brightness and contrast, leading to a decrease in recognition accuracy; crops and weeds
have similar morphology (such as rice and barnyard grass, wheat and red fescue), especially during the
seedling stage, where the spectral and morphological characteristics of the two overlap significantly, resulting
in a high rate of misidentification; soil background interference (such as different colored soils, soil water
reflection) can lead to an increase in the rate of missed weed detection in areas with low vegetation coverage.

(2) The technical cost and promotion threshold are excessively high. A complete variable spraying
system (including drones, high-resolution cameras, embedded controllers, and high-precision nozzles) costs
approximately 3-5 times that of traditional sprayers, which exceeds the affordability of small farmers.
Furthermore, technical operation requires professional knowledge (such as remote sensing data processing,
model training, and equipment debugging), and small farmers lack relevant skills, necessitating reliance on
professional service teams, which further increases the application cost.

(3) The system integration level is relatively low. There is often a "technical gap" in the three links of
weed identification, decision-making generation, and pesticide application execution, which leads to a decline
in overall performance: data interfaces are incompatible, the output format of the identification model does not
match the input format of the pesticide application controller, and additional development of conversion
modules is required, which increases the complexity of the system; the spatial and temporal scales are not
unified, and the spatial resolution of drone remote sensing data and the resolution of ground sensor data differ
greatly, which can easily lead to errors during data fusion, resulting in deviations in pesticide application
locations; execution delays, the total time consumed from weed identification to nozzle opening (image
acquisition, processing, decision-making, execution), when the equipment moves at a faster speed, can lead
to deviations between the pesticide application location and the actual weed location, affecting the weed
control effect.

(4) Inadequate interdisciplinary collaboration: This field involves multiple disciplines such as computer
science (algorithm development), agricultural engineering (equipment design), agricultural ecology (weed
distribution patterns), and environmental science (ecological risks of pesticides), but there is currently little
collaborative research between these disciplines. Research in the field of computer science focuses mostly
on optimizing algorithm accuracy, ignoring practical needs in the field (such as model real-time performance
and equipment costs); equipment research and development in the field of agricultural engineering lacks
deep integration with algorithms, resulting in hardware performance that cannot be fully utilized (such as
mismatch between nozzle flow adjustment range and algorithm-recommended application rate); weed
resistance research in the field of agricultural ecology is insufficiently combined with variable application
technology, making it difficult to develop application strategies based on resistance evolution.

Prospects of interdisciplinary integration

Breakthroughs in the field of farmland weed identification and variable rate herbicide spraying rely on
deep interdisciplinary integration. In the future, the following directions can be focused on to provide new
ideas for solving existing challenges:

(1) Integration of agricultural ecology and artificial intelligence: Agricultural ecology provides theoretical
support for the distribution patterns and evolution of herbicide resistance in weeds, while artificial intelligence
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offers efficient data analysis tools. For instance, by combining weed niche models (predicting the distribution
probability of weeds in different environments) with machine learning, a predictive pesticide application
decision-making system based on population dynamics can be developed. By long-term monitoring of weed
growth cycles and diffusion paths, a weed distribution prediction model can be constructed; combined with
meteorological data (such as temperature and precipitation), weed density changes in the next 1-2 weeks can
be predicted; based on the prediction results, a dynamic prescription map can be generated to adjust
pesticide application strategies in advance, reducing the risk of weed resistance. Furthermore, optimizing the
timing of image acquisition using agricultural ecology knowledge (such as selecting the growth stage with the
greatest morphological differences between weeds and crops) can make weed identification features more
prominent and improve identification accuracy.

(2) Integration of computer vision and mechanical engineering: Computer vision drives the iteration of
recognition algorithms, while mechanical engineering enables precise control of pesticide application
equipment. In the future, emphasis can be placed on developing an integrated "algorithm-hardware" system.
Develop lightweight deep learning models to reduce the number of model parameters, adapt to embedded
devices, and reduce hardware costs; design high-precision, low-power actuators, such as piezoelectric
ceramic sprayers, to improve pesticide application accuracy and real-time performance; develop multi-sensor
fusion modules (such as vision + infrared + lidar) to improve recognition and positioning accuracy in complex
environments through complementary data. For example, lidar can obtain three-dimensional spatial
information and effectively distinguish the height differences between crops and weeds.

(3) The integration of environmental science and precision agriculture: Environmental science provides
methods for pesticide reduction and ecological risk assessment, while precision agriculture provides technical
means. In the future, a closed-loop system of "application-monitoring-assessment" can be established. Based
on variable application technology, pesticide usage can be reduced, and combined with environmental
science risk assessment models (such as pesticide migration and transformation models in soil and water),
the impact of pesticides on the ecological environment can be predicted. Rapid detection equipment for
pesticide residues (such as portable Raman spectrometers) can be developed to monitor pesticide residues
in real time after application and optimize application parameters. Combined with biological control
techniques (such as natural enemy insects, microbial herbicides), a comprehensive weed management
system of "chemical control + biological control" can be established to further reduce the usage of chemical
pesticides and achieve sustainable agricultural ecological development.

(4) Integration of agricultural loT and big data: With the development of digital agriculture, the integration
of agricultural loT and big data platforms will provide richer data support for weed identification and variable
rate application. By collecting real-time data such as soil moisture, crop growth, and weed density through
agricultural 1oT, the parameter weights of weed identification models can be dynamically adjusted (for
example, increasing the attention to weed leaf texture when soil moisture is high), making the application
decision more in line with the actual needs of the field. A regional-level weed big data platform can be built to
integrate weed identification data and application effect data from different regions and crops. A general weed
identification model can be trained through federated learning technology (to protect data privacy) to improve
the generalization ability of the model. Big data can be used to analyze the evolutionary trend of weed
resistance, providing reference for the formulation of regional application strategies. For example, for resistant
weeds in a certain region, it is recommended to use herbicides with different mechanisms of action
alternately.
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