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ABSTRACT

Measuring melon fruit diameter offers key insights into growth status and maturity. To overcome the limitations
of manual measurement—namely high labor demands, time consumption, and large errors—this study
introduces a method based on an improved Mask R-CNN algorithm. The model uses ResNetb0 as the
backbone and incorporates a Channel Prior Convolutional Attention (CPCA) mechanism and a bidirectional
feature fusion pyramid network to enhance multi-scale feature extraction. A Self-Attention (SE) mechanism is
added to the mask branch to improve segmentation accuracy. Measurement points are determined through
contour segmentation, curvature analysis, and bounding rectangle fitting. A binocular camera provides depth
information, and Euclidean distance is used to compute actual size. The improved algorithm achieves detection
and segmentation precision of 94.2% and 92.7%, with recall rates of 94.5% and 93.6%. The method yields
average relative errors of 7.1% (horizontal) and 7.6% (vertical), meeting practical agricultural needs and
supporting maturity assessment.
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INTRODUCTION

The primary parameters of melon fruit diameter include vertical and horizontal diameters (Chang et al.,
2018), which reflect the growth status of the fruit and are important indicators of fruit maturity (Xue et al., 2024;
Gothi et al., 2022). Currently, melon diameter measurement mainly relies on manual methods, which are
inefficient, labor-intensive, and prone to subjective errors (Wang et al., 2024). Existing machine vision-based
approaches often depend on traditional image preprocessing and edge detection techniques, which are
sensitive to lighting, background conditions, and fruit phenotype, limiting their practical application and leading
to significant errors.

Mask R-CNN, a deep learning model evolved from Faster R-CNN, enables both object detection and
pixel-level segmentation, and has been widely used in various fields. He et al., (2018), Gu et al., (2024) and
Geng et al., (2022), improved the RT-DETR model to enhance tomato detection precision and used edge
detection combined with Hough transform to measure tomato diameters, aiding in fruit detection and
localization for automatic picking robots. Basak et al., (2022), developed a simple linear regression model
using pixel count to estimate strawberry weight. Zheng et al., (2021) proposed an automated 3D point cloud
registration algorithm. By utilizing a Kinect camera and a parameter optimization method, they achieved high-
precision and efficient reconstruction of butterhead lettuce, with an average error of 6.5 mm, demonstrating
the feasibility of using binocular vision technology for plant phenotype measurement. Despite advances in
deep learning and machine vision, studies on melon diameter measurement remain limited.
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This research focuses on melon diameter measurement. The proposed method enhances Mask R-CNN
for better detection and segmentation of melon fruit, identifies pixel coordinates of diameter measurement
points from the segmented contour, retrieves depth information using binocular vision to convert pixel to 3D
coordinates, and finally computes fruit diameter through Euclidean distance, enabling non-contact
measurement and providing data for fruit maturity assessment.

MATERIALS AND METHODS

Dataset Construction and Annotation

The melon images used in this study were collected from a greenhouse located within the Shanhou
Renjia Agricultural Complex in Laixi, Qingdao, Shandong Province, China (120°39' E, 36°72' N). The melons
were cultivated using a vertical hanging vine method, and the fruit maturity ranged from the fruit enlargement
stage to full ripeness. Image acquisition was conducted on June 1, 2024, using a 64-megapixel digital camera.
The imaging distance ranged from 30 to 100 cm, and all images were saved in JPG format. A total of 500
images were collected and annotated using the Labelme software, with annotations saved in JSON format. To
enhance the robustness of model training, the original images and annotations were augmented using
methods such as noise addition, brightness adjustment, spatial shifting, and rotation. This resulted in a final
dataset of 2,000 images, which was split into a training set of 1,600 images and a test set of 400 images in an
8:2 ratio. The dataset construction process is illustrated in Figure 1.

Imaging Environment Annotation Data Augmentation

Fig. 1 - Dataset Construction Process

Improved Mask R-CNN Algorithm

The experiments were conducted on a portable computer equipped with an Intel(R) Core (TM) i5-
10300H CPU @ 2.50 GHz, 16 GB of RAM, 465 GB of storage, and an NVIDIA GeForce GTX 1660 Ti GPU.
The improved Mask R-CNN model was developed, trained, and evaluated using the Detectron2 framework
based on PyTorch.

Mask R-CNN extends object detection into three branches—classification, regression, and
segmentation—by incorporating a fully convolutional network, which significantly enhances detection accuracy.
The algorithm follows a two-stage framework: the first stage uses a residual network, a feature pyramid network,
and a region proposal network to generate candidate bounding boxes; the second stage employs ROI Align to
map these regions to the feature map, followed by classification, bounding box regression, and segmentation
(Ren et al., 2022; Zhang et al., 2020; Zhang et al., 2022).

In this study, the standard Feature Pyramid Network (FPN) was modified by incorporating the
bidirectional fusion mechanism from EfficientDet, creating a new BF-FPN (Bidirectional Fusion-FPN).
Additionally, a CPCA module was introduced after the ResNet backbone and added a self-attention mechanism
in the mask branch. To further improve boundary segmentation accuracy, the DicelLoss function was included
in the mask loss calculation. The improved network structure is shown in Figure 2.
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Fig. 2 - Improved Mask R-CNN Network Structure Diagram
1 - Backbone is selected as ResNet50; 2 - conv refers to convolution;
3 - CPCA represents channel prior attention mechanism;
4 - RPN refers to region proposal network; 5 - FC layers refer to fully connected layers;
6 - FCN refers to fully connected network; 7 - SA refers to self-attention mechanism.

CPCA Attention Mechanism

Attention mechanisms in deep learning simulate the human cognitive ability to focus selectively on
important information, dynamically assigning weights to highlight relevant features and suppress irrelevant
ones, thereby improving detection accuracy (Wu et.al., 2025). The Channel Prior Convolutional Attention
(CPCA) mechanism dynamically allocates attention weights across channel and spatial dimensions. It extracts
multi-scale spatial information via depthwise separable convolutions and generates spatial attention maps that
better reflect real feature distributions, significantly enhancing segmentation performance. CPCA combines
the strengths of both channel and spatial attention, making it a highly efficient attention mechanism (Huang et
al.,, 2024, Liu et al., 2025). Its structure is illustrated in Figure 3.
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Fig. 3 - CPCA Structure Diagram

Channel Attention: Applies average pooling and max pooling to the input, aggregates spatial information
from the feature maps, and feeds them into a shared MLP followed by a Sigmoid activation to produce
attention-weighted features.

CA(F) =0 (MLP(Angool(F)) + MLP(MaxPool(F))) (1)

wherein: a denotes Sigmoid function.
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Spatial Attention: Captures spatial relationships using depthwise separable convolutions and enhances
this with a multi-branch structure to improve spatial representation while reducing computational load.

SA(F) = Conv,y, (Z’?:OBranchi(DwConv(F))) (2)

wherein: Dwconvdenotes depthwise convolution, and Branch;represents the 7 - thbranch.

Improved FPN Network

Feature Pyramid Network (FPN) is widely used to extract multi-scale features by combining semantically
rich high-level features with fine-grained low-level features (Lin et al., 2017). Traditional FPN utilize a top-down
pathway to propagate high-level features downward; however, this unidirectional fusion may result in
insufficient detail preservation and poor scale balance. To address this limitation, the bidirectional fusion
mechanism from EfficientDet was adopted to restructure the original FPN (Jeon et al., 2022). The modifications
include output-stage downsampling, removal of nodes with low feature contributions, and the addition of lateral
connections between Res3 and P3, as well as between Res4 and P4. The improved Bidirectional Fusion FPN
(BF-FPN) achieves better balance in multi-scale feature representation and enhances feature learning across
different levels. The network architectures before and after the modification are illustrated in Figure 4.

o
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Fig. 4 - Comparison Diagram of FPN Before and After Improvement

The improved backbone network incorporates the BF-FPN and the CPCA attention mechanism to
enhance feature extraction capabilities, thereby increasing object detection accuracy and segmentation
precision.

Improved Mask Branch

The self-attention mechanism dynamically adjusts the weight of each pixel based on its relationship
with all other pixels in the input feature map. This enables the model to focus more effectively on relevant
regions during the segmentation process, particularly when dealing with complex object shapes or indistinct
boundaries (Li et al., 2020).

To improve mask segmentation accuracy, a self-attention (SA) module was integrated into the mask
branch of the Mask R-CNN. The module first generates query, key, and value feature maps using three
separate 1x1 convolutional layers. It then computes the attention map by performing dot-product operations
between the query and key maps, followed by Softmax normalization. Finally, a weighted sum of the value
map is calculated based on the attention scores. This mechanism allows the output features at each pixel to
incorporate both local and global contextual information more effectively. The structure and insertion point of
the SA module are shown in Figure 5.
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Fig. 5 - Insertion Position and Structural Diagram of SA

The loss function, also known as the cost function, is used to evaluate the degree of difference between
the predicted and actual values of a model. The training process is the process of minimizing the loss function.
The smaller the loss function, the closer the predicted value of the model is to the true label, indicating that the
robustness of the model is better (Li J. et al, 2023). To further improve boundary segmentation accuracy, Dice
Loss was added to the original mask loss function. The Dice Loss function is defined as:

2% pigi 3)
§V=1 Piz + Z?Ll gi2
where N is the total number of pixels, p; represents the predicted probability for the i-th pixel, and g; is

the corresponding ground truth label (O or 1).
The modified mask loss function is expressed as:

Lmask = aLpcg + (1 — @)Lpjce (4)
where the weight a was experimentally set to 0.3 for optimal performance. Lgqg is the binary cross-entropy
loss of the original algorithm.

Lpjce =1 —

Measurement Method

In the melon diameter measurement system, a binocular camera captures stereo images of melons via
a USB connection. The camera has a total resolution of 2560 x 720 pixels and a baseline distance of 4 cm. A
portable computer processes the captured images and outputs the diameter measurements. The software is
implemented in Python, utilizing libraries such as NumPy and OpenCV for image acquisition, transmission,
computation, and display. The experimental setup is illustrated in Figure 6.

Fig. 6 - Experirﬁ.ental environment

To obtain depth information from the binocular camera, camera calibration, stereo rectification, and
stereo matching must be performed. First, Zhang Zhengyou calibration method is applied to calibrate the
binocular camera, yielding the intrinsic and extrinsic parameters of both cameras (Li, 2020; Zhang et al., 2024).
The selected 2D image coordinate system is assumed to be parallel to the 3D world coordinate plane at Z=0.
The coordinate system of the left camera is defined as the world coordinate system in the binocular vision
measurement setup. For a spatial point M(x, vy, z), its corresponding image projection point on the left camera
M1 has pixel coordinates (u, v). The transformation relationship between M and M1 is given as follows:
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where Z represents the depth of the point in 3D space; f, and f, re the focal lengths of the camera in the
x and y directions, respectively; (uy,vo) is the principal point; R and T are the external parameters
representing the rotation matrix and translation vector, respectively.

Next, stereo rectification is applied to align the image pairs onto the same plane. After correcting for
lens distortion, the rectified left and right images are processed using row alignment to reduce the matching
search from 2D to 1D space.

The Semi-Global Block Matching (SGBM) algorithm was adopted to compute the disparity map, which
estimates the pixel displacement d between corresponding points in the left and right images. Given the
camera baseline B and focal length f, the depth Z is calculated using:

fxXB
=— ©)

Based on accurately segmented melon contours, the system identifies key measurement points. First,
the upper half of the melon region is sampled for curvature analysis. Among the sampled points, the point with
the maximum curvature is selected as the vertical diameter point L1. The curvature is calculated using three
consecutive points at a time. For example, given three points A, B, and C that form a triangle with side lengths
a, b, and c, the area of the triangle S, is computed as follows:

Sa=p@—a)p-b)(p—rc) (7)

where p=(a+b+c) /2.
Then, the curvature K at point B is calculated based on the geometry of triangle ABC, using the
following formula:

4ol - -hp -0
(8
abc

The point L2 is determined by extending the line from L1 to the center of the minimum bounding
rectangle (MBR) until it intersects with the lower half of the contour. This extended line defines the vertical axis
L. Then, a perpendicular line T to L is drawn, and its intersection points with the contour define the horizontal
diameter points T1 and T2, selected based on maximum distance. The measurement point selection process

is illustrated in Figure 7.

K =

T1

Fig. 7 - Schematic diagram of measurement point selection

After obtaining the pixel coordinates of the four measurement points, their depth values are acquired
using the binocular camera system. These depth values are then used to convert the pixel coordinates into
spatial (3D) coordinates. Finally, the Euclidean distance between the corresponding points for the horizontal
and vertical diameters is calculated to determine the actual fruit dimensions.

Evaluation Metrics

To validate the effectiveness of the improved Mask R-CNN, both the detection and segmentation
performance were evaluated using precision (P), recall (R), and the F1-score (Wang et al., 2024; Zhao et al.,
2022). The definitions of these evaluation metrics are as follows:
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Pz 2 P xR an
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where: TP (True Positive): predicted as positive and actually positive. F'P (False Positive): predicted as positive
but actually negative. FN (False Negative): predicted as negative but actually positive.

To evaluate the accuracy of the proposed measurement system, the relative error (Er) between the
system-measured and manually measured fruit diameters was calculated using the following formula:

Ls—1L
Er = % x 100% (12)
t

where Lg represents the system-measured diameter and L, represents the manually measured diameter.
To assess the overall accuracy across multiple samples, the Mean Relative Error (MRE) was computed as:

n
N

1
MRE = —Z 5 X 100% (13)
L®
m

1@ _ LE:‘L)l
n r}
i=1
where: n is the total number of samples, and Lgi) and LS,? are the system and manual measurements of the
i — th sample, respectively. A lower MRE indicates higher measurement accuracy and reliability.

RESULTS

Ablation experiment

To evaluate the impact of each module and analyze the performance of the improved algorithm, ablation
experiments were conducted on the self-built melon dataset. Precision (P) and F1-score were used as
evaluation metrics, where higher values indicate better algorithm performance. The effects of each module on
detection and segmentation results are summarized in Table 1.

Table 1
Ablation test results for different improvement points
Detection Segmentation
WModel P% R% F1% P% R% Fl%
Mask R-CNN 91.3 9238 92.0 905 918 91.1
+ BF-FPN 935 936 93.5 91.7 923 920
+ BF-FPN + CPCA 940 933 93.6 923 927 925
+ SA 91.2 926 91.9 90.8 921 914
+ SA + Dice Loss 914 927 92.0 911 927 919

+ BF-FPN + CPCA + SA + Dice Loss  94.2 945 94.3 92.7 936 93.1

As shown in the table, the introduction of the BF-FPN module led to improvements in both detection
and segmentation precision, by 2.2% and 1.2% respectively, with corresponding increases in the F1-score of
1.5% and 0.9%. Building upon this, the addition of the CPCA module between ResNet and BF-FPN further
enhanced detection and segmentation precision by 0.5% and 0.6%, respectively. Subsequently, a self-
attention (SA) module was integrated into the mask branch to improve mask segmentation accuracy, resulting
in a 0.5% increase compared to the baseline. Incorporating the DiceLoss function into the loss calculation
raised the segmentation accuracy to 91.1%, which represents a 0.6% improvement over the original model.
Finally, by combining the improved detection and segmentation modules, the overall detection and
segmentation precision increased by 2.9% and 2.2%, recall improved by 1.7% and 1.8%, the F1-score rose
by 2.3% and 2.0% compared to the baseline.

Comparative Analysis with Other Algorithms

The improved Mask R-CNN was compared with other mainstream instance segmentation models,
including PointRend, TensorMask, Cascade Mask R-CNN, YOLACT, and SOLOv2. The results are shown in
Table 2.
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Table 2
Comparison of detection effects of different models
Detection Segmentation

Model P% R% F1% P% R% F1%
PointRend 85.7 87.3 86.5 79.4 81.7 80.5
Tensormask 86.6 92.5 89.9 85.2 894 87.3
Casced Mask R- 917 93.6 92.6 90.8 90.2 90.5
CNN
YOLACT 90.6 87.1 88.8 86.4 89.3 87.8
SOLOv2 91.2 86.8 88.9 89.2 91.7 90.4
Improved 94.2 94.5 94.3 92.7 93.6 93.1

Compared with the best alternatives, the improved model outperforms in both detection and
segmentation metrics. Compared with PointRend and TensorMask, it offers up to 8.5% and 7.6%
improvements in detection accuracy, and 13.3% and 7.5% improvements in segmentation accuracy,
respectively. This confirms the superiority of the proposed method for precise melon fruit detection and
segmentation.

Fruit Diameter Measurement Experiment and Analysis

Three melon samples were selected for the experiment. A vernier caliper was used to measure both the
horizontal and vertical diameters three times, and the average values were taken as the manual measurements.
A fruit diameter measurement experiment was conducted using the HBVCAM binocular camera. The camera
was mounted on a vertical frame at a height of 0.5 meters from the ground, with the shooting angle parallel to
the ground. Images were captured at distances of 0.3 m, 0.5 m, and 0.7 m. From left to right in the figure, the
melons are labeled as Melon1, Melon2, and Melon3. The proposed algorithm was used to identify the melons
and locate the measurement points for the vertical (V) and horizontal (H) diameters. The actual fruit diameters
were then calculated using stereo vision. The measurement point localization results before and after algorithm
improvement are shown in Figure 8.

Original Improved

Fig. 8 - Comparison of Measurement Point Localization Effects Between Original Algorithm
and Improved Algorithm

122



Vol. 77 No. 3/ 2025 INMATEH - Agricultural Engineering

Measurement results are summarized in the following Table 3:

Table 3
Result of measurement
Distance Manual (mm) System (mm) Er (%)
(m) Melon ID Y H v H Y H
Melon1 55.2 67.5 50.5 61.2 8.5 9.3
0.3 Melon2 81.1 80.9 74.7 74.3 7.9 8.2
Melon3 76.4 87.1 70.5 81.7 7.7 6.2
Melon1 55.2 67.5 51.3 62.4 7.1 7.6
0.5 Melon2 81.1 80.9 75.2 74.7 7.3 7.7
Melon3 76.4 87.1 71.2 80.5 6.8 7.6
Melon1 55.2 67.5 59.2 73.1 7.2 8.3
0.7 Melon2 81.1 80.9 74.5 87.7 8.1 8.4
Melon3 76.4 87.1 824 93.6 7.9 7.5

The results demonstrate that the proposed method achieves MRE of 7.1% for horizontal diameters and
7.6% for vertical diameters, indicating a satisfactory level of accuracy for practical applications.

System Interface Design

The melon fruit diameter measurement application was developed using PyQt5. PyQt5 offers rich GUI
functionalities, strong extensibility, and high integration with Python, the programming language used in this
research. Therefore, it is well suited for implementing the proposed method, as shown in Figure 9.

The program mainly implements the following functions:

1) Real-time Image Transmission: The application can acquire video captured by the camera and
display it in the "Camera View" area.

2) Image Processing Result Display: Processed information is displayed on the original image as well
as in the "Detection Result" area.

3) Fruit Diameter Measurement Result Display: The measured fruit diameter results are outputted and
displayed in the "Measurement Output" area.

4) Control Functions: Buttons are designed to control the system's start and stop of recognition, as
well as the saving of results.

| 57 O Melon Diameter & Maturity System = %

| wa Camera View H Detection Result

A Measurement Output £+ Control

© Melon Detected

# Hortiontl Diseuette (L1-1:2);68 3 i | » Start Detection B Stop Detection ) Save Result
* Vertical Diameter (T1-T2): 64.7 mm 2

@ Maturity Stage: S2 (Partially Ripe)

Fi

g. 9 — The Measurement System
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CONCLUSIONS

This paper presents a method for measuring melon fruit diameter based on image segmentation and
binocular vision. Image data are captured using a binocular camera, and melons are detected and segmented
with an improved Mask R-CNN algorithm. Measurement points on the fruit surface are identified by analyzing
curvature and other geometric features. Depth information for these points is then obtained by mapping 2D
image coordinates to 3D space. Finally, the Euclidean distance is used to calculate the fruit diameter.

(1) Based on Mask R-CNN, this study introduces a newly designed BF-FPN and incorporates the CPCA
attention mechanism at its input to enhance the algorithm’s ability to detect targets of varying sizes. Additionally,
a self-attention mechanism is integrated into the mask branch to improve edge segmentation accuracy. As a
result, the F1 scores for object detection and segmentation increased by 2.3% and 2%, respectively.

(2) By refining the region of interest within the detection box, the candidate area for measurement point
selection is narrowed. Curvature analysis of the melon contour is performed, and the minimum enclosing
rectangle is fitted to determine the pixel coordinates of key measurement points. Their depth values are
calculated using stereo vision, and the actual fruit diameter is obtained via Euclidean distance computation.
Experimental results demonstrate that the proposed method achieves mean relative errors of 7.1% for
horizontal diameter and 7.6% for vertical diameter, satisfying practical accuracy requirements.

(3) This study offers a non-contact approach to melon diameter measurement, improving operational
efficiency and providing a methodological reference for assessing fruit ripeness.
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