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ABSTRACT

During the paddy rice drying process, the uneven spatial distribution of pore spaces within drying
chambers poses a significant challenge to accurate porosity characterization and results in inefficient
energy utilization. To address this issue, this study proposes a porosity prediction model based on
Support Vector Regression (SVR), aimed at effectively monitoring porosity variations during drying and
enhancing energy efficiency. Using MATLAB based image processing, the porosity of paddy rice was
quantitatively extracted. A Response Surface Methodology (RSM) was then employed to analyze the
influence of geometric characteristics, moisture content, and grain bulk height on porosity during drying.
To further improve the predictive performance, the SVR model was optimized using the Snake Optimizer
(SO) algorithm. The resulting SO-SVR model was evaluated against porosity values derived from image
analysis. Experimental results demonstrate that the SO-SVR model achieves high accuracy, with a Root
Mean Square Error (RMSE) of 0.0095 and a coefficient of determination (R? of 0.9913. Compared to
standard SVR and BP neural network models, the proposed model reduces RMSE by 0.0867 and 0.1663,
and increases R? by 0.0449 and 0.1102, respectively. These findings indicate that the SO-SVR model
provides a reliable and efficient approach for predicting paddy rice porosity during drying, offering
valuable support for energy-saving and intelligent drying system design.
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INTRODUCTION

Grain security is a cornerstone of national economic stability and social development. Ensuring food
security not only provides a solid foundation for stable economic development but also serves as a key factor
in maintaining social stability and strengthening national security (Fujimori et al., 2019). According to data from
the National Bureau of Statistics, China’s total grain output reached 713 million tons in 2024, marking a 1.6%
year-on-year increase, with rice accounting for 29.38% of the total grain production. To ensure rice quality,
post-harvest high-moisture rice must undergo drying treatment. Porosity is one of the key parameters for
understanding the drying process and energy consumption of rice (Che et al., 2017). During the drying process,
porosity directly affects ventilation resistance, heat and moisture transfer coefficients, and the adjustment of drying
process parameters (Tong et al., 2023), thereby influencing energy consumption, drying efficiency, and cost (Oliveros
etal., 2017). Therefore, accurate detection of paddy rice porosity during drying is of great significance.
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However, in practical production operations, there has been a lack of predictive research on paddy rice
porosity, particularly in mixed-flow drying systems.

Currently, Moya conducted consolidation tests on paddy rice using a direct measurement method with
an oedometer, and based on the experimental data, identified the relationship between porosity and vertical
pressure (Moya et al., 2013). Martynenko through systematic experimental studies and theoretical analysis,
established a relationship between moisture content and porosity, enabling the quantitative characterization of
porous media structure parameters (Martynenko et al., 2008). Neethirajan employed computed tomography
(CT) imaging technology to visualize the granular structures of wheat and pea seeds, calculating the spatial
distribution of porosity and other features within the 3D images, including the degree of axial distortion and
throat surface area (Neethirajan et al., 2008). Khalili proposed a mathematical model describing the
relationship between porosity and bulk layer thickness based on experimental data (Khalili et al., 2014).
Domestic scholars (Chen et al., 2019) have demonstrated, through both theoretical analysis and experimental
validation, that porosity is influenced by the thickness of the material layer. Tang Fuyuan used an indirect gas
displacement method to determine the porosity of paddy rice, analyzing density variations at different depths
and establishing a mathematical model for porosity distribution in silo-stored rice (Tang et al., 2017). Cheno
measured the permeability of two types of sandstone under varying confining pressures and determined their
porosity using mercury intrusion porosimeters (MIP). By comparing the 3D geometrical structures of the pore
spaces and flow-relevant pore characteristics, the study established a relationship between the differences in
permeability and the porosity of the two sandstones (Cheno et al., 2021). Additionally, Ge Mengmeng
combined the direct measurement method with liquid infiltration techniques to construct a quantitative model
of porosity variation under different pressures. Their research further elucidated the relationship between bulk
pressure and density, and analyzed the porosity and density distribution characteristics of rice stacks in flat
warehouses (Ge et al., 2021). Despite significant progress made by researchers at home and abroad in the
study of grain porosity, analytical methods currently in use often involve complex procedures and are time-
intensive, thereby hindering their applicability and promotion in engineering practice.

In this study, a direct measurement method is employed to calculate paddy rice porosity based on
surface images of rice stacks with varying height, using digital image processing techniques. The Design-
Expert 13 software is utilized to analyze the influence of geometric parameters, moisture content, and stack
height on porosity. Response Surface Methodology is further applied to evaluate and compare the variation in
porosity under different influencing factors. A paddy rice porosity prediction model is then developed based on
Support Vector Regression optimized by the Snake Algorithm. This model enables prediction of porosity during
the rice drying process and provides key parameters for post-harvest drying and storage analysis of rice.

MATERIALS AND METHODS

Materials

The test material was the Songjing No. 16 rice variety, cultivated in Heilongjiang Province. After
impurity removal, well-developed and uniformly shaped grains were selected for the experiment. The moisture
content of the paddy rice was 2%, and the average grain length, based on measurements from 200
representative kernels, was 9.02 mm.

Mixed-Flow Paddy Drying Rice Experimental Apparatus

This study employed a self-developed bidirectional-ventilation mixed-flow paddy rice drying
experimental platform. The overall structure of the mixed-flow dryer is illustrated in Fig. 1. Gravity-fed rice
circulation is achieved through a free-flow feeding mechanism. Flow rate control valves are used to adjust the
feeding speed, aligning it with the drying intensity to prevent uneven drying caused by excessively fast or slow
grain flow. In the dryer, each drying unit comprises a layer of angular inlet ducts and a layer of angular outlet
ducts, arranged in a vertically intersecting manner. The angular inlet ducts supply hot air from both sides,
forming a mixed-flow drying pattern, while the outlet ducts vent the exhaust air unilaterally. This cross-layer
configuration modifies the airflow path of paddy rice during drying, enabling effective balancing of wind
pressure, air velocity, and temperature. Such a structural design improves the uniformity of the cyclic drying
process.
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Fig. 1 - Mixed-flow paddy rice drying experimental device
1. Mixed flow rice dryer; 2. Temperature and humidity sensor; 3. Air inlet pipeline; 4. Grain discharge motor;
5. Unloading device; 6. Control system cabinet; 7. Mixing pipeline; 8. Mixing device; 9. Hot air pipeline;
10. Electric heating control cabinet

The drying section process is shown in Fig. 2. In the drying operation, wet paddy rice is loaded into
the dryer through the top inlet and gradually flows downward by gravity until the chamber is filled. The rice
sequentially passes through the tempering-drying section, preheating-drying section, mixed-flow drying section,
and discharge-drying section, initiating the cyclic drying process. Hot air ducts are connected on both sides of
the drying sections. After setting the fan frequency and hot air temperature, heated air is supplied to the system
via electric heaters and fans. A hot air mixing unit regulates the air temperature to ensure stable heat supply
throughout the drying system.
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Fig. 2 - Mixed-Flow paddy rice drying process diagram

Additional Measurement Instruments
PM-8188New grain moisture tester; Canon EOS 5D Mark II; micrometer with a precision of 0.01 mm,
and a measuring tape.

Data Collection Method

Paddy rice with an initial moisture content of 23.41% was dried to different target moisture levels. A
moisture analyzer was used to measure the moisture content of each sample. Individual rice grains were
randomly selected, and their lengths (L) were measured using a micrometer with a precision of 0.01 mm. For
each group, the average length was calculated based on measurements of 100 intact grains. To simulate the
pressure conditions within grain storage silos, incremental loads ranging from 0 to 200 kPa were applied to
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the rice in the test container. The pressure applied to the grain bulk height was calculated using the hydrostatic
pressure equation, as shown in Equation 1, this corresponded to adding 0-12 kg of rice incrementally.

A measuring tape was used to record the resulting grain pile height within the container. In total, 200
groups of data were collected, including measurements of moisture content, grain length, and grain bulk height,
for use in subsequent analysis (Prasad et al., 1973).

P =pgh (1)
where:

P is the pressure, [Pa];

p is the density of paddy rice, [kg/m®];

g is the gravitational acceleration, [m/s?];
h is the grain bulk height, [m]

Porosity Measurement Method

To capture digital images of the grain bulk, a transparent glass test box was employed, featuring an
embedded lid made of the same material. The internal dimensions of the box were 300 mm * 200 mm * 400
mm (length * width * height). The shortest dimension of the test container is 200 mm, which is over ten times
greater than the average grain length of paddy rice (9.02 mm), thereby fully satisfying the spatial requirements
for pressure testing (Bian et al., 2021). A Canon digital camera was used for image acquisition. Distortion
correction was performed using the MathWorks calibration toolbox. For image segmentation, various
thresholding algorithms were compared, and edge-based threshold segmentation was conducted using
MATLAB to distinguish the target from the background, the grayscale image and the binarized image were
obtained, as illustrated in Fig. 3. Morphological optimization was subsequently applied to the binarized image.
Each grain was labeled based on the position of its pixel centroid, and the scaling factor of the imaging system
was determined by correlating the pixel area to the actual physical area. Using this factor, the porosity of the
paddy rice was calculated. To simulate pressure conditions within a rice silo, different weights of paddy rice
were incrementally added to the box, and images were captured after each addition to determine the porosity
under varying pressure levels.

Q\vl‘(l‘zf.‘j; f ‘ '
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a) The grayscale image b) The binarized image
Fig. 3 - The processed images of paddy rice

The porosity formula for paddy rice in their natural piled state is shown in Equation 2. The smaller the
difference between the porosity value obtained through image processing and the one from the formula, the
higher the accuracy, as illustrated in Fig. 4.

e=(1- l‘)’—v’:) x 100% 2)
where:
¢ - the porosity, [%];
pbis the initial density of a paddy rice unit, [kg/m®];
Pw - the density of rice particles, [kg/m?]
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Fig. 4 - Fitting of porosity obtained after image processing to true values

Experimental Procedure

The rice drying experiment was conducted at the Intelligent Agricultural Machinery Equipment
Laboratory of Heilongjiang Bayi Agricultural University. To simulate the actual conditions of rice after harvest,
the paddy rice underwent moisture adjustment treatment, followed by sealed storage for a period of time and
subsequent water spraying. After ensuring the rice absorbed enough moisture, the required rice samples for
the experiment were obtained (Chen et al., 2022). First, the heat exchanger and fan were activated and allowed
to stabilize before loading the rice. The drying process then began, with the dryer completing one cycle every
20 minutes based on real-time operating conditions. During both the early and late stages of the rice drying
process, porosity measurements were taken at intervals of 20 minutes and 10 minutes, respectively, and
compared with the predicted model. If the fit was satisfactory, the operating efficiency of the heat exchanger
and fan was reduced to achieve energy savings. The experiment was then concluded.

Data Preprocessing

To mitigate the impact of differences between feature values on the prediction model, the mapminmax
function (Liang et al., 2019) was used to normalize the feature data, thereby ensuring the stability of the model’s
numerical values. The normalization formula is given by Equation 3.

_ (ymax — ymin) X (xmax B xmin)

Xmax — Xmin

+ Ymin (3)
where:

Xmax IS the maximum value in the original feature data;

Xmin is the minimum value in the original feature data;

Ymax is the maximum value after normalization, set to 1;

Ymin is the minimum value after normalization, set to 0.

Orthogonal Experiment Design

The paddy rice moisture content, paddy rice grain length, and grain bulk height were selected as
experimental factors, with paddy rice porosity set as the evaluation criterion. The experiment employed a three-
factor, three-level quadratic regression orthogonal rotational combination design to analyze the effects of
paddy rice moisture content, paddy rice grain length, and grain bulk height on paddy rice porosity and to
construct a regression model. The factor level coding table is shown in Table 1.

Table 1
Encoding of orthogonal experimental factors
. . Paddy rice Paddy rice Grain bulk
Serial Encoding moisture content X grain length X2 height X3
Number value o
[%] [mm] [mm]
+1) +1 23. 41 10. 16 350
0 0 18.93 8.85 200
-1 -1 14. 45 7.54 50
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Development of the Prediction Model
SVR Model

The SVR model is trained using the training set 7= {(x1, y1), ..., (Xn, Yu)}, they correspond to the
input vector and output value of the sample, respectively. During the training process, SVR utilizes a nonlinear
mapping ¢(x) to map the training set from a low-dimensional space to a high-dimensional space (Jin et al.,

2024; Yang, 2023; Cui, 2023). The expression of this process is shown in equation 4. A schematic diagram of
the SVR prediction model is shown in Fig. 5.

f(x) = wd(x) +b (4)

where: @ is the weight; b is the bias.

2 [o]
[wll

wx+th=£

wx tbh=-£
wy+h=0

Fig. 5 - SVR prediction schematic diagram

The process of solving the SVR based on the principle of Structural Risk Minimization (SRM) can be
represented as solving a constrained optimization problem, as shown in the following equation:

N
1

min=|lo|l? +C ) (6 +¢1) ®

wb 2 —

1=
sit.—(k+&) <y, —(wx;+b) <k + & (6)
§'=0, i=12-N (7)
& =0, i=12-N (8)

where:

C is the penalty parameter, which regulates the complexity of the sample regression model and the
fitting accuracy;

&' isthe upper-bound slack variable;
f,.V is the lower-bound slack variable;
k is the insensitive loss factor.

By introducing the Lagrange multiplier operator and the duality principle, the optimal Lagrange multiplier

parameters at"and @’ are obtained through the Sequential Minimal Optimization (SMO) algorithm.
By incorporating the kernel function, the nonlinear mapping expression for the SVR is derived as:

S (x) = op(x)+b= Z(ai’\* — o )K(x;, x) ©)

where: K (xi, x ) = ¢(xi) §(x) is the kernel function.

S0 Algorithm

Snake optimization, as a search strategy, effectively avoids getting trapped in local optima and exhibits
a fast convergence rate when approaching the global optimum. The snake algorithm is a global optimization
algorithm that simulates the combat and mating behaviors of snakes to achieve optimization. In the combat
mode, male snakes compete to obtain the best female mate, while female snakes select the most suitable
male for mating (Su et al., 2022). The specific process of the snake optimization algorithm is shown in Fig. 6.
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Fig. 6 - Snake algorithm optimization flowchart

Construction of the Paddy Rice Porosity Prediction Model:

The paddy rice moisture content, paddy rice grain length, and grain bulk height, which are three factors
affecting porosity, are selected as input variables for the prediction model. The porosity of paddy rice serves
as the output variable, and the SO-SVR model is constructed for predicting paddy rice porosity.

In the SVR model, the penalty parameter C and gamma (the parameter of the radial basis function
(RBF) kernel) are the key parameters influencing its prediction performance. The snake optimization algorithm
generates N individuals randomly within the search space as the initial population for computation. The initial
population is set to 100, with a maximum iteration count of 50 and a search range between [-1, 1]. The snake
population X is divided into male snake group X,, and female snake group X The fitness value of each snake
individual is compared with its counterpart, and the individual with the lower fitness value is selected to form a
new population.

During the optimization iterations, the parameter values of C and gamma output in each iteration are
input into the SVR model. The Train function is then called to calculate the fitness, and the output error is used
as the fitness function, which is returned to the snake optimization for iterative optimization. This process
continues until the fithess function converges.

In each iteration, the SO algorithm produces a new set of C and gamma values. These new parameter
combinations are used to train the SVR model, with the prediction error serving as an indicator to assess its
performance. Based on the performance evaluation results, the combination of C and gamma that provides
the best performance for the SVR model is selected.

Model Accuracy Evaluation Metrics:
The coefficient of determination R’ and the root mean square error (RMSE) are used to evaluate the
accuracy of the neural network model (Qiu et al., 2023), as shown in Equations 9 and 10.

mXxiey)— Qx ‘Z}’i)z

R = MY x?— (X xi)2e(nyy? — (X yi)?)] (10)
RMSE = %Z(yi —x)? (1)
=1

where:
n is the number of prediction samples; y; is the actual value; x; is the predicted value.
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RESULTS
Orthogonal experiment results and analysis
Table 2
Quadratic regression orthogonal rotation combination experiment and results
Paddy rice Paddy rice Grain bulk Paddy rice
Number moisture content X4 grain length Xz height X3 porosity Y1
[%] [mm] [mm] [%]
1 -1 -1 0 48.37
2 1 -1 0 47.56
3 -1 1 0 48.55
4 1 1 0 47.88
5 -1 0 -1 49.32
6 1 0 -1 48.67
7 -1 0 1 46.91
8 1 0 1 46.18
9 0 -1 -1 49.17
10 0 1 -1 50.19
11 0 -1 1 47.19
12 0 1 1 47.35
13 0 0 0 48.12
14 0 0 0 47.96
15 0 0 0 47.93
16 0 0 0 47.94
17 0 0 0 47.92

The experimental results indicate that under the same conditions, the paddy rice moisture content,
paddy rice grain length, and grain bulk height all have an impact on the paddy rice porosity. The analysis of
the experimental results is shown in Table 3.

Table 3
Regression coefficient significance and ANOVA for paddy rice porosity model
Paddy rice porosity

Parameter [%]
Coefficient F-value P-value
Model 14.44 128.55 < 0.0001
X1 1.02 81.92 <0.0001
X2 0.3528 28.27 0.0001
X3 11.81 946.19 < 0.0001
X1 X2 0.0049 0.3926 0.5508
X1 X3 0.0016 0.1282 0.7309
X2 X3 0.1849 14.81 0.0063
X3 0.3652 29.26 0.0010
X3 0.7095 56.85 0.0001
X3 0.0345 2.76 0.1404
Residual Sum of Squares 0.0874
Pure Error Sum of Squares 0.0275
Coefficient of Determination R2 0.9940
Adjusted R? 0.9863
Predicted R? 0.9311
CV.% 0.2324

The p-value of the model is less than 0.01, indicating that the regression model for paddy rice porosity
is significant and statistically meaningful. The test result for the misfit terms is p=0.1652, which is not significant,
demonstrating that the regression equation has a good fit and practical relevance. After removing the
insignificant factors, the analysis of variance for porosity, shown in Table 3, presents the regression equation
for porosity based on the factor coding:

Y, = 62.27 + 0.43X; — 3.97X, + 0.001X5 — 0.001X,X; — 0.01X? + 0.24X2 (12)
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Response Surface Analysis

To further visualize and evaluate the influence of various factors on the response variable, Design-
Expert 13 software was employed to generate response surface plots. These plots were used to investigate
whether the interaction effects among paddy rice moisture content, paddy rice grain length, and grain bulk
height lead to significant variations in the porosity of paddy rice.

Fig. 7a illustrates the response surface depicting the interaction between paddy rice moisture content
and grain length on paddy rice porosity, under the condition of a grain bulk height of 200 mm. As shown in the
figure, porosity increases with grain length, suggesting that longer rice grains result in greater intergranular
space within the bulk. In contrast, porosity decreases with increasing moisture content, indicating a negative
correlation between moisture content and porosity.

Fig. 7b illustrates the response surface depicting the interaction between paddy rice moisture content
and grain bulk height on paddy rice porosity, under the condition of a grain length of 8.85 mm. As shown in the
figure, porosity decreases with increasing moisture content, indicating a negative correlation. Similarly, porosity
also declines as grain bulk height increases, and the influence of grain bulk height on porosity is observed to
be more pronounced than that of moisture content.

Fig. 7c illustrates the response surface depicting the interaction between paddy rice grain length and
grain bulk height on paddy rice porosity, under the condition of a moisture content of 18.93%. As shown in the
figure, porosity gradually decreases with increasing grain bulk height, when grain length is held constant.
Moreover, the influence of grain bulk height on porosity is observed to be more significant than that of grain length.
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Prediction Model Results Analysis

A total of 200 data sets were selected as the sample size, with 80% used for training and 20% for
testing. First, the training samples were divided into a training set and a testing set. The input and output
samples were then normalized, and the parameters were initialized.

The comparison of rice porosity predicted by the three algorithms for both the training and testing sets
is shown in Fig. 8. After training the model, the results were exported to the MATLAB workspace. The
simulation results of the three prediction models are presented in Table 4. The R? of the SO-SVR algorithm is
0.9913, and the RMSE is 0.0095. Compared to the SVR and BP algorithms, the R? increased by 0.0449 and
0.1102, respectively, while the RMSE decreased by 0.0867 and 0.1663.

Table 4
Simulation test results of three algorithms
Type R? RMSE
SO-SVR 0.9913 0.0095
SVR 0.9464 0.0962
BP 0.8811 0.1758

Simulation experiments were conducted for the three prediction models, and the analysis shows that
the SO-SVR algorithm demonstrates higher accuracy in predicting rice porosity compared to the SVR and BP
algorithms.
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Fig. 8 - Comparison between actual paddy rice porosity and predicted values from three algorithms
Model Validation

The rice porosity data collected from the experiment were compared and analyzed against the rice
porosity predictions made by the three algorithms. The maximum relative error and average relative error are
shown in Table 5.

732



Vol. 76, No. 2 / 2025 INMATEH - Agricultural Engineering

Table 5
Validation test results of three algorithms
Tvpe Maximum relative error Mean Relative Error
yp [%] [%]
SO-SVR 1.95 1.12
SVR 9.23 2.24
BP 14.62 4.36

The SO-SVR algorithm shows a reduction in the maximum relative error by 7.28% compared to SVR
and by 12.67% compared to BP. The average relative error is also lower by 3.24% compared to SVR and by
1.12% compared to BP. The error between the rice porosity predicted by the SO-SVR model and the actual
rice porosity is smaller, confirming the higher accuracy of the SO-SVR prediction model through experimental
validation.

CONCLUSIONS

This study proposes a method for measuring the porosity of paddy rice based on image detection
techniques. In the experiment, porosity was determined using an image-based approach, and the results were
compared with those obtained from a theoretical method to verify the measurement accuracy. Furthermore, a
paddy rice porosity prediction model based on SO-SVR was developed. The SO was used to identify the
optimal combination of SVR hyperparameters C and gamma, which were then input into the SVR model to
minimize prediction error. The optimal values of C and gamma were found to be 4.00 and 3.99, respectively.

Simulation experiments for three rice porosity prediction models were conducted using MATLAB, with
a total of 200 data sets selected as the sample size, 80% for training and 20% for testing. The coefficient of
determination for SO-SVR was 0.9913, and the root mean square error was 0.0095. The iteration speed and
prediction accuracy of the SO-SVR model were superior to those of the SVR and BP algorithms. The results
of simulation experiments demonstrate that the SO-SVR-based model provides high accuracy in predicting
paddy rice porosity.

Validation experiments were conducted for the three prediction models during the mixed flow drying
process. The maximum relative error of the SO-SVR-based prediction model was 1.95%, and the average
relative error was 1.12%, both of which were lower than those of the SVR and BP algorithms. The experimental
results confirmed the accuracy of the SO-SVR-based rice porosity prediction model during the drying process,
showing a good fit with the actual values and a small error. The predictive model proposed in this study enables
estimation of paddy rice porosity and rapid assessment of drying degree throughout the drying process. It
provides an effective means for monitoring drying performance, reducing energy waste, and optimizing drying
operations, thereby improving overall energy efficiency.
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