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ABSTRACT  

Sheep face detection is critical for intelligent livestock management and breeding, yet existing models often 

struggle in complex farm scenarios due to inadequate multi-scale feature utilization and high computational 

demands. To address these challenges, this study proposes a lightweight multi-breed sheep face detection 

framework named YOLO-LSD (Lightweight Sheep Face Detection), achieving an optimal balance between 

detection accuracy and computational efficiency through multi-dimensional optimizations. At the feature 

enhancement level, the lightweight channel attention mechanism Efficient Channel Attention (ECA) is 

embedded into the backbone network to dynamically strengthen the channel responses of key facial features 

through local cross-channel interactions. Concurrently, Ghost convolution is introduced to replace traditional 

convolutional layers, leveraging feature redundancy mining technology to substantially reduce computational 

complexity while maintaining the ability to represent diverse facial features across sheep and goat breeds. To 

address the limited sample diversity in multi-breed datasets, a transfer learning strategy is employed, involving 

directional fine-tuning of breed-specific facial features based on large-scale pre-trained models to enhance the 

model's generalization ability across diverse sheep and goat varieties. Experimental results demonstrate that 

YOLO-LSD achieves a mAP@0.5 of 99.29% on a self-constructed multi-breed sheep face dataset, marking a 

0.59% improvement over the baseline YOLOv11. Notably, the parameter count of YOLO-LSD is only 2.4×106, 

while achieving an inference speed of 60 FPS and 6.3 Flops. This study presents a high-precision, lightweight 

solution for intelligent livestock monitoring systems, offering practical insights for the deployment of multi-breed 

sheep face detection models in real-world farm applications. 

 

摘要 

绵羊面部检测是智能畜牧管理和养殖的关键，但由于多尺度特征利用不足和计算需求高，现有模型在复杂的农

场场景中往往难以实现。为了解决这些挑战，本研究提出了一种轻量级的多品种羊人脸检测框架，名为YOLO-

LSD (lightweight sheep face detection)，通过多维优化实现了检测精度和计算效率之间的最佳平衡。在特征增强

层面，将轻量级通道注意机制ECA嵌入骨干网络，通过局部跨通道交互，动态增强关键面部特征的通道响应。

同时，引入Ghost卷积来取代传统的卷积层，利用特征冗余挖掘技术大幅降低计算复杂性，同时保持表示绵羊

和山羊品种不同面部特征的能力。为了解决多品种数据集样本多样性有限的问题，采用迁移学习策略，在大规

模预训练模型的基础上对特定品种的面部特征进行定向微调，以提高模型在不同绵羊和山羊品种间的泛化能力。

实验结果表明，YOLO-LSD在自构建的多品种绵羊面部数据集上的mAP@0.5 达到了 99.29%，比基线YOLOv11

提高了 0.59%。值得注意的是，YOLO-LSD的参数量仅为 2.4×106，同时实现了 60 FPS和 6.3 Flops的推理速度。

本研究提出了一种高精度、轻量级的智能牲畜监测系统解决方案，为在实际农场应用中部署多品种绵羊面部检

测模型提供了实用的见解。 

 

INTRODUCTION 
With the increasing advancement of intelligent livestock farming, including intensive breeding, breed 

improvement, and precision animal health management, the demand for accurate identification and monitoring 

of sheep, as key livestock resources, has emerged as a critical research focus in agricultural technology 

(Sharma et al., 2020).  
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Against the backdrop of rapid developments in smart farming systems, high-precision sheep face 

detection techniques serve not only as a foundational enabler for individual animal tracking and breed 

classification but also as core technology for optimizing feeding strategies and ensuring animal welfare (Xue 

et al., 2024). The accurate detection of sheep face targets is directly linked to the efficiency of farm 

management, and its significance becomes particularly pronounced in real-time scenarios such as automated 

feeding and health monitoring (Zhang et al., 2024). However, traditional manual sheep identification methods 

suffer from notable drawbacks, such as low efficiency, poor real-time performance, susceptibility to false 

negatives and positives in complex farm environments, and high labor costs (Hao et al., 2024). 

Traditional manual sheep detection methods have manifested numerous deficiencies in practical 

applications. The visual screening approach is highly inefficient, rendering it unable to handle the massive 

volume of monitoring data generated in large-scale farms and falling short of real-time management 

requirements (Salama et al., 2019). In time-sensitive scenarios such as disease outbreak response, the 

inherent delays in manual identification can lead to untimely intervention, thereby increasing the risk of 

epidemic spread (Hitelman et al., 2022). Moreover, this method is heavily reliant on human resources, with 

labor costs increasing non-linearly as the farming scale expands. These limitations have become increasingly 

prominent in the face of the urgent demand for automated and high-precision management in smart agriculture, 

prompting both academia and industry to explore intelligent detection technologies based on deep learning to 

overcome the long-standing bottlenecks in efficiency, accuracy, and scalability associated with traditional 

methods (Peruzzi et al., 2025). 

In the early stages of sheep face detection, two-stage object detection algorithms, such as Faster R-

CNN, were commonly employed (Zhang et al., 2022). These algorithms generate candidate bounding boxes 

through region proposal networks and conduct fine-grained classification for each box, enabling high detection 

accuracy in complex farm scenarios (Deng et al., 2022). Nevertheless, the two-stage cascaded architecture 

leads to high computational complexity and slow inference speed (Deng et al., 2021). Additionally, the 

manually designed anchor boxes struggle to adapt to the multi-scale facial features across different sheep 

breeds, often resulting in missed detection of small targets and positioning deviations for large targets. As a 

result, these algorithms fail to meet the requirements of real-time farm monitoring. 

As a typical representative of single-stage object detection algorithms, the YOLO series transforms 

object detection into a problem of directly predicting the coordinates of grid cells and class probabilities through 

an end-to-end regression architecture (He et al., 2016). This approach avoids the redundant calculation of 

candidate bounding box generation in two-stage algorithms, significantly improving inference efficiency while 

maintaining detection accuracy. On this basis, the YOLOv11 algorithm further optimizes the backbone network 

structure. By adopting the CSPDarknet lightweight feature extraction module and the efficient Feature Pyramid 

Network (FPN), it maintains the multi-scale feature representation ability while reducing the number of 

parameters. It is particularly suitable for complex farm scenarios where small distant sheep faces and large 

close-up faces coexist. Its improved anchor box adaptation mechanism learns the aspect ratio priors of the 

sheep face dataset through K-means clustering, enhancing the matching degree between the anchor boxes 

and the actual facial shapes of different breeds (Zhang et al., 2023). This effectively alleviates the adaptation 

deviation problem of traditional manually designed anchor boxes for varied facial characteristics, such as the 

rounder faces of some sheep breeds versus the more angular features of others. These characteristics endow 

YOLOv11 with strong engineering practicality in farm monitoring, making it an ideal baseline model for real-

time sheep face detection. 

In summary, to overcome the challenges of complex scale variation, cluttered farm backgrounds, and 

limited sample diversity in multi-breed sheep face detection, this work presents YOLO-LSD, a lightweight 

enhancement of YOLOv11. Specifically, we embed the ECA module into the backbone to adaptively amplify 

key facial features and suppress interference from farm backgrounds. Then, we replace standard convolutional 

layers with Ghost convolution blocks, mining feature redundancy to slash both model parameters and FLOPs 

without sacrificing multi-scale representation. Finally, the strategy of transfer learning pre-training is adopted. 

Through pre-training on large-scale animal facial datasets, the learning ability of the model for sheep facial 

features is further enhanced. Through these multi-dimensional optimizations, YOLO-LSD strikes an optimal 

balance between detection accuracy and computational efficiency, offering a practical, high-precision solution 

for real-world farm surveillance. 
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MATERIALS AND METHODS 

Dataset 
The dataset constructed in this study integrates two categories: sheep and goats, forming a composite 

multi-breed sheep face dataset. The sheep samples specifically belong to the Small-tailed Han breed, with a 

total of 50 individuals selected for data collection. These facial images were acquired in May 2024 at a farm 

operated by Beiqi Technology Co., Ltd. In Hohhot, Inner Mongolia, China. Image capture was performed using 

a Canon EOS 600D digital single-lens reflex (DSLR) camera (manufactured by Canon Inc., Tokyo, Japan), 

with all images stored in JPG format at a resolution of 2736×1824 pixels. For each sheep in the experiment, 

50 original facial images were collected. 

The goat dataset was sourced from an open-access repository, which contains manually captured 

images of 10 dairy goats from a farm in China for facial recognition purposes, amounting to 1311 goat face 

images in total (Billah et al., 2023). Data collection took place outdoors over a three-month period, 

encompassing variations in weather and seasonal conditions. Each goat was photographed individually in 

three distinct pens and across three-time segments: morning, midday, and afternoon. Each goat collected 

approximately 80 to 150 raw face images. Both the sheep and goat datasets were collected in real-world 

outdoor farm environments, encompassing diverse collection conditions such as varying lighting (e.g., morning 

sunlight, overcast afternoons), seasonal changes, and typical farm backgrounds (e.g., fences, feeding areas). 

These conditions effectively simulate the complex environments encountered in real-time sheep face detection 

tasks, ensuring that the proposed method in this study possesses strong practicality and effectiveness in actual 

application scenarios. Examples of original facial samples from both sheep and goats are presented in Fig.1. 

 
Fig. 1 – Sample images of the sheep and goat faces 

 

To improve the model’s adaptability to complex farm environments, data augmentation was applied to the 

collected sheep face images. Specific operations included: modulating image brightness within a range of -

45% to 45%, adjusting contrast by ±45%, rotating images by 45 degrees left and right, and performing vertical 

flipping. Through these augmentation strategies, augmented images were generated for each sheep in the 

experiment, effectively expanding the training data volume. Ultimately, each sheep retained 150 facial images 

(including original and augmented samples), forming the complete multi-breed sheep face image dataset. In 

addition, to ensure accurate target localization during model training, all images (both original and augmented) 

were annotated using the Make Sense online tool. For each image, a bounding box was manually drawn to 

precisely enclose the sheep face region, with the category label uniformly set as “Sheep Face” to standardize 

the annotation format. The sample annotation diagrams are shown in Fig.2. 

 
Fig. 2 – Sample annotation diagrams 
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The final multi-breed sheep face dataset was randomly partitioned into training, validation, and test sets 

at a ratio of 8:1:1. Detailed configuration parameters of the dataset are presented in Table 1. 
Table 1 

                                      The multi-breed sheep face dataset                             

Dataset Images Proportion 

Training 7200 80% 

Verification 900 10% 

Testing 900 10% 

Total 9000 100% 

 
YOLOv11 

The state-of-the-art single-stage object detection algorithm YOLOv11 is composed of three main 

components: backbone network, neck network, and detection head, which are optimized for detection 

scenarios to achieve efficient sheep face detection (Li et al., 2025). The backbone network employs an 

optimized CSPDarknet architecture, where the basic module CBS consists of a convolution, batch 

normalization, and activation function (Jo et al., 2024). A novel feature preprocessing module is deployed at 

the front end to process high-resolution images more efficiently, minimizing information loss compared to 

traditional downsampling. During the feature extraction stage, an improved spatial pyramid pooling (SPP) 

structure is utilized to finely capture multi-scale spatial features, enhancing adaptability to sheep face targets 

of different sizes (Kumar et al., 2023). The CSPLayer, through optimizing the residual structure, effectively 

integrates gradient changes of feature maps into the output results, not only reducing the total number of 

network parameters and computational complexity but also delivering high-quality features to the neck network, 

thus serving as a core component for efficient feature extraction (Chen et al., 2025).   

The neck network of YOLOv11 adopts an adaptive feature fusion architecture to dynamically optimize 

multi-scale feature weights. Through an innovative cross-layer connection mechanism, high-resolution detail 

features from shallow layers are deeply fused with semantic-rich features from deep layers to construct a more 

representative feature pyramid. This design enhances the model's detection capability for both distant small 

targets and nearshore large targets, effectively addressing the challenge of extreme scale distribution of sheep 

face targets in complex scenarios, and lays a foundation for the accurate prediction of the detection head.   

The detection head employs a decoupled design, separating the target classification and localization 

regression tasks into independent branches. The classification branch outputs multi-class probabilities for 

sheep face detection, while the localization regression branch optimizes the prediction accuracy of bounding 

box coordinates and confidence scores by integrating improved loss functions. Multi-scale feature maps are 

fused to cover sheep face targets of different scales, and anchor boxes adapted to the aspect ratio distribution 

of sheep faces are generated through K-means++ clustering, replacing manually preset anchors to improve 

matching efficiency. In the prediction stage, confidence screening and non-maximum suppression (NMS) are 

used to reduce false positives in complex backgrounds, and dynamic sample matching strategies are 

employed to balance positive and negative samples, achieving precise detection and localization of multiple 

sheep face types while maintaining end-to-end efficient inference.  
 
ECA attention 

To enhance the model's discriminative ability for sheep face targets in complex backgrounds, this study 

embeds a lightweight channel attention mechanism, ECA, into the backbone network of YOLOv11. This 

mechanism adaptively strengthens channel responses related to sheep features, through a local cross-

channel interaction strategy, all with almost no additional computational cost (Peng et al., 2020).  

For the feature map X ∈ ℝH×W×C (where H × W is the spatial dimension and 𝐶 is the number of input 

channels) output by the backbone network, spatial dimension information is first aggregated via global average 

pooling to generate a channel-level descriptor 𝒵 ∈ ℝC, calculated as:    

 𝒵𝐶 =
1

𝐻×𝑊
∑ ∑ 𝑋𝑐

𝑊
𝑗=1

𝐻
𝑖=1 (𝑖, 𝑗) (1) 

This compresses spatial features into global response values in the channel dimension, providing a 

basis for channel attention calculation.  
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Unlike traditional channel attention mechanisms, SE-Net, which rely on fully connected layers and incur 

high computational costs, ECA achieves lightweight local cross-channel interactions via a 1D convolution with 

kernel size k. Here, k is adaptively determined by the number of channels C using:   

k = ⌊log2(C) + 1⌋odd                                      (2) 

where, ⌊⋅⌋odd denotes adjusting the result to the nearest odd integer (e.g., k = 5, when C = 32) to ensure 

convolution symmetry and avoid global redundant calculations. After extracting local channel correlations via 

this 1D convolution, channel attention weights wc ∈ [0,1] are generated through a sigmoid function to quantify 

the importance of each channel for sheep face detection. Among them, weights close to 1 enhance responses 

in critical feature channels, while weights approaching 0 suppress noise in background interference channels.   

Finally, channel attention weights are multiplied element-wise with the original feature map to obtain the 

enhanced feature map X̂c = wc ⋅ Xc. This design introduces only linear complexity parameters O(kC). While 

maintaining efficient model inference, it dynamically adjusts the channel interaction range for scale differences 

of sheep face targets in scenarios: smaller k values focus on high-frequency detail features, whereas larger 

k values integrate low-frequency semantic features, significantly improving feature discriminability in complex 

backgrounds and providing more distinguishable inputs for subsequent multi-scale feature fusion and target 

detection (Xue et al., 2025). The structure diagram of the ECA module is shown in Fig. 3. 

 
Fig. 3 - The structure diagram of the ECA module 

 
Ghost convolution  

To address the issue of low computational efficiency of traditional convolutions in sheep face detection, 

this study introduces Ghost Convolution into the backbone network of YOLOv11 to achieve lightweight feature 

extraction by exploiting feature map redundancy. Ghost Convolution decomposes traditional convolution into 

two stages: intrinsic feature extraction and Ghost feature generation, significantly reducing parameter 

overhead while preserving critical target semantics (Dai et al., 2024).   

For an input feature map X ∈ ℝH×W×Cin (where H × W is the spatial dimension and Cin is the number 

of input channels), Ghost Convolution first generates a channel-reduced intrinsic feature Fint ∈ ℝH×W×m(m ≪

Cin), calculated as: 

 Fint = Conv(X, k, m, s = 1, p = 1)                            (3) 

where, k  is the convolution kernel size (set to 3×3 in this study) for capturing basic spatial semantic 

information, such as sheep face contours and textures. Subsequently, lightweight linear transformations are 

applied to the intrinsic features to generate s-1 groups of Ghost features Fgh (s is the expansion factor, set to 

2 in this study to balance efficiency and feature diversity).  

 

The output feature map is obtained by concatenating intrinsic and Ghost features:   

 Fout = Concat(Fint, Fgh) ∈ RH×W×ms                       (4) 

Compared to traditional convolutions with Cout output channels (parameter count: Cin ⋅ k2 ⋅ Cout), Ghost 

Convolution has a parameter count of:   

                          ParamsGhostConv = Cin ⋅ k2 ⋅ m + m ⋅ k2 ⋅ (s − 1)                (5) 
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When s =  2 and m = Cout/2, this achieves a significant reduction in computational complexity without 

loss of feature dimensions.   

In this study, replacing traditional convolutions in the backbone with Ghost Convolution is particularly 

suitable for down sampling high-resolution images. By reusing the spatial correlation of intrinsic features, the 

generated diverse Ghost features effectively enhance the edge detail representation of distant small sheep 

faces and the structural semantic expression of nearshore large sheep faces. This lightweight design enables 

efficient inference on edge devices while retaining the feature discriminability required for sheep face detection 

in complex scenarios, making it a key technical module for balancing detection accuracy and computational 

efficiency. The structure diagram of the Ghost module is shown in Fig.4. 

 

 
Fig. 4 - The structure diagram of the Ghost module 

 

 

Transfer learning  
To address the challenges of scarce high-quality labeled data and insufficient model generalization in 

few-shot scenarios for sheep face detection, this study employs a transfer learning strategy to efficiently 

transfer pre-trained knowledge to the sheep face detection task. Specifically, the constructed multi-breed 

sheep face dataset was first split into two subsets, A and B, ensuring a balanced distribution of breeds, lighting 

conditions, and shooting angles in both subsets. Cross-pre-training was then performed: subset A was used 

as the pre-training dataset, and the model was trained from scratch to obtain pre-trained weights, which were 

subsequently used as initial weights for training subset B. Conversely, subset B was employed for pre-training 

to generate weights, which served as the starting point for training subset A. During each pre-training phase, 

the optimizer’s learning rate was adjusted and shallow network layers were frozen to enable the model to 

gradually learn breed-specific facial features (e.g., muzzle contours, ear shapes) and adapt to variations in 

farm environments. This cross-pre-training strategy enabled the limited labeled data to be fully leveraged, 

accelerated convergence in subsequent training, and enhanced generalization ability across different sheep 

face samples. Finally, the average of the two sets of training results was taken as the final detection 

performance, effectively mitigating the impact of data imbalance and improving both detection accuracy and 

robustness. 

 
YOLO-LSD  

The YOLO-LSD model builds on YOLOv11 with two targeted modifications, the ECA attention 

mechanism and Ghost convolutions. Specifically, an ECA module was added immediately before the SPPF 

block in the backbone and before every C3k2 block in the neck, so channel-wise sheep face features such as 

hull contours and superstructure lines are adaptively amplified and distinctions between container sheep faces 

and other classes are enhanced. Meanwhile, the final convolution in the backbone and all convolutions in the 

neck were replaced with Ghost convolution blocks. Each Ghost layer decomposes a standard convolution into 

intrinsic feature extraction and lightweight transformation, reusing spatial correlations to preserve multi-scale 

detail for distant small sheep faces while reducing parameters and computational complexity for fast and 

resource-efficient inference. The overall structure diagram of YOLO-LSD is shown in Fig. 5. 
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Fig. 5 - The overall structure of YOLO-LSD 

 
Training platform and hyperparameters 

The experiment was conducted on a Windows 11 operating system with a hardware platform configured 

with an i7-9700 processor (3.0 GHz clock speed), 16 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti 

discrete graphics card, which provided efficient computational support for model training and inference. The 

algorithm was implemented using the PyTorch 1.12.0 deep learning framework in a Python 3.8 development 

environment, with GPU computing performance optimized via CUDA 11.6 and cuDNN acceleration 

technologies to ensure training efficiency for complex models. During training, a batch size of 16, 200 epochs, 

and a stochastic gradient descent (SGD) optimizer with a momentum parameter of 0.937 were set, balancing 

model convergence speed and parameter optimization stability while providing a standardized hyperparameter 

configuration foundation for the multi-module collaborative training of the improved YOLOv11 model.   

 
Evaluation Metrics  

For the sheep face detection task in complex environments, this study employs Precision, Recall, F1-

score, mean Average Precision (mAP@0.5), FPS, GFLOPs, and Parameters as core evaluation metrics to 

construct a comprehensive evaluation system from three aspects: detection accuracy, efficiency, and model 

complexity.   

Parameters reflect the total number of trainable parameters in the model, used to quantify the complexity 

of the network structure. Precision is defined as the ratio of the number of correctly detected sheep face 

samples to the total number of samples detected as sheep face. True negative, true positive, and false negative 

are the sample numbers of TN, TP, and FN. The calculation formula is: 

                                  Precision=TP/(TP+FP)                              (6) 

Recall is defined as the ratio of the number of correctly detected sheep face samples to the total number 

of actual sheep face samples, with the formula:  

                                   Recall = TP/(TP + FN)                              (7) 
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The F1-score provides a balanced evaluation metric that accounts for both precision and recall through 

their harmonic mean, with the calculation formula:   

                       F1-score = (2 × Precision × Recall)/(Precision + Recall)                (8) 

FPS refers to the number of images processed by the model per second, used to measure the algorithm’s 

real-time response capability to dynamic complex scenarios. GFLOPs is used to quantify the model complexity, 

reflecting the number of floating-point operations required for a single forward pass. 

mAP@0.5 calculates the mean average precision for sheep face at an intersection-over-union (IOU) 

threshold of 0.5, with the formula:   

                                      AP= ∫ P(R)d R
1

0
                               (9) 

where, the average precision (AP) for a single category is obtained by integrating the precision-recall curve:  

                                    mAP = ∑ (APi
N
i=1 /N)                              (10) 

where, N is the total number of identification types. 

 
RESULTS AND DISCUSSIONS 

Comparison experiments of YOLO series algorithms 
To further evaluate the detection performance of models for subsequent improvement strategy 

integration, comparative experiments with YOLO series algorithms were carried out. Representative YOLO 

models were selected including YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, YOLOv8n, YOLOv10n, and 

YOLOv11n for comparison. All models were tested under consistent settings, and the results are presented in 

Table 2. 

As Table 2 shows, YOLOv11n demonstrates excellent performance across multiple metrics. In terms of 

Precision, it achieves 98.56%, outperforming YOLOv4-tiny (89.03%) by 9.53 percentage points, YOLOv5s 

(90.95%) by 7.61 percentage points, YOLOv7-tiny (92.85%) by 5.71 percentage points, YOLOv8n (95.99%) 

by 2.57 percentage points, and YOLOv10n (98.28%) by 0.28 percentage points. For Recall, YOLOv11n 

reaches 96.12%, showing improvements of 5.46 percentage points over YOLOv4-tiny (90.66%), 5.37 

percentage points over YOLOv5s (90.75%), 4.15 percentage points over YOLOv7-tiny (91.97%), 0.57 

percentage points over YOLOv8n (95.55%), and 0.34 percentage points over YOLOv10n (95.78%). 

In terms of the F1-score, which comprehensively reflects the balance between Precision and Recall, 

YOLOv11n attains 97.32%. It surpasses YOLOv4-tiny (89.82%) by 7.5 percentage points, YOLOv5s (90.84%) 

by 6.48 percentage points, YOLOv7-tiny (92.40%) by 4.92 percentage points, YOLOv8n (95.78%) by 1.54 

percentage points, and YOLOv10n (97.02%) by 0.3 percentage points. For the critical mAP@0.5 metric, 

YOLOv11n scores 98.70%, outshining YOLOv4-tiny (89.88%) by 8.82 percentage points, YOLOv5s (90.32%) 

by 8.38 percentage points, YOLOv7-tiny (94.55%) by 4.15 percentage points, YOLOv8n (97.76%) by 0.94 

percentage points, and YOLOv10n (98.52%) by 0.18 percentage points. Additionally, regarding model volume 

(Params), YOLOv11n has only 2.6×10⁶ parameters. It is more lightweight compared to YOLOv4-tiny (6.0×10⁶), 

YOLOv5s (7.2×10⁶), YOLOv7-tiny (6.3×10⁶), YOLOv8n (3.0×10⁶), and YOLOv10n (2.7×10⁶). These results 

indicate that YOLOv11n exhibits significant advantages in model performance, detection comprehensiveness, 

and model volume. Therefore, this study takes YOLOv11n as the benchmark model, and subsequent 

improvement strategies will be added based on it to further enhance detection capabilities while maintaining 

its lightweight characteristics. 

Table 2 
The training results of the YOLO series algorithms                     

Model Precision (%) Recall (%) F1-score (%) mAP@0.5 (%) Params (106) 

YOLOv4-tiny 89.03 90.66 89.82 89.88 6.0 
YOLOv5s 90.95 90.75 90.84 90.32 7.2 

YOLOv7-tiny 92.85 91.97 92.40 94.55 6.3 
YOLOv8n 95.99 95.55 95.78 97.76 3.0 

YOLOv10n 98.28 95.78 97.02 98.52 2.7 

YOLOv11n 98.56 96.12 97.32 98.70 2.6 

 

 
Ablation Experiment 

To assess the impact of individual and combined improvements on model performance, ablation 

experiments were carried out, with results presented in Table 3.  
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  Table 3 

The ablation results of YOLO-LSD  

Method ECA 
Ghost 

convolution 
F1-score 

(%) 
mAP@0.5 

(%) 
Params (106) FPS GFLOPs 

1 × × 97.32 98.70 2.6 56 6.4 

2 √ × 97.90 98.88 2.6 50 6.6 

3 × √ 97.12 98.31 2.4 62 6.2 

4 √ √ 97.98 98.96 2.4 60 6.3 

 

 

The effects of integrating the ECA attention mechanism and Ghost module into the baseline YOLOv11n 

(Method 1) were analyzed, to evaluate their contributions to key metrics: F1-score, mAP@0.5, model 

complexity (Params), inference speed (FPS), and computational cost (GFLOPs). 

As shown in Table 3, Method 2 introduces only the ECA attention mechanism. Compared to the baseline 

(Method 1), it improves the F1-score from 97.32% to 97.90% and mAP@0.5 from 98.70% to 98.88%. However, 

this comes with a trade-off: FPS decreases from 56 to 50 and GFLOPs increase from 6.4 to 6.6, while model 

parameters (Params) remain unchanged at 2.6×10⁶. This indicates ECA enhances feature attention for better 

accuracy but adds marginal computational overhead. 

Method 3 incorporates only the Ghost module. Relative to the baseline, it reduces model parameters to 

2.4×10⁶ and increases FPS to 62. However, detection performance slightly degrades: F1-score drops to 97.12% 

and mAP@0.5 to 98.31%. The Ghost module effectively streamlines model complexity for efficiency but 

sacrifices minor accuracy, highlighting a classic accuracy-efficiency trade-off. 

Method 4 combines both ECA and Ghost modules. It achieves a balanced improvement: F1-score reaches 

97.98%, mAP@0.5 rises to 98.96%. Meanwhile, model parameters were reduced to 2.4×10⁶, and GFLOPs to 

6.3. FPS is 60, which is faster than Method 1 and balances the speed loss from ECA alone. This synergy 

shows ECA compensates for Ghost’s accuracy loss, while Ghost offsets ECA’s computational overhead, 

resulting in a more robust model. 

In summary, the ECA module boosts accuracy but adds computational cost, while the Ghost module 

enhances efficiency but slightly reduces accuracy. Their combination (Method 4) achieves the best balance: 

improved F1-score (+0.66%), mAP@0.5 (+0.26%), lighter parameters (2.4×10⁶), and reasonable speed (60 

FPS). Thus, integrating both ECA and Ghost modules optimizes the trade-off between performance and 

efficiency, validating their synergistic value for enhancing YOLOv11n in subsequent refinements. 

 

 

Comparative experiment of transfer learning 

To evaluate the influence of transfer learning on model performance, comparative experiments were 

conducted, and the results are presented in Table 4. As shown in Table 4, the baseline model (YOLOv11n) 

achieves an F1-score of 97.98% and an mAP@0.5 of 98.96%, with 2.4×106 parameters, 60 FPS, and 6.3 

GFLOPs. When transfer learning is introduced, the F1-score improves from 97.98% to 98.12%, and the 

mAP@0.5 rises from 98.96% to 99.29%. 

Importantly, transfer learning does not bring any negative impacts on model complexity and efficiency. 

The number of parameters remains unchanged at 2.4×106, and both FPS and GFLOPs stay the same as the 

baseline. This indicates that transfer learning can effectively leverage pre-trained knowledge to enhance the 

model’s feature representation and generalization ability, thereby improving detection accuracy without 

increasing computational overhead or model size. 

 

  Table 4 

The training results of transfer learning 

Model 
F1-score 

(%) 
mAP@0.5 (%) Params (106) FPS GFLOPs 

YOLO-LSD 97.98 98.96 2.4 60 6.3 

+ Transfer learning 98.12 99.29 2.4 60 6.3 
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The training curves of YOLO-LSD are shown in Fig.6. From the training curves, it can be seen that as 

the number of iterations progresses, train/box_loss, train/cls_loss, and train/dfi_loss all show a significant and 

stable downward trend. The corresponding losses on the validation set (val/box_loss, val/cls_loss, val/dfi_loss) 

also decrease synchronously, indicating that the model's learning of sheep face features is continuously 

deepening and the gradient update is stable. Meanwhile, metrics/precision and metrics/recall rise rapidly and 

then tend to be stable.  Metrics/mAP50 is close to 1.0, and metrics/mAP50-95 also increase steadily, 

reflecting the gradual maturity of the model's classification and positioning capabilities and good generalization. 

 
Fig. 6 - The training curves of YOLO-LSD 

 

The detection effect of YOLO-LSD on individual sheep is shown in Fig. 7, and the effect on groups of 

sheep is shown in Fig. 8. By observing the specific detection results, it can be found that in different time 

periods and farm environments, the model can accurately identify the 'Sheep Face' category. For individual 

sheep detection, whether in close-up or long-distance shots, the bounding boxes show a high degree of fitting, 

and the confidence of category prediction is mostly above 0.80. When testing flocks of sheep, the confidence 

of each sheep face is above 0.75, and all sheep faces are effectively detected. The test results demonstrate 

that the proposed YOLO-LSD model has strong adaptability to complex farm environments. 

 

 
Fig. 7 - Sample images of individual sheep face detection results 
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Fig. 8 - Sample images of detection results for groups of sheep 

 

Comprehensively considering the convergence of the training curves and the recognition effect of the 

detection diagrams, the YOLO-LSD model proposed in this study has effectively completed the training task, 

constructed a stable and generalizable feature learning system, and can efficiently perform sheep face 

detection tasks. It provides reliable technical support for scenarios such as intelligent livestock management 

and farm monitoring, and fully verifies the practicality and effectiveness of the model design in sheep face 

detection tasks. 

To demonstrate the practical deployment of the YOLO-LSD model, a real-time sheep face detection 

system was developed using LabVIEW 2018, as shown in Fig. 9. This system was tested in an actual farm 

breeding environment, specifically capturing the scenario where sheep pass through a detection channel, 

which naturally simulates the complex backgrounds (e.g., fences, vegetation) and variable lighting conditions 

encountered in real-time monitoring. The target detection interface within the system visualizes results on high-

resolution RGB images, where two sheep faces are accurately identified, with confidence scores of 0.82 and 

0.71, and bounding boxes fitting tightly to the facial regions even in a semi-overlapping situation. The 

parameter setting module allows for the configuration of the image path, processing type, and automatic 

timestamping, while the identification result module records detection quantities, staff information, and 

identification dates, and provides functions for data clearing, screenshot capturing, and result saving. Overall, 

this system not only validates the YOLO-LSD model’s strong adaptability to complex farm environments for 

multi-target detection but also supports practical livestock management tasks like rapid flock counting and 

individual health monitoring, bridging the gap between algorithm development and on-site application. 

 
Fig. 9 - Operation diagram of the real-time sheep face detection system 
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CONCLUSIONS 

This study proposes YOLO-LSD, a lightweight sheep face detection model developed based on 

YOLOv11. Through multi-dimensional optimizations-including feature enhancement, lightweight inference 

optimization, and few-shot generalization enhancement—the model effectively addresses the issues of 

insufficient multi-scale feature utilization and low computational efficiency in complex farm scenarios. 

Experimental results on the self-constructed multi-breed sheep face dataset show that YOLO-LSD achieves 

99.29% mAP@0.5, with optimized model parameters and computational overhead, and a competitive 

inference speed on edge devices (e.g., farm-mounted embedded systems). Beyond technical performance, 

the model’s practical deployment demonstrates tangible value for livestock management: by enabling 

automated, real-time monitoring of individual and group sheep, YOLO-LSD alleviates labor-intensive manual 

inspection, enhances the timeliness and precision of health and behavior assessment, and supports data-

driven decision-making in farm operations. By synergizing these optimization strategies, YOLO-LSD breaks 

through the performance bottlenecks of traditional models in farm scenarios, providing a solution that balances 

performance and computational efficiency for intelligent livestock management systems—ultimately advancing 

operational efficiency, animal welfare, and data-informed practices in modern agriculture. Future research will 

focus on further lightweight optimization for low-power devices and multi-modal detection, integrating infrared 

data to enhance detection robustness in low-light or nighttime conditions, promoting the application of sheep 

face detection models in broader agricultural engineering scenarios. 
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