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ABSTRACT  

Classification of barley plants plays a crucial role in understanding barley varietal diversity and breeding. 

Traditional classification methods rely on expert experience and require significant manual effort. With the rise 

of deep learning based on machine vision technologies, particularly the emergence of transfer learning, the 

issue of model overfitting on small datasets has been mitigated, leading to enhanced generalization capabilities. 

This study employs a self-constructed barley plant image dataset to compare five state-of-the-art deep learning 

models, while analyzing the impacts of various factors - including image resolution and training-test split ratio 

- on classification accuracy. The results indicate that the DenseNet model achieves the best classification 

performance at an input resolution of 512×512 pixels, with an accuracy of 96.02%. Increasing the proportion 

of training data further improved performance, with the 80%:20% training-test split ratio yielding optimal results 

across all five models. Transfer learning models outperform training from scratch, with EfficientNet-v2 

achieving the highest accuracy of 98.86%. Additionally, gradient-weighted class activation mapping (Grad-

CAM) was utilized to generate heatmap visualizations of the decision-making processes in each transfer 

learning model. By applying deep learning for barley plant classification and selecting the optimal model, this 

research provides a reliable technical solution for barley variety identification and classification. 

 

摘要  

大麦植株分类对于理解大麦品种多样性和育种研究具有关键作用。传统分类方法依赖专家经验且需要大量人工
操作。随着基于深度学习的机器视觉技术的兴起，尤其是迁移学习技术的出现，减轻了在小数据集上模型过拟
合的现象，提高了模型的泛化能力。本研究采用自建的大麦植株图像数据集，对比了五种先进的深度学习模型，
并分析了不同图像分辨率、不同训练集-测试集比例等因素对分类准确率的影响。研究结果表明：DenseNet 模
型在 512×512像素输入分辨率下表现最优，分类准确率达 96.02%；增加训练数据比例能提升模型性能，80%: 

20%的训练-测试划分比例在五种模型中均取得最佳效果；使用迁移学习模型显著优于从头训练，其中
EfficientNet-v2 模型以 98.86%的准确率表现最佳。此外，研究还采用 Grad-CAM 技术对五种迁移学习模型的
预测过程进行了热力图可视化分析。本研究通过深度学习技术实现大麦植株分类并优选最佳模型，为大麦品种
鉴定与分类提供了可靠的技术方案。 
 

INTRODUCTION 

 Barley is one of the world's most important cereal crops, and its cultivation plays a vital role in food 

security, feed supply, the brewing industry, economic development, and ecological benefits (Ullrich, 2021). 

The classification of barley plants holds significant importance for optimizing cultivation management, 

advancing breeding research, supporting precision agriculture, ensuring food security, and promoting industrial 

development (Alahmad et al., 2022). 

 The traditional methods for barley plant classification primarily rely on phenotypic data such as 

morphological traits, agronomic characteristics, and physiological properties. While these approaches can 

differentiate between varieties to some extent, they suffer from several limitations, including strong subjectivity, 

high labor intensity, significant environmental dependency, limited informative value, difficulties in 

distinguishing closely related varieties, dynamic variability, and lack of standardization (Li et al., 2022). 

 Deep learning models (e.g., Convolutional Neural Networks, CNNs) can automatically extract multi-

level features from raw images, ranging from low-level edge and texture features to high-level semantic 

features (Zhou et al., 2022).  
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This end-to-end learning approach eliminates the laborious process of manual feature engineering 

required in traditional methods. Through deep network architectures and training on large-scale datasets, deep 

learning models can capture subtle differences in images, thereby achieving high-precision classification 

(Nguyen et al., 2021). These models autonomously learn features and patterns from data, reducing the need 

for human intervention and domain-specific expertise. Such automated learning capabilities make deep 

learning highly promising for a wide range of image classification tasks.  

 Deep learning has become a dominant approach for image-based classification tasks, with significant 

advancements in plant species identification and agricultural applications. Recent studies have explored 

various architectures to enhance classification accuracy and robustness. Comparative analyses of deep 

learning models have demonstrated the effectiveness of specific architectures for plant classification. For 

instance, DenseNet exhibited stable performance across multiple datasets, highlighting its robustness in 

feature reuse and gradient flow optimization (Zhou et al., 2021). Similarly, Xception outperformed InceptionV3 

and VGG16 on the Plant Seeding Dataset, achieving 86.21% accuracy due to its depthwise separable 

convolutions (Diaz et al., 2019). In weed management, CNNs attained 97% accuracy in distinguishing crops 

(e.g., corn) from narrow- and broad-leaf weeds during early growth stages, critical for precision herbicide 

application (Garibaldi-Márquez et al., 2022). In addition, hybrid models can improve plant classification 

performance by combining the strengths of different architectures. Hybrid models, such as MIV-PlantNet, 

which integrates MobileNet, Inception, and VGG, achieved 99% accuracy on 10 Saudi Arabian plant species 

by leveraging complementary architectural strengths (Amri et al., 2024). Deep neural networks (DNNs) 

generally demand substantial amounts of training data to achieve optimal performance, as insufficient datasets 

often result in model overfitting and compromised generalization ability. 

 Transfer learning (TL) leverages pre-trained models from large-scale datasets (e.g., ImageNet) to 

transfer knowledge to target domains (e.g., plant classification), addressing challenges such as limited data, 

high training costs, and poor model generalization. In recent years, TL has achieved remarkable success in 

plant classification tasks, including species identification, disease detection, and leaf categorization. The most 

common implementation involves direct fine-tuning of pre-trained models for plant classification tasks. For 

instance, MobileNet pre-trained on ImageNet achieved 98.7% classification accuracy when fine-tuned on a 

custom medicinal plant dataset (Duong-Trung et al., 2019). Similarly, fine-tuned VGG16 models showed 

enhanced performance in agricultural disease detection, particularly for mildew classification in millet 

(Coulibaly et al., 2019). The exceptional 99.7% accuracy obtained by VGG-19 on the Swedish Leaf Dataset 

further validates TL's superiority in small-sample scenarios (Siddharth et al., 2022). Comparative studies have 

explored various architectures, including GoogLeNet and VGGNet with optimized TL parameters for the 

LifeCLEF 2015 challenge (Ghazi et al., 2017), while another investigation evaluated Inception V3, ResNet50 

and VGG19 on 12 plant seedling categories (Hassan et al., 2021). Beyond direct fine-tuning, hybrid 

approaches combining deep learning with traditional methods have shown promising results. The integration 

of VGG19's deep features with handcrafted descriptors (e.g., texture and shape) achieved 93.73% accuracy 

using Random Forest classification (Bansal et al., 2023) Another study employed four pre-trained CNNs for 

feature extraction followed by Random Forest, significantly improving model interpretability (Sachar et al., 

2021). These implementations demonstrate TL's dual advantage of reducing training time while enhancing 

classification accuracy by effectively transferring knowledge from large-scale datasets to specialized botanical 

applications.  

 As one of the world's most important crops, barley has received relatively limited research attention 

regarding plant classification. To address this gap, this study first systematically reviews the advantages and 

disadvantages of five deep learning approaches. Subsequently, comprehensive experiments are conducted 

on a self-constructed barley plant dataset, with evaluations focusing on: (1) input image resolution, (2) training-

test split ratios, and (3) fine-tuning strategies based on transfer learning models. Finally, heatmap visualization 

is employed to analyze the critical regions identified by the five transfer learning models during prediction. 

These investigations aim to identify the optimal deep learning approach for barley plant classification and to 

provide technical support for the development of automated classification systems. 

 

MATERIALS AND METHODS 

Image dataset 

 The spike and awn morphology of different barley varieties exhibits significant differences, making 

them particularly suitable for computer-based classification tasks. The barley dataset used in this study was 

collected from the barley breeding experimental fields at Shanxi Agricultural University. Images of nine barley 
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varieties were captured during the heading and maturation stages, photographing individual plants (including 

partial stems, leaves, and spikes) against a white background using a smartphone in frontal parallel shooting mode. 

 To enhance dataset diversity, wheat plant images were included since wheat and barley share similar 

spike and awn structures. The final dataset comprised 896 RGB images across nine barley varieties and one 

wheat variety, with the number of images per variety ranging from 52 to 233. 

 In this study barley varieties were labeled as Barley_0 through Barley_8 and the wheat variety was 

designated as Wheat. Original image resolutions included 1276×1276 pixels, 2342×2342 pixels, and 

3024×3024 pixels. Due to computational constraints, all images were uniformly resized to 1024×1024 pixels.  

Barley_0 Barley_1 Barley_2 Barley_3 Barley_4 

     
Barley_5 Barley_6 Barley_7 Barley_8 Wheat 

     
Fig. 1 - Characteristic specimens of all barley varieties and wheat 

 

 Figure 1 illustrates distinct phenotypic variations between different barley and wheat cultivars, primarily 

manifested in awn and spike characteristics. Awn morphology analysis demonstrates that the barley cultivar 

Barley_4 is classified as awn less, while the wheat cultivar Wheat exhibits short-awned characteristics, with all 

other barley cultivars displaying long-awned morphology. Regarding awn spatial distribution patterns, barley 

cultivars Barley_3 and Barley_5 show a scattered arrangement, whereas Barley_0, Barley_7, and Barley_8 

present clustered awns. The intermediate awn distribution type is observed in barley cultivars Barley_1, 

Barley_2, and Barley_6. Spike architecture analysis indicates that barley cultivar Barley_5 possesses a 

distinctive two-rowed spike structure, contrasting with the six-rowed configuration of wheat. The remaining 

barley cultivars exhibit an intermediate four-rowed spike morphology. 
 

 

Deep learning approaches for barley plant image classification 

 ResNet (Residual Network) was proposed by He et al., (2016), and achieved breakthrough 

performance in the ImageNet image classification competition. The core innovation of ResNet lies in its 

introduction of residual learning, which addresses the issues of gradient vanishing and network degradation in 

deep neural networks through residual connections (also known as skip connections). This architectural 

advancement enables the training of substantially deeper networks while enhancing their feature extraction 

capabilities. Due to hardware considerations, the ResNet-50 model with 50 layers was chosen as our baseline 

network. 

 DenseNet (Densely Connected Network) is a deep learning model proposed by Huang et al., (2017). 

The core innovation of DenseNet lies in its dense connection mechanism, where each layer's output is directly 

connected to all subsequent layers. This unique architecture significantly enhances feature propagation and 

reuse throughout the network while substantially reducing parameter redundancy and effectively alleviating 

vanishing gradient problems. DenseNet has demonstrated exceptional performance across various image 

classification tasks, showing particular advantages in scenarios with limited training data where its efficient 

feature utilization capability excels. 

 MobileNet-v2, developed by Google Research (Sandler et al., 2018), represents an optimized 

lightweight convolutional neural network specifically engineered for mobile and embedded devices. As an 

enhanced iteration of MobileNet-v1, this architecture incorporates two key innovations: inverted residual blocks 

and linear bottleneck layers, which collectively improve both computational efficiency and model performance. 

 ShuffleNet-v2, developed by Megvii Research (Ma et al., 2018), represents an optimized efficient 

convolutional neural network specifically designed for mobile and embedded devices. As an enhanced version 

of ShuffleNet, this architecture introduces two key improvements: an optimized network structure and a novel 

channel shuffle operation that reorganizes feature channels to enhance cross-group information exchange. 
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 EfficientNet-v2, developed by Google Research (Tan et al., 2021), is an enhanced convolutional 

neural network that builds upon the EfficientNet series. This next-generation architecture achieves significant 

improvements through an integrated approach combining compound scaling and progressive learning 

strategies, which work synergistically to boost both training efficiency and model accuracy. 
 

Evaluation metrics 

 This study evaluates the classification performance of the five deep learning methods using Top-1 

accuracy, defined as the proportion of samples where the model's highest-probability prediction matches the 

true class label. To address class imbalance in the dataset, confusion matrix analysis was employed as a 

complementary evaluation metric. The confusion matrix provides a detailed breakdown of classification results, 

with rows representing actual classes, columns indicating predicted classes, diagonal entries showing correct 

classifications, and off-diagonal elements revealing specific misclassification patterns between classes. 

Additionally, this study uses the size of the model weight file as an indicator to determine the model size and 

employs inference speed to measure the computational efficiency of the model, excluding data loading time, 

with the unit in frames per second (FPS). Together, these metrics offer both quantitative performance 

measurement and qualitative insight into each model's classification behavior across all categories. 
 

Training model 

 The experiments in this study were conducted on a Windows 10 system equipped with an Intel Core 

i7-12700F CPU (12 cores, 20 threads), 32GB RAM, and an ASUS TUF-GAMING RTX 3060 GPU with 12GB 

VRAM. For the experimental framework, OpenMMLab's MMPretrain (v1.0.0) was utilized, an open-source 

computer vision research platform that provides comprehensive transfer learning models and tools. As one of 

OpenMMLab's core libraries, MMPretrain specializes in image classification and feature extraction tasks while 

supporting various state-of-the-art deep learning models (MMPretrain Contributors, 2023). 

 To ensure the reliability of experimental results and achieve optimal classification performance, all five 

deep learning models were configured with the following unified parameter settings. The image input size was 

set to 1024×1024 pixels, and the batch size was set to 8. The Stochastic Gradient Descent (SGD) optimizer 

was selected, loss function was Cross-entropy Loss, and the training epochs were set to 100. The initial 

learning rate was 0.025, and the momentum parameter and the weight decay parameter were set to 0.9 and 

0.0001, respectively.   

 The models process input images in RGB format with batch normalization applied during training. The 

training protocol consisted of 100 epochs with MultiStepLR learning rate scheduling, where the learning rate 

was reduced by a factor of 0.1 at epoch milestones 30, 60, and 90. This configuration maintains comparability 

across models while implementing established best practices for deep learning optimization. 

 

RESULTS 

The impact of image resolution on classification accuracy 

 Each image in the dataset contains only a single barley plant with a white background, and the plant 

occupies only a small portion of the image. Higher-resolution images can capture key structural features of 

barley, such as the spikes and awns. Three different input resolutions were examined: 128×128 pixels, 

256×256 pixels, and 512×512 pixels, with an 80:20 train-test split ratios and models trained from scratch. The 

classification results are shown in Table 1. 

 Table 1 

Classification performance of five models across different input resolutions with 80:20 training-test split  

 
 

 

 

 

 

 The results showed that MobileNet-v2 achieved its best classification performance (93.19% accuracy) 

at 256×256 pixels resolution, while the other four models (ResNet-50, DenseNet, ShuffleNet-v2, and 

EfficientNet-v2) all performed best at the highest 512×512 pixels resolution, with classification accuracy 

generally improving as resolution increased. Specifically, ResNet-50 showed an 11.36% accuracy 

improvement, DenseNet improved by 1.7%, ShuffleNet-v2 by 9.66%, and EfficientNet-v2 by 1.13% when 

comparing the lowest and highest resolutions. At 512×512 pixels resolution, DenseNet delivered the strongest 

overall performance with 96.02% accuracy. 

Resolution\Model ResNet-50 DenseNet MobileNet-v2 ShuffleNet-v2 EfficientNet-v2 

128×128 82.39 94.32 92.05 81.25 94.32 

256×256 85.23 95.45 93.19 84.1 92.61 

512×512 93.75 96.02 92.61 90.91 95.45 
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 These findings demonstrate that higher resolutions generally enhance classification accuracy by 

preserving finer structural details, though the optimal resolution depends on model architecture. While most 

models benefited from increased resolution, MobileNet-v2's peak performance at 256×256 pixels suggests 

potential limitations in handling higher-resolution inputs. DenseNet's superior performance at the highest 

resolution indicates its effectiveness in leveraging detailed features for accurate classification. 

 For further error analysis, this study computed confusion matrices for all five classification models (as 

shown in Figure 2) at 512×512 pixels resolution. In the test set containing 176 images, ResNet-50 misclassified 

11 images, DenseNet misclassified 7, MobileNet-v2 misclassified 13, ShuffleNet-v2 misclassified 16, and 

EfficientNet-v2 misclassified 8. 

 

 

 
Fig. 2 - Confusion matrices of five models with 512×512 input resolution and 80:20 training-test split 

 

 A particularly notable error pattern was observed where both ResNet-50 and ShuffleNet-v2 models 

consistently misclassified 4 Barley_1 samples as Barley_6. This classification confusion likely stems from the 

morphological similarity between these two varieties, as both Barley_1 and Barley_6 possess characteristically 

long, spreading awns that create visual ambiguity in their distinguishing features. 

 

The impact of different training-test split ratios on classification accuracy 

 The partitioning method of the training and test sets significantly influences the performance evaluation 

and generalization capability of the barley plant image classification model. Due to imbalanced sample sizes 

across different varieties in the dataset, this study employed stratified sampling to ensure that each category 

maintained a fixed proportion in both the training and test sets. Three different training-test split ratios were 

examined: 80%:20%, 70%:30%, and 60%:40%, using an input image resolution of 512×512 pixels and training 

the models from scratch. The classification results are presented in Table 2. 

 

Table 2 

Classification performance of five models with different training-test split ratios and 512×512 input resolution 

 

 

 Combined with Table 1, the analysis of the classification results revealed that when the training-test 

split ratio was 80%:20%, all five models achieved their optimal classification performance. Additionally, except 

for ShuffleNet-v2, the other models exhibited a trend where higher proportions of training data led to increased 

classification accuracy. Figure 3 presents the confusion matrices for all five classification models when the 

training-test split ratio was set to 70%:30%. 

Training-test split\Model ResNet-50 DenseNet MobileNet-v2 ShuffleNet-v2 EfficientNet-v2 

70% : 30% 89.06 92.45 91.7 77.0 93.58 

60% : 40% 87.08 90.45 91.57 78.93 90.73 
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Fig. 3 - Confusion matrices of five models with 512×512 input resolution and 70:30 training-test split 

 

 When employing a 60% training and 40% testing data partition, the classification confusion matrices 

for all five models are illustrated in Figure 4. 

 

 
Fig. 4 - Confusion matrices of five models with 512×512 input resolution and 60:40 training-test split 

 
The impact of transfer learning on classification accuracy 
 Transfer learning improves model performance by leveraging knowledge acquired from one task or 

domain and applying it to a related task, significantly reducing training time while enhancing accuracy (Tan et 

al., 2018). In this study, the models were initialized with weights pre-trained on the ImageNet-1k dataset and 

subsequently fine-tuned for barley plant image classification. 

 Using an 80%:20% training-test split ratio and an input resolution of 512×512 pixels, the classification 

results are presented in the Table 3, with corresponding confusion matrices shown in Figure 5. A comparison 

with Table 1 reveals that training based on ImageNet-1k transfer learning models yields better classification 

performance than training from scratch, with accuracy improvements of 1.70% (DenseNet), 7.39% (ShuffleNet-

V2), and 3.41% (EfficientNet-V2). Among them, the transfer learning EfficientNet-V2 model achieved the 

highest classification accuracy at 98.86%. Its model size is moderate among the five models at 22.90 MB, 

while also delivering the fastest inference speed at 179 FPS. ShuffleNet-V2's classification accuracy is nearly 

comparable to EfficientNet-V2, yet it has the smallest model size among all five models and maintains a high 

inference speed (157 FPS). 
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Table 3 

Classification performance of five pre-trained models with 80:20 training-test split and 512×512 input resolution 

 

 

 
Fig. 5 - Confusion matrices of five pre-trained models with 512×512 input resolution and 80:20 training-test split 

 
Comparative analysis of gradient-based heatmap visualization 
 Deep learning models demonstrate excellent performance in barley plant classification, yet their 

decision-making process remains opaque to end users. Gradient-based interpretation techniques, as 

attribution methods, utilize heatmaps to explain deep learning decisions. Grad-CAM (Gradient-weighted Class 

Activation Mapping) is a visualization technique that generates heatmaps to highlight image regions most 

influential to the model's predictions, thereby enhancing interpretability of the decision process (Selvaraju et 

al., 2017). 

 This study employs Grad-CAM to generate heatmaps for five transfer learning models, as shown in 

Figure 6. Overall, the heatmaps generated by the EfficientNet-v2 model exhibit higher response values in key 

structural features such as wheat spikes and awns, which aligns with the critical regions experts typically focus 

on during practical evaluations. This observation is consistent with the superior classification performance of 

EfficientNet-v2 demonstrated in earlier experiments. In contrast, some heatmaps from the DenseNet model 

(including varieties Barley_0, Barley_2, Barley_4, Barley_7, and Barley_8) predominantly highlight background 

regions. This phenomenon may stem from the gradient’s inability to accurately reflect feature importance, 

leading to attention dispersion toward non-relevant background areas. 

Evaluation metrics\Model ResNet-50 DenseNet MobileNet-v2 ShuffleNet-v2 EfficientNet-v2 

Accuracy(%) 93.18 97.72 88.64 98.30 98.86 

Size/MB 90.30 27.40 9.13 5.44 22.90 

Speed/FPS 92 120 158 157 179 

Class name 
Original 
Image 

ResNet-50 DenseNet MobileNet-v2 ShuffleNet-v2 
EfficientNet-

v2 

Barley_0 

 
 

   
 
 

Barley_1 
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Fig. 6 - The output of the class activation maps for five transfer leaning models 

 

 

CONCLUSIONS 

 This study reviewed recent research progress in plant classification using deep learning and evaluated 

the performance of five representative deep learning models. The core algorithmic concepts of these models 

were analyzed, along with their respective advantages and limitations. The models were then applied to a self-

constructed barley plant dataset, and their classification performance was systematically assessed. 

 This study demonstrates that the EfficientNet-v2 model achieved the highest classification 

performance. Increasing the proportion of training data proved beneficial, as a larger sample size enabled the 

model to learn richer feature representations of barley plants. Transfer learning, through the use of knowledge 

acquired from large-scale datasets, not only accelerated model training but also enhanced classification 

accuracy. To further interpret the decision-making process, Gradient-weighted Class Activation Mapping 

(Grad-CAM) was employed to visualize regions of interest during prediction. The resulting heatmaps 

highlighted biologically significant areas, providing valuable references for plant classification analysis. 
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Barley_8 

 
    

 

Wheat 
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 This work represents one of the few studies applying deep learning models to barley plant 

classification. Future research should focus on expanding the dataset with images from diverse growth 

stages and exploring advanced deep learning architectures to address remaining challenges in barley 

classification. 
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