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ABSTRACT  

To address the limitation of existing agricultural unmanned plant protection equipment in perceiving crop 

growth status in real time during the maize seedling stage, this study proposes a crop row extraction method 

based on image processing. A crop semantic segmentation network was developed using the UNet framework, 

with VGG19 as the encoder and transposed convolution as the decoder. Model testing demonstrated that the 

segmentation network achieved accuracy rates of 0.9865 on the training set and 0.9864 on the validation set, 

with corresponding loss values of 0.0254 and 0.0270. In continuous processing scenarios, the average time 

for semantic segmentation per image was 120 milliseconds, while crop row extraction required 23 milliseconds. 

 

摘要 

为解决现有农用无人植保机具在玉米苗期作业时无法现场感知作物生长状况的问题，提出一种基于图像处理的

玉米苗期作物行提取方法。基于 Unet 框架构建了作物语义分割网络，编码器为 VGG19，解码器为转置卷积，

通过添加注意力机制来增强主要特征信息的权重。采用传统图像处理技术获取作物的轮廓、最小外接圆的圆心

与半径等关键信息，引入数据缓存机制，增加用于作物行提取的作物数据量。运用苗带自动聚类算法，在作物

行数量与位置不确定的情况下，自动对作物行的数量及其所包含的作物对象进行聚类。模型测试结果表明：作

物语义分割模型在验证集与测试集上的准确率分别达到 0.9865 和 0.9864，损失率分别为 0.0254 和 0.0270。在

实际连续处理过程中，单张图片的语义分割时间平均为 120 毫秒，作物行提取时间为 23 毫秒。 

 

INTRODUCTION 

 Currently, unmanned field management machinery primarily relies on satellite navigation and inertial 

navigation systems for positioning during field operations. In practice, the machinery follows a predetermined 

absolute spatial trajectory without accounting for the relative spatial relationship between the machinery and 

the crops (Wang et al., 2022; Xie et al., 2023). However, in actual agricultural production, field operations 

fundamentally involve direct interaction between the machinery and the crops. Therefore, it is essential to 

investigate crop row extraction technology to enhance the crop perception capabilities of unmanned 

agricultural machinery, thereby improving operational accuracy and efficiency while minimizing crop damage 

during autonomous operations. 

 Crop row extraction is a fundamental requirement for enabling unmanned plant protection operations 

in agricultural machinery. Existing studies generally adopt image processing methods for crop row extraction, 

typically comprising two main steps: crop recognition and crop row fitting. Traditional crop recognition 

approaches include the super-green method for crop segmentation (Jiang et al., 2021), wavelet transform 

processing (Habib et al., 2021), support vector machine classification (Wu et al., 2023), and classification 

based on texture and color features (Zhang et al., 2023). In recent years, with the rapid advancement of deep 

learning technologies, several classical neural network architectures have been applied to crop and weed 

classification tasks, such as Artificial Neural Networks (ANN) (Monteiro et al., 2021), Convolutional Neural 

Networks (CNN) (Jabir et al., 2021; Yang et al., 2023), Sum-Product Networks (SPN) (Kumar Kempegowda 

et al., 2022; Wang S. et al., 2019), Transformers (Feng et al., 2024; K. Jiang et al., 2022), and Probabilistic 

Neural Networks (PNN) (Venkataraju et al., 2023).  
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Methods for fitting crop rows include the least squares method (Diao et al., 2024), Hough transform 

(Chen et al., 2019; Li et al., 2022), skeleton extraction (Wu et al., 2024; Zhao et al., 2019), feature engineering 

(Zhang et al., 2023), partition clustering (Ma et al., 2021), Fast-SCNN (Chen et al., 2021), and Mean-Shift 

(Weibing, 2019). 

 However, existing methods face several limitations. When the angle between the camera and the 

ground is large or under backlit conditions, direct sunlight entering the image degrades image quality, making 

processing more difficult. In practical operations, weeds often cross or overlap with crops. Traditional methods 

relying on shallow features such as color, texture, and shape struggle to achieve accurate, robust, and 

generalizable segmentation. The crop information extracted from a single image is limited. The crop position 

data derived from it is susceptible to random errors, leading to significant fluctuations in measurement results. 

 To address these challenges, this study positioned the camera beneath the vehicle body with its 

central axis perpendicular to the ground to stabilize image acquisition and reduce interference from direct 

sunlight and reflections. For crop and weed segmentation, a deep learning-based semantic segmentation 

network was employed for initial crop recognition, followed by traditional image processing techniques to 

extract crop contour and positional information. During crop row extraction, contour information from the most 

recent five frames was collectively analyzed. An automatic seedling row clustering algorithm was then used to 

identify the seedling rows within the images, from which the crop row information was subsequently extracted. 

 

MATERIALS AND METHODS 

Data Acquisition and Processing 

 The dataset used in this study was collected by an onboard camera mounted at the bottom of a high-

clearance boom sprayer, with a mounting height of 80 cm above ground level. The data acquisition was 

conducted on August 27, 2020, at the Baima Test Base of the Nanjing Research Institute for Agricultural 

Mechanization, Ministry of Agriculture and Rural Affairs. The vehicle-mounted camera employed was a 

RealWide USBFHD01M camera (maximum resolution: 1920×1080 pixels). A total of three video clips were 

recorded during the experiment. The first two video clips were used for model training, from which 1,436 

images were obtained through frame extraction and cropping. The last video clip was reserved exclusively for 

testing purposes. 

 The crop objects in the images were annotated using the polygon tool in the image annotation software 

Labelme, where the crops were labeled as 1 and the rest as 0. The proposed method requires only crop image 

annotations, eliminating the need for weed classification labeling. The annotated data was divided into a 

training set and a validation set in an 8:2 ratio. The dataset was subjected to image data augmentation in the 

following ways with a 50% probability in sequence: random contrast adjustment, random brightness adjustment, 

random left-right flipping, and random noise addition. To facilitate training, the original image size obtained by 

the camera was adjusted to 512×512. 

Semantic Segmentation Model Construction 

 The crop segmentation network was designed based on the classic semantic segmentation model 

UNet. The UNet model consisted of two main components: an encoder and a decoder. For the encoder, 

DenseNet121 served as the backbone network, extracting four top-level convolution maps with dimensions of 

256×256, 128×128, 64×64, and 32×32 as feature maps. The decoder comprised two key elements: the 

Transition Layer and the UnSampling Layer. The Transition Layer followed a specific structure: CABM 

(Convolutional Block Attention Module) followed by 1×1 C2DT (Conv2Dtranspose), BN (Batch Normalization), 

and ReLU (Rectified Linear Unit). Meanwhile, the UnSampling Layer was structured as 2×2 C2DT + BN + 

ReLU. The overall network architecture is illustrated in Fig. 1. 
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Fig. 1 - Network model of crop segmentation 
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 The encoder employed VGG19 as its backbone network. VGG, an improved architecture derived from 

AlexNet, was developed by the Visual Geometry Group at the University of Oxford. This network came in two 

primary variants: VGG16, with 16 hidden layers (13 convolutional + 3 fully connected layers), and VGG19, 

featuring 19 hidden layers (16 convolutional + 3 fully connected layers). A key innovation of the VGG 

architecture was the use of smaller convolutional kernels, replacing a single 7×7 kernel with three consecutive 

3×3 kernels and a 5×5 kernel with two 3×3 kernels. This design deepened the network while maintaining the 

same receptive field, enhancing feature extraction efficiency. In this study, four convolutional layers from 

VGG19—block5_conv1, block4_conv1, block3_conv1, and block2_conv1—were extracted as feature maps 

for crop segmentation. These layers had dimensions of 32×32×512, 64×64×512, 128×128×256, and 

256×256×128, respectively. 

 The Transition Layer served as the preprocessing part of the decoder and comprised two components: 

the CABM attention module and the transposed convolution module. CABM represented the convolutional 

block attention mechanism, which functioned as a hybrid attention mechanism combining spatial attention and 

channel attention. The spatial attention mechanism consisted of three parts. CBAM demonstrated its 

advantage through dynamically focusing on key image regions by adaptively assigning weights to different 

positions, which significantly enhanced model performance. It automatically identified and enhanced task-

relevant areas including target objects, edges, or textures while suppressing irrelevant backgrounds or noise, 

thereby improving the model's robustness to occlusion and complex environments. The first part involved 

channel pooling, where a tensor of size (h×w×c) was processed through maximum pooling and average 

pooling to yield a tensor of size (h×w×2). The second part performed a convolution operation on this tensor to 

produce an output tensor of size (h×w×1). The third part normalized this tensor through Batch Normalization 

and activated it with a Sigmoid function to obtain a spatial weight tensor, which was then multiplied by the input 

tensor to adjust the data weights in the spatial dimension. The channel attention mechanism was divided into 

four parts. The first part executed global maximum pooling and global average pooling on each channel, 

compressing each channel's data into one pixel to ultimately generate two tensors of size (1×1×c). The second 

part processed these tensors through two fully connected layers respectively to produce connection weights 

between channels, thereby enhancing channel connectivity. The third part stacked the two tensors from the 

previous step, activated them with a Sigmoid function, and multiplied them by the input tensor to modify each 

channel's weight levels. The transposed convolution employed a 3×3 kernel size with a stride of 1, maintaining 

the feature map's original size after processing. 

 The UnSampling Layer functioned as the upsampling component of the decoder and consisted of two 

parts: the transposed convolution module and feature fusion. The transposed convolution module employed a 

stride of 2, which doubled the image size after processing. Since transposition had already been performed in 

the preprocessing stage, the positional information within the feature map remained preserved during this 

operation. The resulting upsampled feature map subsequently underwent batch normalization and ReLU 

activation. Feature fusion represented a fundamental design characteristic of the UNet network architecture. 

This process concatenated the upsampled feature map produced by transposed convolution with the 

corresponding feature map of identical dimensions extracted from VGG19, thereby combining high-level 

abstract features from low-resolution data with low-level surface features from high-resolution data within the 

final feature map. 

 

Loss Function Construction 

 The loss function L employed for model training in this study was computed through a weighted 

combination of Dice Loss and Binary Cross Entropy Loss. The calculation followed this formula: 

𝐿 = 𝑤 × 𝐿bce + 𝐿dice     (1) 

where: 
 The symbol w represents the weight, Lbce represents the Binary Cross Entropy loss, and Ldice 

represents the Dice Loss. 

𝐿𝑏𝑐𝑒(𝛼, 𝛽) = −
1

𝑁
∑ (𝛼 ln (

1

1+𝑒−𝛽
) + (1 − 𝛽)ln⁡(1 −

1

1+𝑒−𝛽
))𝑁

𝑖=1    (2) 

where: 
 The symbol α is the actual label (0 or 1), and β is the probability predicted by the model. 

𝐿𝑑𝑖𝑐𝑒 = 1 −
2|𝑋∩𝑌|+0.01

|𝑋|+|𝑌|+0.01
      (3) 

where: 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

 

 679  

  |X∩Y| represents the number of pixels in the intersection of the prediction result and the ground truth 

label. |X| and |Y| respectively denote the number of pixels in the prediction result and the ground truth label. 

 The model evaluation metrics are the average recognition accuracy and mIOU, and their calculation 

formulas are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑐
∑

𝑛𝑗𝑗

𝑛𝑗

𝑐
𝑗=1 × 100%     (4) 

where: c denotes the number of categories, nj represents the total number of samples in the j-th category, and 

njj indicates the number of correctly predicted samples for the j-th category. 

𝑚𝐼𝑂𝑈 =
1

𝑘+1
∑

𝑝ii

∑ 𝑝ij
𝑘
j=0 +∑ 𝑝ji

𝑘
j=0 −𝑝ii

𝑘
i=0     (5) 

where:  pii represents the number of cases where the true value is i and it is predicted as i, which is the number 

of true positives; pij represents the number of cases where the true value is i but it is predicted as j, which is 

the number of false positives; pji represents the number of cases where the true value is j but it is predicted as 

i, which is the number of false negatives; k+1 represents the number of categories including the empty class. 

Since this study only distinguishes between crops and background, k =1. 

 
Model Training 

 The model training platform was configured as follows: The CPU was an Intel Core i7 10700 with a 

main frequency of 4.8 GHz and 16 GB of memory, while the GPU was an Nvidia RTX 2060 with 11 GB of 

video memory. The operating environment consisted of Ubuntu 20.04 operating system, Python 3.9.0 

programming language, and Tensorflow 2.5-GPU deep learning framework. The Adam optimization algorithm 

was employed for model training. The batch size was set to 8, with 150 training epochs and an initial learning 

rate of 0.01. A learning rate reduction mechanism was implemented where, if the loss remained unchanged 

for 5 consecutive epochs, the learning rate would decrease to 0.1 times its original value. 

 The training process completed 100 epochs, with the results presented in Fig. 2. Figure 2a 

demonstrated that the model started converging around the 25th epoch, ultimately achieving stabilized 

accuracies of 0.9865 for the training set and 0.9864 for the validation set. As shown in Fig. 2b, the loss rates 

similarly began converging around the 25th epoch, reaching values of 0.0254 (training) and 0.0270 (validation). 

After 70 epochs, the training loss became consistently lower than the validation loss, indicating the onset of 

model overfitting beyond this point. 

  
a) - Training loss b) - Training accuracy 

Fig. 2 - Process of model training 
 

Weed Recognition 

 As illustrated in Fig. 3, after being processed by the crop-weed semantic segmentation network, a crop 

probability map was generated with a size of 512×512×1. The pixel values ranged from 0 to 1, representing 

the likelihood of each pixel belonging to a crop, where a value of 0 indicated background and a value of 1 

indicated crop. To facilitate subsequent processing, the predicted map was binarized by considering pixels 

with probability values greater than 0.8 as crops, and those with values less than or equal to 0.8 as background. 

 The binarized predicted map exhibited spatial artifacts including isolated regions and fragmentation. 

To address these issues, a morphological opening operation was first applied using a 5×5 convolution kernel, 

which effectively removed isolated points, burrs, and bridging artifacts. Subsequently, a morphological closing 

operation with an identical 5×5 kernel size was performed to eliminate small holes, cracks, and surface pits in 

the processed image. This two-step morphological processing significantly improved the spatial coherence of 

the segmentation results while preserving the essential structural features of the crop distribution pattern. 
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Fig. 3 - Process of weed extraction 

 

 Vegetation layer extraction was performed to obtain green vegetation information from images through 

specific processing methods. The image processing procedure consisted of the following steps. First, the red, 

green, and blue channels of the image were decomposed. The green channel was then enhanced using the 

super-green algorithm to produce a corresponding grayscale image, with pixel values constrained to the range 

of 0 to 255. Subsequently, the Otsu method (maximum inter-class variance method) was applied to perform 

binarization on the grayscale image, resulting in a binary image. Finally, a morphological opening operation 

was conducted using a 3×3 convolution kernel to generate the final vegetation layer. The super-green 

algorithm for green channel enhancement was calculated using the following formula: 

𝐺r = min⁡(255,max⁡(2𝐺 − 𝐵 − 𝑅, 0))    (5) 

where: Gr represents the output grayscale image, while G, B, and R denote the green, blue, and red channels 

of the input image, respectively. 

 

Crop row extraction 

 Contour detection was implemented using the findContours function from the OpenCV library. The 

detection mode was configured as RETR_EXTERNAL, ensuring only external contours were identified. For 

contour approximation, the CHAIN_APPROX_SIMPLE method was employed, which effectively compressed 

horizontal, vertical, and diagonal segments while preserving solely their endpoint coordinates. 

 The minimum enclosing circle corresponding to each contour was determined using the 

minEnclosingCircle function from the OpenCV library. This function automatically iterated through the 2D point 

set of each contour and calculated the precise center coordinates and radius of its minimum enclosing circle. 

The complete contour detection process, including this circle-fitting operation, was visually demonstrated in 

Fig. 4. 

Find contours Corn location Results
 

Fig. 4 - Process of crop positioning 

 

 The crop row positioning process was illustrated in Fig. 5. First, the semantic segmentation network 

extracted crop information from the input image, and the centers and radii of minimum enclosing circles for all 

crops were calculated and stored in memory. The system then verified whether the number of stored contour 

frames exceeded five; if so, the oldest frame was removed until the frame count satisfied the threshold 

requirement. Finally, all recorded crop contour data underwent clustering analysis. Upon identifying multiple 

seedling rows, the corresponding centerlines and boundary lines for each row were subsequently extracted. 
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Fig. 5 - Process of crop row positioning 

 

 Due to the potential presence of multiple seedling rows within a single image, where both the quantity 

and spatial arrangement of these rows were unpredictable, the minimum-maximum distance algorithm was 

employed to perform clustering analysis on the contour coordinates. This clustering process enabled the 

determination of the exact number of seedling rows present in each image. As demonstrated in Fig. 6, the 

seedling row clustering algorithm operated according to the following procedure: 

 

 
Fig. 6 - Process of automatic seedling belt clustering 

 

 For a given input set of coordinate points P={p₁, p₂, p₃, ..., pₙ}, the algorithm selected p₁ as the initial 

clustering center. The distances from all points to p₁ were computed and stored in set D. The maximum value 

in D was identified as maxDistance, with its corresponding coordinate point designated as the next clustering 

center. Subsequently, the distance from each point to this new center was calculated and compared against 

the stored values in D. When a smaller distance was found, the point was assigned to the new cluster and its 

corresponding value in D was updated.  
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Following complete distance evaluation, the algorithm verified whether the maximum value in D 

satisfied the threshold condition: exceeding the minimum row spacing threshold σ while remaining below 

η×maxDistance, where η (a distance coefficient between 0 and 1) scaled the maximum classification threshold. 

If valid, the point associated with the current maximum distance became the subsequent clustering center, and 

the process iterated. Termination occurred when no values in D met the threshold criteria. The final output 

comprised classification set Y for point set P, representing the clustered results. The complete clustering 

procedure operated as follows: 

 Following point clustering, the classification set Y was obtained for the input set P, with values ranging 

from 1 to n (where n represented the maximum number of classifications, corresponding to the number of 

seedling rows). Through iterative traversal of set Y, the algorithm extracted the point set associated with each 

classification. Within each classified point set, the uppermost boundary (LineA) and lowermost boundary 

(LineB) of the contour were identified. The region bounded by these two lines constituted the seedling row 

area, while the midpoint between the upper and lower boundaries established the crop seedling row's 

centerline. This complete calculation process was illustrated in Fig. 7 and executed as follows: 

 
Fig. 7 - Process of seedling belt boundary extraction 

 

RESULTS 

 To validate the effectiveness and feasibility of the proposed algorithm, corresponding models and 

algorithms were constructed and verified using the third video clip collected during the experiment. The video 

recording specifications included a frame rate of 30 frames per second and an image resolution of 1920×1080 

pixels. To accurately simulate the working environment, images were sequentially extracted from the video at 

5-frame intervals. Each extracted image was then processed by cropping a central 1080×1080 area, which 

was subsequently resized to 512×512 pixels before being input into the algorithm for processing. 

 As shown in Fig. 8, the processing results of the first five extracted images during the experiment were 

presented. Horizontally, the images were arranged in chronological order, representing the first to the fifth 

image, with an interval of five frames between each. Vertically, the images were organized according to the 

processing steps: crop semantic segmentation, contour detection and localization, and navigation line 

extraction. Statistical analysis showed that the average processing time for crop semantic segmentation was 

120 ms, while crop row extraction took an average of 23 ms. 

From the crop semantic segmentation images, it was observed that corn was identified and segmented 

in all five images. The probability density was higher at the center of the leaves and lower at the edges, 

indicating better recognition performance in the core area and poorer performance at the leaf tips. Corn plants 

with two shoots per hole were recognized as a single plant, since the semantic segmentation network only 

classified objects by category without distinguishing individual instances. However, for optimal growth and 

increased yield per mu, single-plant-per-hole configurations were more desirable. Therefore, distinguishing 

individual seedlings was necessary to enable mechanized seedling removal operations. 

In the contour segmentation images, the corn contours were accurately identified based on the 

segmented corn layer, and the center and radius of the minimum enclosing circles were calculated. 

Morphological operations and threshold filtering were applied to smooth the contours. When crops entered or 

exited the image frame, only partial contour information was captured, which limited the accuracy of the 

extracted contours. Thus, further refinement was required for contour optimization at the image boundaries to 

better reflect actual crop conditions. 
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Fig. 8 - Algorithm testing results visualization 

 

In the navigation line extraction images, the green dashed lines represented the crop contours, red 

crosses indicated the centers of the enclosing circles, yellow circles denoted the minimum enclosing circles, 

blue numbers marked the sequence of contour acquisition (i.e., the temporal order of contour generation), 

orange lines showed the upper boundaries of the seedling rows, dark red lines the lower boundaries, and blue 

lines the center lines. It was evident that seedling row information was extracted and the movement trajectories 

of the crops were tracked. Due to the asymmetrical shape of corn leaves, a deviation was observed between 

the enclosing circle center and the actual plant center. Additionally, differences in growth conditions led to 

vertical positional discrepancies even among adjacent plants. By comparing seedling row position data across 

the five images, the crop boundaries were successfully identified, reflecting the spatial distribution of the crops. 

 
 

 

CONCLUSIONS 

 To address the challenges of crop recognition and segmentation in weedy field environments, this 

study proposed a crop recognition model based on a semantic segmentation network, enabling pixel-level 

differentiation between crops and weeds. From the segmented pure crop layer, the model extracted crop 

contour features and positional information to determine the location of the seedling rows in which the crops 

were situated. 

 A crop semantic segmentation network was constructed using semantic segmentation techniques. 

Model evaluation showed that the network achieved accuracy rates of 0.9865 on the training set and 0.9864 

on the validation set, with corresponding loss values of 0.0254 and 0.0270. In real-time sequential processing, 

the average time required for semantic segmentation per image was 120 milliseconds, while crop row 

extraction took an average of 23 milliseconds. 

 By employing a multi-frame data caching strategy, the number of crop objects available for row 

extraction was increased in scenarios with sparse crop distribution, thereby enhancing the accuracy of crop 

row recognition. 
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