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ABSTRACT  

As an economic crop of Rosaceae family, strawberry has the advantages of short reproductive cycle, wide 

ecological adaptability and significant economic benefits, and its planting industry has been rapidly developed 

in recent years. Aiming at the low efficiency and high labor cost of traditional manual picking detection methods 

in the intelligent transformation of strawberry industry, this study innovatively proposes a strawberry fruit 

intelligent detection system based on YOLOV8N. By introducing RFAConv dynamic sensory field convolution, 

SENet channel attention mechanism and InceptionNeXt lightweight structure, combined with Wise-IoU loss 

function and DIoU-NMS post-processing algorithm, the synergistic enhancement of detection accuracy and 

computational efficiency is realized. The ablation experiments show that the improved model has a precision 

rate of 95.92%, a recall rate of 95.45%, and a mAP50 of 98.29% on the strawberry dataset, which are 4.14%, 

3.31%, and 1.55% higher than that of the baseline model, respectively, while the number of model parameters 

is compressed to 5.17 M (a reduction of 12.96%). This research can provide technical support for intelligent 

strawberry picking. 

 

摘要 

草莓作为蔷薇科经济作物，具有生育周期短、生态适应性广及经济效益显著等优势，其种植产业近年来得到了

快速发展。本研究针对草莓产业智能化转型中传统人工采摘检测方法存在的效率低下、人工成本高等痛点，创

新性提出一种基于 YOLOV8N的草莓果实智能检测系统。通过引入 RFAConv动态感受野卷积、SENet通道注

意力机制及 InceptionNeXt 轻量化结构，结合 Wise-IoU 损失函数与 DIoU-NMS 后处理算法，实现了检测精度

与计算效率的协同提升。消融实验表明，改进后模型在草莓数据集上精确率达 95.92%、召回率为 95.45%、

mAP50 达 98.29%，较基线模型分别提升 4.14%、3.31%和 1.55%，同时模型参数量压缩至 5.17M（减少

12.96%），该研究可为草莓智能化采摘提供技术支持。 

 

INTRODUCTION 

As a Rosaceae cash crop, strawberry has become the preferred crop for facility agriculture by virtue of 

its short reproductive cycle, wide ecological adaptability and significant economic benefits. Its fruit is generally 

small and dense. Dense canopy structure is easy to cause visual masking, coupled with the maturity gradient 

distribution phenomenon, resulting in the traditional artificial observation and picking both time-consuming and 

laborious, significantly increasing the difficulty of selective harvesting. Nowadays, the level of intelligence in 

China's strawberry industry is constantly improving, and the development of a high-precision fruit ripeness 

detection algorithm can not only accurately find out the distribution area of fruits with different ripeness levels, 

but also monitor and optimize the picking process. 

With the iterative upgrading of computer vision technology, many innovative research results have 

emerged in the field of agricultural target detection, providing important technical support for intelligent crop 

management. In the direction of fruit multi-category recognition, Wan et al., (2021) constructed a multi-spectral 

visual analysis system based on the optimization of Faster R-CNN architecture, which effectively solved the 

feature confusion problem of apple, pear and peach fruits under the complex background of the orchard by 

reconfiguring the parameter distribution of the convolution kernel with the improvement of the downsampling 

strategy.  
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The experimental data show that the classification performance of the model for the above fruits reaches 

92.51%, 88.94%, and 90.73%, respectively, and the overall mean average precision (mAP) is improved to 

90.72%, which validates the generalization ability of deep networks in cross-species recognition tasks.  

Notably, Sharma et al., (2022), developed a pineapple maturity analysis model based on the YOLOv5 

framework for tropical crop characteristics, and constructed a three-stage discrimination system containing the 

green ripening stage, the color-turning stage, and the complete ripening stage by integrating spectral 

reflectance features and morphological parameters, and the classification accuracy of the final ripening stage 

discrimination exceeded 95%, which provided a new paradigm for the intelligent assessment of fruit quality.  

In terms of feature enhancement technology path, Lu et al., (2021), researchers designed an attention-

guided multi-scale feature fusion mechanism, which significantly improved the spatial localization accuracy of 

small-scale fruits by implementing cross-layer semantic enhancement to the shallow feature map of SSD 

network. The improved model mAP metrics improve by 29.2 percentage points from the baseline, especially 

the leakage rate in the fruit-dense region decreases by 18.6%, demonstrating excellent scene adaptability.  

As for mobile deployment, the MobileNet lightweight architecture proposed by Howard et al., (2019), 

pioneered the use of depth-separable convolution instead of standard convolution operation, and compressed 

the model computation to about one-eighth of the traditional network by decoupling the feature learning 

process between the channel dimension and the spatial dimension, laying down a basic engineering 

framework for the development of embedded vision systems for orchard inspection UAVs.  

The improved YOLOv5 model developed by Peng et al., (2014) introduces the Ghost module to 

reconfigure the feature extraction backbone network, combines the coordinate attention mechanism to 

strengthen the feature response in the key regions of the fruit, and also uses the SIoU loss function to optimize 

the bounding box regression process. After testing, the scheme achieves 94.8% mAP for strawberry target 

detection, the model volume is reduced to 67% of the original structure, and a real-time processing capability 

of 23.6 frames per second (FPS) is realized on the Jetson Nano embedded platform. These technological 

breakthroughs not only validate the application potential of the lightweight model in agricultural scenarios, but 

also provide key algorithmic components for the construction of a "cloud-edge-end" synergistic smart 

agriculture sensing system (Elsayed et al., 2024; Hu et al., 2018; Hosna et al., 2022; Li et al., 2020). 

In this paper, a multi-source heterogeneous dataset for strawberry fruit detection under varying ripeness 

levels, lighting conditions, and complex backgrounds is first constructed, and a complete deep learning 

research framework is established. In the backbone network, RFAConv is used to replace the standard 

convolutional Conv to improve the performance of the network; the SENet attention mechanism is introduced 

to strengthen the learning ability of the backbone network on the color and shape features of strawberries, and 

at the same time, the design of the decoupling head is optimized to better adapt to the needs of classification 

and regression tasks. The InceptionNeXt neural network structure is introduced as the feature extraction 

network, and the convolution in Bottleneck in the Cf2 module of the neck network is replaced with the 

InceptionNeXt convolution, which effectively reduces the amount of computation. During the training process, 

the Wise-IoU loss function with dynamic nonmonotonic focusing mechanism is used to address the impact of 

low-quality samples on model performance in the target detection task. In the post-processing stage, DIoU-

NMS is used to replace the traditional NMS algorithm to reduce the false deletion of overlapping target frames. 

 

 

MATERIALS AND METHODS 

Data Acquisition and Pre-processing 

The data used in this study are mainly derived from online public data and strawberry garden collection 

data. This online public dataset was captured inside a greenhouse and contains 3,500 images. The advantage 

of strawberry orchard collection data is that these data reflect the actual farmland environment and crop growth 

conditions, with the advantage of authenticity and credibility.  

The image acquisition device is the camera that comes with the Xiaomi 14 cell phone, and the effective 

pixel of the camera is 50 million. The shooting test data were images of strawberries with different growth 

cycles, such as front, side and shade, which were taken on February 4, 2024.  

 

Figure 1 shows the strawberry image dataset.                                                         
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Fig. 1 – Example graph of the strawberry dataset 

 

In order to increase the speed of model training, the collected raw images are preprocessed with 

uniformity. At the same time, 500 typical samples were selected from a database of 3,500 annotated samples 

using a stratified random sampling method to implement a data augmentation strategy, and the dataset was 

expanded by pre-processing the images by rotating, panning, mirroring and adding noise. After augmentation, 

the total number of images increased to 5,500, with the enhanced portion contributing 2,000 images. The 

dataset contains 24619 labeled strawberry objects, including 19162 unripe strawberries, 4364 semi-ripe 

strawberries, and 5021 ripe strawberries. The statistical data are shown in Figure 2.  

 
Fig. 2 – Strawberry fruit ripening statistics 

 

The dataset was divided into training, validation and test sets according to the ratio of 8:1:1, i.e., 4400 

images for the training set and 550 images each for the validation and test sets. 

 

YOLOv8 Network Architecture 

YOLOv8, an integrated and enhanced iteration of the YOLO series, incorporates a core feature of an 

anchor-free detection mechanism. This mechanism directly predicts the center position of the target without 

reliance on predefined anchor boxes, thereby simplifying the training process and accelerating the post-

processing steps of non-maximum suppression (NMS). Depending on the depth and width of the network, 

different versions of YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x are used. Although the overall 

architecture of these models remains consistent, the number of modules and the configuration of the 

convolutional layers within each version differ significantly when implementing the network training process 

(Vaswani et al., 2017; Wang et al., 2024; Zhu et al., 2024).  
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This difference mainly stems from considerations of model size, complexity, total number of parameters, 

computational burden, and training methods. By adjusting these factors, different versions of YOLOv8 are able 

to strike a unique balance between performance and computational resource consumption. The comparison 

data of different versions for detection on the public dataset COCO are shown in Table 1. In this study, 

YOLOv8n, which has a smaller weight file, faster inference speed, and is suitable for deployment to edge 

devices, is chosen as the base network. 

Table 1 
 

Comparison of data of different versions of YOLOv8 

Mold Depth Width Px mAP M B 

YOLOv8n 0.33 0.25 640 37.3 3.2 8.7 

YOLOv8s 0.33 0.5 640 44.9 11.2 28.6 

YOLOv8m 0.67 0.75 640 50.2 25.9 78.9 

YOLOv8l 1.0 1.0 640 52.9 43.7 165.2 

YOLOv8x 1.0 1.25 640 53.9 68.2 257.8 

 

The structure of YOLOv8 consists of a backbone network, a neck network, and a predictive head 

network as shown in Figure 3. 

 
Fig. 3 – YOLOv8 network structure diagram 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

 

 701  

Study of Improved YOLOv8n Algorithm 

For the strawberry fruit detection task, this study proposes a strawberry fruit detection method based on 

improved YOLOv8n to enhance the performance of the model in specific scenes. The use of receptive-field 

aware convolution RFAConv instead of standard convolution Conv in the backbone network improves the 

network performance, and the detection performance is significantly improved; the introduction of the SENet 

attention mechanism strengthens the learning ability of the backbone network for strawberry color and shape 

features, and the design of the decoupling head is also optimized to better adapt to the requirements of the 

classification and regression tasks. The InceptionNeXt neural network structure is introduced as the feature 

extraction network, and the convolution in Bottleneck in the Cf2 module of the neck network is replaced with 

the InceptionNeXt convolution, which effectively reduces the amount of computation. During the training 

process, the Wise-IoU loss function with dynamic nonmonotonic focusing mechanism is used to address the 

impact of low-quality samples on model performance in the target detection task. In the post-processing stage, 

DIoU-NMS is used to replace the traditional NMS algorithm to reduce the false deletion of overlapping target 

frames. The improved YOLOv8n network structure is shown in Fig. 4. 

 

 
Fig. 4 – Improved YOLOv8n network architecture 

 

Traditional convolution operation extracts local features through a fixed convolution kernel, and its 

receptive field is usually limited and fixed, which may lead to poor adaptability to multi-scale targets. RFAConv 

enables the convolution operation to adaptively adjust the size of the receptive field by introducing a dynamic 

receptive field mechanism and an attentional mechanism, so that it can better capture the target features at 

different scales. The principle of spatial feature transformation of the receptive field is shown in Fig. 5.  
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The original spatial feature has a size of C×H×W and is divided into non-overlapping sliding windows. 

When a 3×3 convolution kernel is applied, each 3×3 window in the receptive field corresponds to a local region 

of the input feature map. As a result, the converted spatial feature is expanded by a factor of three in both 

height and width, increasing its size to 3C×3H×3W. This enlargement effectively broadens the receptive field, 

enabling the capture of multi-scale information. 

 
Fig. 5 – Principle of spatial feature transformation in the sensory field 

 

Spatial attention mechanisms that focus on spatial features in the sensory field are combined with 

convolution to eliminate the problem of sharing convolution parameters. Current spatial attention mechanisms 

already consider long-range information, which can be obtained globally through global average pooling or 

global maximum pooling. In order to focus on feeling the wild spatial features, a k × k convolution operation 

with stride of k is used to extract feature information. Its specific structure is shown in Fig. 6. 

 
Fig. 6 – RFAConv structure 
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After the input feature map size of C×H×W enters the RFAConv module, the number of channels is 

extended to CK2 by a group convolution operation, generating a new feature map size of CK2×H×W. 

Subsequently, the feature map is further reshaped to C×KH×W after normalization with a nonlinear activation 

function, ReLU. To extract information along the spatial dimensions, average pooling is applied separately in 

the height and width directions, resulting in two intermediate feature maps with dimensions C × 1 × KW and C 

× KH × 1, respectively. These two feature maps are subsequently spliced together and fused by a convolutional 

layer to generate a new feature map with dimensions C × (KW + KH) × 1. After normalization and nonlinear 

transformation, this feature map is split into two parts corresponding to the information in the height and width 

directions, and each of them is passed through a convolution operation as well as a Sigmoid function to 

generate the final attention weight map. The generated attentional weight map is used to reweight the original 

input feature map through a final convolutional layer using a step size of K setting to generate the final output 

feature map. 

SENet (Squeeze-and-Excitation Networks) is a convolutional neural network architecture that introduces 

an attentional mechanism in the channel dimension, aiming to improve the representation ability of the network 

by capturing the interdependencies between feature channels. It introduces an attention mechanism that 

significantly improves the image classification performance without significantly increasing the computational 

complexity. The core idea is to learn a weight for each feature channel to enhance useful features and weaken 

irrelevant features. Compared with traditional CNNs, SENet optimizes performance by introducing dynamic 

feature tuning through the SE module, which consists of two key operations: Squeeze and Excitation. In the 

compression phase, the SE module captures the global context information by compressing the spatial 

information of each channel into a single value through global average pooling. In the Excitation phase, a fully 

connected layer and a nonlinear activation function are utilized to learn the inter-channel dependencies and 

generate weights for each channel. These weights are used to recalibrate the responses of the feature 

channels, enhancing useful features and suppressing irrelevant features. This mechanism allows SENet to 

adaptively tune the feature representation and improve the performance of the model. The basic structure of 

SENet is shown in Fig. 7. 

 
Fig. 7 – SENet module structure 

 

For any transformation Ftr that maps an input X to a feature map U, where U ∈ RH×W×C, the 

corresponding SE block can be constructed for feature recalibration. First, the feature map U is aggregated in 

the spatial dimension (H × W) by the Squeeze operation to generate a channel descriptor. This descriptor is 

used to embed the global distribution of the channel-level feature responses, enabling the layers of the network 

to utilize the global sensory field information. The subsequent Excitation operation employs a self-selecting 

pass mechanism to generate per-channel modulation weights using the embedding as input. These weights 

are applied to the feature map U to generate SE block outputs that are passed directly to subsequent network 

layers. 

Squeeze operation: the SE module generates a descriptor for each channel by aggregating the spatial 

dimensions (H×W) of the input feature map through a global average pooling operation. This operation 

compresses the global spatial information into channel vectors, capturing the global distribution of the channel 

feature responses and providing critical global information for subsequent recalibration. In the Squeeze 

operation, the input feature map is globally average pooled to compress the feature map with dimensions W 

× H × C into a 1 × 1 × C feature vector.  
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This process aggregates the spatial information of each 2D channel into a single value with a global 

receptive field. In this way, each channel is represented as a numerical value, removing the spatial distribution 

information and thus utilizing the inter-channel correlation more efficiently. Let ZC be the output vector of the 

Cth channel in the feature map after the Squeeze operation, and Fsq(UC) denotes the Squeeze operation 

performed on the input feature map UC of the Cth channel, where H and W denote the height and width of the 

feature map, respectively. 

Excitation operation: after the Squeeze step, an Excitation mechanism is introduced, which is essentially 

a self-gating mechanism consisting of two fully connected layers and a nonlinear activation function. The first 

fully-connected layer processes the channel descriptors by dimensionality reduction and imposes the ReLU 

activation function; the second fully-connected layer maps them back to the original channel dimensions. This 

process effectively captures the nonlinear relationships between channels and generates a set of channel 

weights. 

The SENet attention mechanism is able to fit the correlation between channels more efficiently and 

capture the dependencies and interactions between channels, thus optimizing the expression of feature 

weights. In addition, SENet is less parametric and computationally intensive, adding only a simple fully-

connected layer and activation function after the convolutional layer, and thus does not incur significant 

additional overhead. Integrating it into YOLOv8n's backbone network enhances the model's ability to recognize 

strawberry features at the channel level and strengthens the extraction of key features while weakening the 

interference of irrelevant content and complex background. With the SENet attention mechanism, YOLOv8n 

can more fully utilize the inter-channel relationships to enhance feature differentiation and thus improve the 

accuracy of target detection. 

The Backbone network structure contains a complex structure of ten layers, which is designed to extract 

features efficiently. Introducing the attention mechanism in each layer may significantly increase the 

computational burden and model complexity, which may be undesirable for resource-limited application 

scenarios, and the performance enhancement brought by the attention mechanism needs to be weighed 

against the computational cost in practical applications. In order to balance the accuracy and efficiency of the 

model, this paper designs three schemes to add the SENet attention module in the first and third layers, the 

third and fifth layers, and the fifth and seventh layers respectively, and selects the optimal introduction method 

as the basis for subsequent model improvement after comparison tests. The experimental results are shown 

in Table 2. 

Table 2 
Comparison of data of different versions of YOLOv8 

Framework Precision Recall mAP50 

Unchanged 91.78% 92.14% 96.74% 

Add in the first and third layers 91.25% 91.93% 96.82% 

Add in the third and fifth layers 91.93% 92.32% 96.39% 

Add in fifth and seventh layers 92.33% 92.87% 97.57% 

 

The experimental data show that in the shallow layer structural adjustment, the improvement of the 

network module for the first and third layers makes the mAP50 rise slightly by 0.12%, but the Precision and 

Recall show a drop of 0.53% and 0.21%, respectively, which indicates that the shallow parameter adjustment, 

although it can improve the comprehensive detection performance to a limited extent, leads to negative 

fluctuation of the basic detection indexes. In the middle-layer network optimization experiments, enhancements 

to the five-layer structure increased Precision and Recall by 0.15% and 0.18%, respectively. However, mAP 

decreased by 0.35%, indicating that while this adjustment improved single-sample discriminative ability, it 

substantially weakened the model’s overall detection performance on multi-scale targets. In contrast, the deep-

network optimization scheme involving the fifth and seventh layers showed significant advantages. Precision 

and Recall improved by 0.55% and 0.73%, respectively, while mAP increased by 0.83%, verifying that 

optimizing deep feature extraction modules effectively enhances the model’s multidimensional detection 

capability. Overall, the results demonstrate a clear depth-dependent characteristic of network structural 

optimization: the closer the adjustment is to the output layer, the more significant the enhancement in 

comprehensive performance. Based on these findings, architectural improvements were applied to the deep 

network module, with the SENet attention mechanism added to the fifth and seventh layers. 
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InceptionNeXt is an innovative convolutional neural network architecture that combines the multi-scale 

feature extraction idea of Inception with the large kernel deep convolution design feature of ConvNeXt. In 

recent years, although large kernel convolution can effectively expand the sensory field and improve the 

performance, its high memory access cost limits the efficiency of its application on high-performance devices. 

InceptionNeXt proposes a new deep convolutional structure that achieves a good balance of speed and 

performance by decomposing the large kernel into multiple small kernels and keeping some of the channels 

unchanged. This structure divides the channel into three parts, which are processed by 3×3, 1×k and k×1 

convolutional kernels respectively, and the rest is passed directly through constant mapping, thus reducing the 

memory access cost while maintaining a large sense field. This design not only inherits the advantages of the 

classical Inception module, but also improves the efficiency by reducing the computational cost, solves the 

bottleneck of the traditional CNN in terms of speed and performance, and becomes the preferred model for 

efficient image categorization tasks in resource-constrained scenarios. Its structure is shown in Fig. 8. 

 

 
Fig. 8 – InceptionNeXt structure diagram 

 

Distance Intersection over Union - Non Maximum Suppression (DIoU-NMS) is an improved non-

maximum suppression algorithm for removing redundant bounding boxes in target detection tasks. In 

traditional NMS methods, IoU is the only suppression criterion, which may lead to false suppression in the 

case of occlusion. DIoU-NMS uses DIoU as a criterion for NMS and also considers the distance between the 

centroids of the two boxes as a judging criterion. Let the Euclidean distance between the centroids of the two 

bounding boxes be denoted as d, and the length of the diagonal of the smallest closure rectangle containing 

these two bounding boxes as c. Although the DIoU computation is more complex compared to the normal IoU, 

the performance gain it delivers far outweighs the impact of the additional computational cost, ensuring that 

the overall computational efficiency remains efficient. In terms of implementation details, DIoU-NMS typically 

consists of four steps: sorting, iterative selection, calculation of DIoU values, and filtering.  

First, the prediction frames are sorted in descending order based on their confidence scores. Next, the 

best candidate frames that are currently unsuppressed are sequentially selected starting from the highest 

score and added to the final result set.  For all the remaining candidate frames, their DIoU values are calculated 

separately with respect to the selected best frames. If the DIoU between a candidate and the selected best 

frames exceeds a predefined threshold, the candidate is suppressed; otherwise, it is retained for subsequent 

comparisons. This method is highly integrable and can be easily embedded with only minor code modifications. 

 

 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

 

 706  

RESULTS 

The tests were conducted using a 64-bit Microsoft Windows 11 operating system. The central processor 

CPU was AMD Ryzen 7 6800H with Radeon Graphics at 3.2 GHz; the running memory (RAM) capacity was 

16 GB, and the graphics processor (GPU) is NVIDIA GeForce RTX 3060 with 6 GB of video memory. The 

software platform was developed using the open-source deep learning framework PyTorch 2.2.1, with Python 

3.9.12 as the programming language. The development environment utilized CUDA 11.7 (Compute Unified 

Device Architecture) and cuDNN 8.7.0 (CUDA Deep Neural Network library) for GPU acceleration. PyCharm 

and VScode served as the primary development tools. 

 

Parameter settings 

The YOLOv8n detection model training parameter settings are shown in Table 3. Because of the 

changes involved in the model, the model was uniformly constructed from scratch using the yaml file. High-

resolution images, such as those with 50 million pixels, are captured to preserve details, while YOLOv8 selects 

640×640 input images to improve inference speed and computing efficiency while ensuring detection accuracy. 

 
             Table 3 

 

YOLOv8n test parameter settings 

Parameter name Parameter value 

Image Input Size 640×640 

Training batch 100 

Batch size 8 

Initial learning rate 0.001 

Optimizer Adam 

Attenuation weight 0.0005 

Number of processes 4 

Learning rate warming 3 

 

Loss Function Comparison 

In the training process of deep learning models, the loss function plays a crucial role, which is not only 

used to quantify the gap between the model prediction results and the actual values, but also provides a 

direction guide for the optimization and adjustment of model parameters. For YOLOv8n, the design of its loss 

function plays a decisive role in improving its detection accuracy and computational efficiency. During model 

training, the loss function helps determine the model parameters that need to be adjusted and the magnitude 

of their adjustment by evaluating the deviation between the predicted output and the real label. In order to 

verify the performance of WIOU loss in strawberry target detection, EIoU, GIoU, DIoU, SIoU, and WIOU are 

used as the loss functions of YOLOv8n for comparative experiments on the strawberry dataset, respectively, 

and the test results are shown in Table 4. 

Table 4 
 

Comparison results of experiments with different loss functions 

Mold Loss function Precision Recall mAP50 

YOLOv8n 

CIoU 91.78% 92.14% 96.74% 

GIoU 91.72% 92.04% 96.69% 

DIoU 91.93% 92.43% 96.89% 

SIoU 91.91% 92.36% 96.87% 

EIoU 90.94% 91.25% 95.63% 

WIoU 92.36% 93.19% 97.23% 
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The experimental comparison results show that WIOU using the dynamic non-monotonic focusing 

mechanism performs best over the other loss functions on this data, with an improvement of 0.58%, 1.05%, 

and 0.49% in precision, recall, and mean average precision, respectively, compared to the CIoU loss function 

used by default. WIOU enables YOLOv8n to ensure high-speed processing while also providing more accurate 

detection results, thus significantly improving overall performance. 

 

Ablation experiment 

In this paper, three main optimizations have been made in the structure of the YOLOv8n model. Firstly, 

the feeling field attention convolution RFAConv is used in the backbone network to replace the standard 

convolution Conv. Secondly, the SENet attention mechanism is introduced to strengthen the learning ability of 

the backbone network for strawberry color and shape features. Thirdly, the InceptionNeXt neural network 

structure is introduced as the feature extraction network, replacing the convolution in Bottleneck with 

InceptionNeXt convolution in the Cf2 module of the neck network. In order to verify the effectiveness of each 

improvement, ablation experiments are performed on the strawberry dataset, and the experimental 

environment as well as the parameters are consistent for each experiment. The experimental results are shown 

in Table 5. 

 
Table 5 

Results of ablation experiments 

Model RFAConv SENet 
Inception

NeXt 
Precision Recall mAP50 Size 

YOLO

v8n 

× × × 91.78% 92.14% 96.74% 5.94M 

√ × × 94.82% 94.15% 97.69% 7.84M 

× √ × 93.73% 93.47% 97.57% 5.94M 

× × √ 92.08% 92.27% 96.83% 4.22M 

√ √ × 95.79% 94.83% 97.91% 7.84M 

√ × √ 94.96% 94.33% 97.32% 5.17M 

× √ √ 95.24% 94.71% 97.78% 5.17M 

 √ √ √ 95.92% 95.45% 98.29% 5.17M 

 

 

The triple co-optimization model proposed in this study demonstrates significant advantages in both 

performance and efficiency. By deeply integrating the feature enhancement module, dynamic attention module, 

and lightweight decoding module, the model achieves 95.92% precision, 95.45% recall, and 98.29% mAP50 

value on the baseline dataset. Compared with the baseline model, the three core metrics are improved by 

4.14%, 3.31% and 1.55% respectively, while the model size is compressed to 5.17M, which is 12.96% less 

than the original model. The experimental results show that this architectural innovation effectively solves the 

contradictory relationship between the number of parameters of the traditional model and the detection 

accuracy while maintaining the high-precision feature extraction capability, which provides support for the 

development of the subsequent detection system. 

 

Visualization of detection results 

As shown in Figure 9, the confusion matrix provides valuable information about the model's performance 

across different strawberry-related categories. The dataset contains three main categories: green, 

half_ripened, and fully_ripened, as well as a background category. 
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Fig. 9 –Confusion matrix after YOLO8N training 

 

 

For the half-ripened category, the model demonstrated reasonable recognition capabilities, correctly 

classifying 203 samples. However, there were also some misclassifications, with six strawberries incorrectly 

labeled as background. This indicates that although the model can effectively recognize the characteristics of 

strawberries, there is still some confusion, possibly due to overlapping characteristics or visually similar 

elements between the strawberries and the background. 

The green category achieved the highest recognition accuracy, with a total of 987 samples correctly 

identified. This high true positive rate indicates that the model effectively learned how to distinguish flowers. 

However, there are still a small number of misclassifications: 2 were misclassified as the half_ripened category, 

and 28 were classified as background. The proportion of strawberries misclassified as background is relatively 

high, indicating that in some cases, the model may have difficulty distinguishing between strawberries and 

non-strawberry elements, possibly influenced by environmental noise or scene complexity. 

From the fully_ripened category, the model's recognition performance was moderate, correctly 

identifying 256 samples. There were a few misclassifications: 30 samples were misclassified as half_ripened, 

none were misclassified as green, and 6 were labeled as background. These errors indicate that while the 

model can identify strawberry ripeness to a certain extent, there is still room for improvement when dealing 

with ambiguous or unclear cases. 

The strawberry dataset is validated using the optimized training model in this paper and the detection 

results are shown in Fig. 10. It can be seen that it performs well in detecting strawberries of different maturity 

levels. 
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Fig. 10 –Visualization of detection results 

 

CONCLUSIONS 

The study introduces RFAConv dynamic sensory field convolution, SENet channel attention mechanism 

and InceptionNeXt lightweight structure. It combines these with Wise-IoU loss function and DIoU-NMS post-

processing algorithm. The result is a synergistic enhancement of detection accuracy and computational 

efficiency. The experimental findings demonstrate that the enhanced model exhibits a precision rate of 95.92%, 

a recall rate of 95.45%, and an mAP50 of 98.29% on the strawberry dataset. These metrics represent 

enhancements of 4.14%, 3.31%, and 1.55%, respectively, when compared to the baseline model. Additionally, 

the model's parameter count is reduced to 5.17M, marking a 12.96% decrease, which is of considerable 

importance in fostering the advancement of precision agriculture. 
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