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ABSTRACT 

During the paddy rice drying process, the uneven spatial distribution of pore spaces within drying 

chambers poses a significant challenge to accurate porosity characterization and results in inefficient 

energy utilization. To address this issue, this study proposes a porosity prediction model based on 

Support Vector Regression (SVR), aimed at effectively monitoring porosity variations during drying and 

enhancing energy efficiency. Using MATLAB based image processing, the porosity of paddy rice was 

quantitatively extracted. A Response Surface Methodology (RSM) was then employed to analyze the 

influence of geometric characteristics, moisture content, and grain bulk height on porosity during drying. 

To further improve the predictive performance, the SVR model was optimized using the Snake Optimizer 

(SO) algorithm. The resulting SO-SVR model was evaluated against porosity values derived from image 

analysis. Experimental results demonstrate that the SO-SVR model achieves high accuracy, with a Root 

Mean Square Error (RMSE) of 0.0095 and a coefficient of determination (R²) of 0.9913. Compared to 

standard SVR and BP neural network models, the proposed model reduces RMSE by 0.0867 and 0.1663, 

and increases R² by 0.0449 and 0.1102, respectively. These findings indicate that the SO-SVR model 

provides a reliable and efficient approach for predicting paddy rice porosity during drying, offering 

valuable support for energy-saving and intelligent drying system design. 

 

摘要 

针对稻谷干燥过程中，干燥机内稻谷孔隙空间分布不均难以精准解析进而影响稻谷的干燥能耗的问题，建立一

种基于支持向量回归（SVR）的稻谷孔隙率预测模型，高效检测稻谷干燥过程中孔隙率的变化，以达到节能效

果。本文用 MATLAB 对稻谷图像处理得出稻谷孔隙率，用响应面（RSM）分析稻谷几何参数、含水率、粮堆厚

度在稻谷干燥过程中对孔隙率的影响程度，利用蛇算法（SO）对支持向量回归（SVR）模型进行优化，建立稻

谷孔隙率预测模型，并与基于图像处理后的稻谷孔隙率进行分析对比。结果表明： SO-SVR 模型的均方根误差

（RMSE）为 0.0095、决定系数（R2）为 0.9913，相对于 SVR 和 BP 算法的 RMSE降低了 0.0867 和 0.1663；R2

提升了 0.0449 和 0.1102。实验数据表明该模型的预测误差较小，具有更高的准确性，可以有效预测稻谷在干

燥过程的孔隙率。 

 

INTRODUCTION 

Grain security is a cornerstone of national economic stability and social development. Ensuring food 

security not only provides a solid foundation for stable economic development but also serves as a key factor 

in maintaining social stability and strengthening national security (Fujimori et al., 2019). According to data from 

the National Bureau of Statistics, China’s total grain output reached 713 million tons in 2024, marking a 1.6% 

year-on-year increase, with rice accounting for 29.38% of the total grain production. To ensure rice quality, 

post-harvest high-moisture rice must undergo drying treatment. Porosity is one of the key parameters for 

understanding the drying process and energy consumption of rice (Che et al., 2017). During the drying process, 

porosity directly affects ventilation resistance, heat and moisture transfer coefficients, and the adjustment of drying 

process parameters (Tong et al., 2023), thereby influencing energy consumption, drying efficiency, and cost (Oliveros 

et al., 2017). Therefore, accurate detection of paddy rice porosity during drying is of great significance.  
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However, in practical production operations, there has been a lack of predictive research on paddy rice 

porosity, particularly in mixed-flow drying systems. 

Currently, Moya conducted consolidation tests on paddy rice using a direct measurement method with 

an oedometer, and based on the experimental data, identified the relationship between porosity and vertical 

pressure (Moya et al., 2013). Martynenko through systematic experimental studies and theoretical analysis, 

established a relationship between moisture content and porosity, enabling the quantitative characterization of 

porous media structure parameters (Martynenko et al., 2008). Neethirajan employed computed tomography 

(CT) imaging technology to visualize the granular structures of wheat and pea seeds, calculating the spatial 

distribution of porosity and other features within the 3D images, including the degree of axial distortion and 

throat surface area (Neethirajan et al., 2008). Khalili proposed a mathematical model describing the 

relationship between porosity and bulk layer thickness based on experimental data (Khalili et al., 2014). 

Domestic scholars (Chen et al., 2019) have demonstrated, through both theoretical analysis and experimental 

validation, that porosity is influenced by the thickness of the material layer. Tang Fuyuan used an indirect gas 

displacement method to determine the porosity of paddy rice, analyzing density variations at different depths 

and establishing a mathematical model for porosity distribution in silo-stored rice (Tang et al., 2017). Cheno   

measured the permeability of two types of sandstone under varying confining pressures and determined their 

porosity using mercury intrusion porosimeters (MIP). By comparing the 3D geometrical structures of the pore 

spaces and flow-relevant pore characteristics, the study established a relationship between the differences in 

permeability and the porosity of the two sandstones (Cheno et al., 2021). Additionally, Ge Mengmeng 

combined the direct measurement method with liquid infiltration techniques to construct a quantitative model 

of porosity variation under different pressures. Their research further elucidated the relationship between bulk 

pressure and density, and analyzed the porosity and density distribution characteristics of rice stacks in flat 

warehouses (Ge et al., 2021). Despite significant progress made by researchers at home and abroad in the 

study of grain porosity, analytical methods currently in use often involve complex procedures and are time-

intensive, thereby hindering their applicability and promotion in engineering practice. 

In this study, a direct measurement method is employed to calculate paddy rice porosity based on 

surface images of rice stacks with varying height, using digital image processing techniques. The Design-

Expert 13 software is utilized to analyze the influence of geometric parameters, moisture content, and stack 

height on porosity. Response Surface Methodology is further applied to evaluate and compare the variation in 

porosity under different influencing factors. A paddy rice porosity prediction model is then developed based on 

Support Vector Regression optimized by the Snake Algorithm. This model enables prediction of porosity during 

the rice drying process and provides key parameters for post-harvest drying and storage analysis of rice. 

 

 

MATERIALS AND METHODS 

 

Materials 

The test material was the Songjing No. 16 rice variety, cultivated in Heilongjiang Province. After 

impurity removal, well-developed and uniformly shaped grains were selected for the experiment. The moisture 

content of the paddy rice was 2%, and the average grain length, based on measurements from 200 

representative kernels, was 9.02 mm. 

 

Mixed-Flow Paddy Drying Rice Experimental Apparatus 

This study employed a self-developed bidirectional-ventilation mixed-flow paddy rice drying 

experimental platform. The overall structure of the mixed-flow dryer is illustrated in Fig. 1. Gravity-fed rice 

circulation is achieved through a free-flow feeding mechanism. Flow rate control valves are used to adjust the 

feeding speed, aligning it with the drying intensity to prevent uneven drying caused by excessively fast or slow 

grain flow. In the dryer, each drying unit comprises a layer of angular inlet ducts and a layer of angular outlet 

ducts, arranged in a vertically intersecting manner. The angular inlet ducts supply hot air from both sides, 

forming a mixed-flow drying pattern, while the outlet ducts vent the exhaust air unilaterally. This cross-layer 

configuration modifies the airflow path of paddy rice during drying, enabling effective balancing of wind 

pressure, air velocity, and temperature. Such a structural design improves the uniformity of the cyclic drying 

process. 
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Fig. 1 - Mixed-flow paddy rice drying experimental device 

1. Mixed flow rice dryer; 2. Temperature and humidity sensor; 3. Air inlet pipeline; 4. Grain discharge motor; 

5. Unloading device; 6. Control system cabinet; 7. Mixing pipeline; 8. Mixing device; 9. Hot air pipeline;  

10. Electric heating control cabinet 

 

The drying section process is shown in Fig. 2. In the drying operation, wet paddy rice is loaded into 

the dryer through the top inlet and gradually flows downward by gravity until the chamber is filled. The rice 

sequentially passes through the tempering-drying section, preheating-drying section, mixed-flow drying section, 

and discharge-drying section, initiating the cyclic drying process. Hot air ducts are connected on both sides of 

the drying sections. After setting the fan frequency and hot air temperature, heated air is supplied to the system 

via electric heaters and fans. A hot air mixing unit regulates the air temperature to ensure stable heat supply 

throughout the drying system.  

Fig. 2 - Mixed-Flow paddy rice drying process diagram 

 

Additional Measurement Instruments 

PM-8188New grain moisture tester; Canon EOS 5D Mark II; micrometer with a precision of 0.01 mm, 

and a measuring tape. 

 

Data Collection Method 

Paddy rice with an initial moisture content of 23.41% was dried to different target moisture levels. A 

moisture analyzer was used to measure the moisture content of each sample. Individual rice grains were 

randomly selected, and their lengths (L) were measured using a micrometer with a precision of 0.01 mm. For 

each group, the average length was calculated based on measurements of 100 intact grains. To simulate the 

pressure conditions within grain storage silos, incremental loads ranging from 0 to 200 kPa were applied to 
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the rice in the test container. The pressure applied to the grain bulk height was calculated using the hydrostatic 

pressure equation, as shown in Equation 1, this corresponded to adding 0-12 kg of rice incrementally.  

A measuring tape was used to record the resulting grain pile height within the container. In total, 200 

groups of data were collected, including measurements of moisture content, grain length, and grain bulk height, 

for use in subsequent analysis (Prasad et al., 1973). 

 

 𝑃 = 𝜌𝑔ℎ (1) 

where:  

P is the pressure, [Pa];  

ρ is the density of paddy rice, [kg/m³];  

g is the gravitational acceleration, [m/s²];  

h is the grain bulk height, [m] 
 

Porosity Measurement Method 

To capture digital images of the grain bulk, a transparent glass test box was employed, featuring an 

embedded lid made of the same material. The internal dimensions of the box were 300 mm * 200 mm * 400 

mm (length * width * height). The shortest dimension of the test container is 200 mm, which is over ten times 

greater than the average grain length of paddy rice (9.02 mm), thereby fully satisfying the spatial requirements 

for pressure testing (Bian et al., 2021). A Canon digital camera was used for image acquisition. Distortion 

correction was performed using the MathWorks calibration toolbox. For image segmentation, various 

thresholding algorithms were compared, and edge-based threshold segmentation was conducted using 

MATLAB to distinguish the target from the background, the grayscale image and the binarized image were 

obtained, as illustrated in Fig. 3. Morphological optimization was subsequently applied to the binarized image. 
Each grain was labeled based on the position of its pixel centroid, and the scaling factor of the imaging system 

was determined by correlating the pixel area to the actual physical area. Using this factor, the porosity of the 

paddy rice was calculated. To simulate pressure conditions within a rice silo, different weights of paddy rice 

were incrementally added to the box, and images were captured after each addition to determine the porosity 

under varying pressure levels. 

 

a) The grayscale image                         b) The binarized image 

Fig. 3 - The processed images of paddy rice  

 

The porosity formula for paddy rice in their natural piled state is shown in Equation 2. The smaller the 

difference between the porosity value obtained through image processing and the one from the formula, the 

higher the accuracy, as illustrated in Fig. 4. 

𝜀 = (1 −
𝜌𝑏

𝜌𝑤
) × 100%                                 (2) 

where:  

ε - the porosity, [%];  

ρb is the initial density of a paddy rice unit, [kg/m³];  

ρw - the density of rice particles, [kg/m³] 
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Fig. 4 - Fitting of porosity obtained after image processing to true values 

 

Experimental Procedure 

The rice drying experiment was conducted at the Intelligent Agricultural Machinery Equipment 

Laboratory of Heilongjiang Bayi Agricultural University. To simulate the actual conditions of rice after harvest, 

the paddy rice underwent moisture adjustment treatment, followed by sealed storage for a period of time and 

subsequent water spraying. After ensuring the rice absorbed enough moisture, the required rice samples for 

the experiment were obtained (Chen et al., 2022). First, the heat exchanger and fan were activated and allowed 

to stabilize before loading the rice. The drying process then began, with the dryer completing one cycle every 

20 minutes based on real-time operating conditions. During both the early and late stages of the rice drying 

process, porosity measurements were taken at intervals of 20 minutes and 10 minutes, respectively, and 

compared with the predicted model. If the fit was satisfactory, the operating efficiency of the heat exchanger 

and fan was reduced to achieve energy savings. The experiment was then concluded. 
 

Data Preprocessing 

To mitigate the impact of differences between feature values on the prediction model, the mapminmax 

function (Liang et al., 2019) was used to normalize the feature data, thereby ensuring the stability of the model’s 

numerical values. The normalization formula is given by Equation 3. 
 

𝑦 =
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) × (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛

 
(3) 

where: 

xmax is the maximum value in the original feature data;  

xmin is the minimum value in the original feature data;  

ymax is the maximum value after normalization, set to 1;  

ymin is the minimum value after normalization, set to 0. 
 

Orthogonal Experiment Design 
The paddy rice moisture content, paddy rice grain length, and grain bulk height were selected as 

experimental factors, with paddy rice porosity set as the evaluation criterion. The experiment employed a three-

factor, three-level quadratic regression orthogonal rotational combination design to analyze the effects of 

paddy rice moisture content, paddy rice grain length, and grain bulk height on paddy rice porosity and to 

construct a regression model. The factor level coding table is shown in Table 1.  

Table 1 

Encoding of orthogonal experimental factors 

Serial 

Number 

Encoding  

value 

Paddy rice  

moisture content X1 

[%] 

Paddy rice  

grain length X2 

[mm] 

Grain bulk  

height X3 

[mm] 

（+1） +1 23.41 10.16 350 

（0） 0 18.93 8.85 200 

（-1） -1 14.45 7.54 50 
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Development of the Prediction Model 
SVR Model 

The SVR model is trained using the training set T= {(x1, y1), …, (xn, yn)}, they correspond to the 

input vector and output value of the sample, respectively. During the training process, SVR utilizes a nonlinear 

mapping ϕ(x) to map the training set from a low-dimensional space to a high-dimensional space (Jin et al., 

2024; Yang, 2023; Cui, 2023). The expression of this process is shown in equation 4. A schematic diagram of 

the SVR prediction model is shown in Fig. 5. 

 𝑓(𝑥) = 𝜔∅(𝑥) + 𝑏 (4) 

where: ω is the weight; b is the bias. 

Fig. 5 - SVR prediction schematic diagram 

 

The process of solving the SVR based on the principle of Structural Risk Minimization (SRM) can be 

represented as solving a constrained optimization problem, as shown in the following equation: 

 

𝑚𝑖𝑛
𝜔,𝑏

1

2
||𝜔||2 + 𝐶 ∑(𝜉𝑖

𝛬 + 𝜉𝑖
𝑉)

𝑁

𝑖=1

 

 

(5) 

 𝑠. 𝑡. −(𝑘 + 𝜉𝑖
𝑉) ≤ 𝑦𝑖 − (𝜔𝑥𝑖 + 𝑏) ≤ 𝑘 + 𝜉𝑖

𝛬 (6) 

 𝜉𝑖
𝛬 ≥ 0，𝑖 = 1,2,⋅⋅⋅, 𝑁 (7) 

 𝜉𝑖
𝑉 ≥ 0，𝑖 = 1,2,⋅⋅⋅, 𝑁 (8) 

where:  

C is the penalty parameter, which regulates the complexity of the sample regression model and the 

fitting accuracy;  

ξ
Λ 

i  is the upper-bound slack variable;  

ξ
V 

i  is the lower-bound slack variable;  

k is the insensitive loss factor. 

 

By introducing the Lagrange multiplier operator and the duality principle, the optimal Lagrange multiplier 

parameters a* and aV* are obtained through the Sequential Minimal Optimization (SMO) algorithm.  

By incorporating the kernel function, the nonlinear mapping expression for the SVR is derived as: 

 * V*( ) ( ) ( ) ( )
N

i i i

i

f x x b K x x  = + = − ,

 
(9) 

where: K ( xi , x ) = (xi)(x) is the kernel function. 

 

S0 Algorithm 

Snake optimization, as a search strategy, effectively avoids getting trapped in local optima and exhibits 

a fast convergence rate when approaching the global optimum. The snake algorithm is a global optimization 

algorithm that simulates the combat and mating behaviors of snakes to achieve optimization. In the combat 

mode, male snakes compete to obtain the best female mate, while female snakes select the most suitable 

male for mating (Su et al., 2022). The specific process of the snake optimization algorithm is shown in Fig. 6. 
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Fig. 6 - Snake algorithm optimization flowchart 

 

Construction of the Paddy Rice Porosity Prediction Model: 

The paddy rice moisture content, paddy rice grain length, and grain bulk height, which are three factors 

affecting porosity, are selected as input variables for the prediction model. The porosity of paddy rice serves 

as the output variable, and the SO-SVR model is constructed for predicting paddy rice porosity. 

In the SVR model, the penalty parameter C and gamma (the parameter of the radial basis function 

(RBF) kernel) are the key parameters influencing its prediction performance. The snake optimization algorithm 

generates N individuals randomly within the search space as the initial population for computation. The initial 

population is set to 100, with a maximum iteration count of 50 and a search range between [-1, 1]. The snake 

population X is divided into male snake group Xm and female snake group Xf. The fitness value of each snake 

individual is compared with its counterpart, and the individual with the lower fitness value is selected to form a 

new population. 

During the optimization iterations, the parameter values of C and gamma output in each iteration are 

input into the SVR model. The Train function is then called to calculate the fitness, and the output error is used 

as the fitness function, which is returned to the snake optimization for iterative optimization. This process 

continues until the fitness function converges. 

In each iteration, the SO algorithm produces a new set of C and gamma values. These new parameter 

combinations are used to train the SVR model, with the prediction error serving as an indicator to assess its 

performance. Based on the performance evaluation results, the combination of C and gamma that provides 

the best performance for the SVR model is selected. 
 

Model Accuracy Evaluation Metrics: 

The coefficient of determination R2 and the root mean square error (RMSE) are used to evaluate the 

accuracy of the neural network model (Qiu et al., 2023), as shown in Equations 9 and 10. 

 
𝑅2 =

(𝑛 ∑ 𝑥𝑖 • 𝑦𝑖) − (∑ 𝑥𝑖 • ∑ 𝑦𝑖)
2

[𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2 • (𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2)]
 (10) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 (11) 

where:  

n is the number of prediction samples; yi is the actual value; xi is the predicted value. 
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RESULTS 

Orthogonal experiment results and analysis 
Table 2 

Quadratic regression orthogonal rotation combination experiment and results 

Number 
Paddy rice  

moisture content X1 

[%] 

Paddy rice  

grain length X2 

[mm]  

Grain bulk  

height X3 

[mm]  

Paddy rice  

porosity Y1 

[%] 

1 -1 -1 0 48.37  

2 1 -1 0 47.56  

3 -1 1 0 48.55  

4 1 1 0 47.88  

5 -1 0 -1 49.32  

6 1 0 -1 48.67  

7 -1 0 1 46.91  

8 1 0 1 46.18  

9 0 -1 -1 49.17  

10 0 1 -1 50.19  

11 0 -1 1 47.19  

12 0 1 1 47.35  

13 0 0 0 48.12  

14 0 0 0 47.96  

15 0 0 0 47.93  

16 0 0 0 47.94  

17 0 0 0 47.92  

 

 

The experimental results indicate that under the same conditions, the paddy rice moisture content, 

paddy rice grain length, and grain bulk height all have an impact on the paddy rice porosity. The analysis of 

the experimental results is shown in Table 3. 

Table 3 

Regression coefficient significance and ANOVA for paddy rice porosity model 

Parameter 

Paddy rice porosity  

[%] 

Coefficient F-value P-value 

Model 14.44 128.55 < 0.0001 

X1 1.02 81.92 < 0.0001 

X2 0.3528 28.27 0.0001 

X3 11.81 946.19 < 0.0001 

X1 X2 0.0049 0.3926 0.5508 

X1 X3 0.0016 0.1282 0.7309 

X2 X3 0.1849 14.81 0.0063 

X 
2 
1  0.3652 29.26 0.0010 

X2 
2  0.7095 56.85 0.0001 

X2 
3  0.0345 2.76 0.1404 

Residual Sum of Squares 0.0874 

Pure Error Sum of Squares 0.0275 

Coefficient of Determination R2 0.9940 

Adjusted R² 0.9863 

Predicted R² 0.9311 

C.V.% 0.2324 

 

The p-value of the model is less than 0.01, indicating that the regression model for paddy rice porosity 

is significant and statistically meaningful. The test result for the misfit terms is p=0.1652, which is not significant, 

demonstrating that the regression equation has a good fit and practical relevance. After removing the 

insignificant factors, the analysis of variance for porosity, shown in Table 3, presents the regression equation 

for porosity based on the factor coding: 

 

  𝑌1 = 62.27 + 0.43𝑋1 − 3.97𝑋2 + 0.001𝑋3 − 0.001𝑋2𝑋3 − 0.01𝑋1
2 + 0.24𝑋2

2 (12) 
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Response Surface Analysis 

To further visualize and evaluate the influence of various factors on the response variable, Design-

Expert 13 software was employed to generate response surface plots. These plots were used to investigate 

whether the interaction effects among paddy rice moisture content, paddy rice grain length, and grain bulk 

height lead to significant variations in the porosity of paddy rice. 

Fig. 7a illustrates the response surface depicting the interaction between paddy rice moisture content 

and grain length on paddy rice porosity, under the condition of a grain bulk height of 200 mm. As shown in the 

figure, porosity increases with grain length, suggesting that longer rice grains result in greater intergranular 

space within the bulk. In contrast, porosity decreases with increasing moisture content, indicating a negative 

correlation between moisture content and porosity. 

Fig. 7b illustrates the response surface depicting the interaction between paddy rice moisture content 

and grain bulk height on paddy rice porosity, under the condition of a grain length of 8.85 mm. As shown in the 

figure, porosity decreases with increasing moisture content, indicating a negative correlation. Similarly, porosity 

also declines as grain bulk height increases, and the influence of grain bulk height on porosity is observed to 

be more pronounced than that of moisture content. 

Fig. 7c illustrates the response surface depicting the interaction between paddy rice grain length and 

grain bulk height on paddy rice porosity, under the condition of a moisture content of 18.93%. As shown in the 

figure, porosity gradually decreases with increasing grain bulk height, when grain length is held constant. 

Moreover, the influence of grain bulk height on porosity is observed to be more significant than that of grain length. 
 

a) The effects of moisture content and grain length on 

the porosity of paddy rice 

 

b) Contour plot showing the effects of moisture content 

and grain length on the porosity paddy rice 

           

 
c) The effects of moisture content and grain bulk height 

on the porosity of paddy rice 

 
d) Contour plot showing the effects of moisture content 

and grain bulk height on the porosity of paddy rice 
 

 
e) The effects of grain length and grain bulk height on 

the porosity of paddy rice 

 
f) Contour plot showing the effects of grain length and 

grain bulk height on the porosity of paddy rice 

Fig. 7 - Effects of moisture content, grain length, and bulk height on paddy rice porosity 
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Prediction Model Results Analysis 

A total of 200 data sets were selected as the sample size, with 80% used for training and 20% for 

testing. First, the training samples were divided into a training set and a testing set. The input and output 

samples were then normalized, and the parameters were initialized. 

The comparison of rice porosity predicted by the three algorithms for both the training and testing sets 

is shown in Fig. 8. After training the model, the results were exported to the MATLAB workspace. The 

simulation results of the three prediction models are presented in Table 4. The R² of the SO-SVR algorithm is 

0.9913, and the RMSE is 0.0095. Compared to the SVR and BP algorithms, the R² increased by 0.0449 and 

0.1102, respectively, while the RMSE decreased by 0.0867 and 0.1663. 

Table 4 

Simulation test results of three algorithms 

Type R2 RMSE 

SO-SVR 0.9913 0.0095  

SVR 0.9464 0.0962 

BP 0.8811 0.1758 

 

Simulation experiments were conducted for the three prediction models, and the analysis shows that 

the SO-SVR algorithm demonstrates higher accuracy in predicting rice porosity compared to the SVR and BP 

algorithms. 

 

a) SO-SVR algorithm 

 

 

                 b) SVR algorithm                                       c) BP algorithm 

Fig. 8 - Comparison between actual paddy rice porosity and predicted values from three algorithms 

 

 

Model Validation 

The rice porosity data collected from the experiment were compared and analyzed against the rice 

porosity predictions made by the three algorithms. The maximum relative error and average relative error are 

shown in Table 5. 
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Table 5 

Validation test results of three algorithms 

Type 
Maximum relative error  

[%] 

Mean Relative Error  

[%] 

SO-SVR 1.95 1.12 

SVR 9.23 2.24 

BP 14.62 4.36 

 

The SO-SVR algorithm shows a reduction in the maximum relative error by 7.28% compared to SVR 

and by 12.67% compared to BP. The average relative error is also lower by 3.24% compared to SVR and by 

1.12% compared to BP. The error between the rice porosity predicted by the SO-SVR model and the actual 

rice porosity is smaller, confirming the higher accuracy of the SO-SVR prediction model through experimental 

validation. 

 

CONCLUSIONS 

This study proposes a method for measuring the porosity of paddy rice based on image detection 

techniques. In the experiment, porosity was determined using an image-based approach, and the results were 

compared with those obtained from a theoretical method to verify the measurement accuracy. Furthermore, a 

paddy rice porosity prediction model based on SO-SVR was developed. The SO was used to identify the 

optimal combination of SVR hyperparameters C and gamma, which were then input into the SVR model to 

minimize prediction error. The optimal values of C and gamma were found to be 4.00 and 3.99, respectively. 

Simulation experiments for three rice porosity prediction models were conducted using MATLAB, with 

a total of 200 data sets selected as the sample size, 80% for training and 20% for testing. The coefficient of 

determination for SO-SVR was 0.9913, and the root mean square error was 0.0095. The iteration speed and 

prediction accuracy of the SO-SVR model were superior to those of the SVR and BP algorithms. The results 

of simulation experiments demonstrate that the SO-SVR-based model provides high accuracy in predicting 

paddy rice porosity.  

Validation experiments were conducted for the three prediction models during the mixed flow drying 

process. The maximum relative error of the SO-SVR-based prediction model was 1.95%, and the average 

relative error was 1.12%, both of which were lower than those of the SVR and BP algorithms. The experimental 

results confirmed the accuracy of the SO-SVR-based rice porosity prediction model during the drying process, 

showing a good fit with the actual values and a small error. The predictive model proposed in this study enables 

estimation of paddy rice porosity and rapid assessment of drying degree throughout the drying process. It 

provides an effective means for monitoring drying performance, reducing energy waste, and optimizing drying 

operations, thereby improving overall energy efficiency. 
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