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ABSTRACT  

Intelligent and accurate shelling technology is essential for improving the quality of clam products. To enable 

the rapid and precise localization of clam meat in Ruditapes philippinarum (with half-shell) on an automated 

processing line, an improved clam meat detection algorithm - EET-YOLOv5, based on YOLOv5s - is proposed. 

This algorithm enables real-time detection and localization of clam meat on the production line. It integrates 

the Efficient Local Attention (ELA) mechanism to enhance target localization, adopts the EIoU loss function to 

reduce bounding box regression error, and replaces the original detection head with a TSCODE decoupled 

head to improve detection accuracy. The algorithm achieved a Precision of 93.03%, Recall of 97.03%, and 

mean Average Precision (mAP) of 93.55%, with a detection speed of 13.3 ms. Compared to YOLOv4, Faster 

R-CNN, SSD, and the standard YOLOv5 series, EET-YOLOv5 demonstrated superior performance. It was 

deployed on a test workbench for positioning experiments, achieving an average response time of 1.8 seconds 

and a positioning success rate of 92.7%, indicating its suitability for automated clam shell-meat separation 

production lines. 

 

摘要 

智能化、精确化的脱壳技术是提高蛤肉产品质量的关键。为了实现自动化加工生产线上对开半壳的菲律宾蛤仔

中蛤肉的快速准确识别，提出了一种基于 YOLOv5s 改进而来的蛤肉检测算法（EET-YOLOv5），可以对生产

线上的蛤肉进行实时定位识别。该算法融合 Efficient Local Attention（ELA）注意力机制，能够有效捕捉目标

位置；采用 EIOU 损失函数，减少边界框回归损失；使用 TSCODE 解耦头替换原有检测头，提高检测准确

率。该算法检测蛤肉的精确率、召回率和平均精度均值分别达到 93.03%，97.03%，93.55%，检测速度达到

13.3ms。将其与 YOLOv4、Faster-RCNN、SSD 和 YOLOv5 系列等算法比较具有明显优势。将其部署在实验

台上进行定位试验，平均耗时 1.8 秒，成功率 92.7%，适用于自动化蛤仔壳肉分离生产线。 

 

INTRODUCTION 

As a bivalve shellfish with low farming cost and short cycle time, Philippine clams (Ruditapes 

philippinarum) are widely farmed worldwide for their high food and medicinal values (Chang et al., 2007). 

Global production exceeds 3 million tons annually (Lin et al., 2022), and this large volume has driven 

continuous advancements in its processing technology. Shell-flesh separation is an important part of Ruditapes 

philippinarum processing (Zhao et al., 2023). Manual shelling is time-consuming and laborious, so automatic 

shelling technology has emerged. The traditional automatic shell-meat separation method is mainly based on 

thermal shelling and mechanical shelling. Thermal shelling involves heating shellfish at high temperatures to 

inactivate or denature the adductor muscle fibers, thereby enabling the separation of the meat from the shell. 

In contrast, mechanical shelling uses mechanical methods to open the shell and extract the meat without the 

need for heat treatment, resulting in a fresher product. However, most current mechanical shelling methods 

suffer from limitations such as low accuracy and complex shell-clamping mechanisms, which hinder production 

efficiency. Additionally, thermal shelling significantly compromises the freshness of the shellfish, making it 

unsuitable for meeting market demands (Zhang et al., 2013). 

With the development of intelligent technology, the target detection network plays a key role in shellfish 

processing. Wang Haifeng proposed a new shellfish recognition algorithm, which uses Gabor filter combined 

with 2D PCA to extract shellfish image features. The average correct recognition rate of this method on the 

self-made data set reaches 96.7 % (Wang et al., 2016). Feng Yiran et al., (2022), developed a shellfish 

recognition algorithm based on Faster R-CNN. DenseNet was used instead of the feature extraction module 

to fuse features at different levels, and the NMS algorithm was optimized to overcome the problems of shellfish 

overlap and omission, and the shellfish classification accuracy was improved by 4 %.  
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Zhang Yang et al., (2022), proposed the FCnet algorithm for accurate detection and recognition of multi-

target shellfish. He added the AttResNet101 backbone network containing the multi-spectral channel attention 

mechanism to the DeFCN network to obtain rich information of the original features, and improved the feature 

extraction module to improve the accuracy of small target recognition. Dong Zhaopeng et al., (2023), used the 

CST-YOLOv5 algorithm to identify mussels, and the mAP index was improved by 1.583% compared with the 

original algorithm. Yu Zhe et al., (2025), developed a freshwater snail detection algorithm based on YOLOv8-

OBB, which effectively improved the detection accuracy for small targets, and the mAP0.5 reached 80.6 %. 

Liu Zhenlong et al., (2025), used the YOLOv10-MECAS algorithm to identify sea cucumbers, effectively 

overcoming the problem of low underwater visibility. On their custom dataset, the algorithm achieved a 

mAP@0.5 of 90.4%. 

Intelligent processing is the key technology to improve the production efficiency and product quality of 

shellfish. For the Ruditapes philippinarum, the clams that have been opened on the production line can be 

dynamically monitored in real time to accurately locate the clam meat and guide the clamping device to take it 

out, thereby improving the success rate of shell meat separation and ensuring the freshness of the clam meat. 

Therefore, a target detection network based on YOLOv5s is designed to detect clam meat on the production 

line and provide accurate positioning for the intelligent clamping device.  

 
MATERIALS AND METHODS 

Image acquisition 

Shelled clams (Ruditapes philippinarum) were photographed, and the captured images were processed 

and used for training the network model. The images were taken in the Marine Products Processing Laboratory 

of Shandong University of Technology. The clams used in this study had naturally grown for 16 months after 

sowing. To replicate conditions on a processing line, the clams were placed naturally on a small conveyor belt 

with the shell openings facing upward. The clams were neither fixed in position nor stacked. To ensure diversity 

in the dataset, images were captured from various angles, distances, and under different lighting conditions. 

A smartphone was used as the imaging device. A total of 857 images were taken at a resolution of 4096 × 

3072 pixels, from which 775 images were selected after screening. A sample of the collected clam meat images 

is shown in Figure 1. 

 

Fig. 1 - Part of the clam meat image collected 

 

 

Data preprocessing and dataset construction 

Before training the target detection network, the captured image data were preprocessed to construct a 

usable dataset. The LabelImg tool was used to annotate the location of clam meat targets by drawing bounding 

boxes. The corresponding location information was saved in TXT annotation files, and both the images and 

annotations were organized into a standard YOLO-format dataset. Since the manually captured images lacked 

sufficient scene complexity and quantity for effective model training, data augmentation was applied to expand 

and diversify the dataset. Augmentation techniques included random rotation, scaling, aspect ratio adjustment, 

contrast enhancement, and the addition of Gaussian noise. The final dataset consisted of 2,300 images, with 

150 images designated as the test set. The remaining 2,150 images were randomly divided into a training set 

and a validation set at an 8:2 ratio, resulting in 1,720 training samples and 430 validation samples. 
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YOLOv5 algorithm 

YOLOv5 is a single-stage object detection algorithm developed as an improvement over previous 

models in the YOLO series, particularly YOLOv4. In the input stage, YOLOv5 incorporates Mosaic data 

augmentation and an adaptive anchor box mechanism, which significantly enhance the detection performance, 

especially for small targets. The overall structure of YOLOv5 is illustrated in Figure 2. 

In the backbone network, the CSP structure is employed to reduce the number of parameters. The SPPF 

module is integrated to improve the detection of objects at varying scales without compromising inference 

speed. In the neck, the FPN combined with PAN enables effective multi-scale feature fusion and target 

localization. With its high detection accuracy and low deployment cost, YOLOv5 is well-suited for rapid 

deployment on mobile and embedded devices. Therefore, it was selected as the base algorithm for target 

detection in this study. 

 

Fig. 2 - YOLOv5 network architecture diagram 

Conv denotes the convolution operation; BN is normalization operation; SiLU is the Sigmoid Linear Unit activation function; 
 Concat represents channel-wise concatenation and Add indicates element-wise addition 

 

ELA attention mechanisms 

Attention mechanisms enable networks to focus on meaningful parts of images. The attention 

mechanism can act on two dimensions of channel and space, namely channel attention and spatial attention. 

Common attention mechanisms include SEnet (Hu et al., 2019), ECA (Wang et al., 2020), CBAM (Woo et al., 

2018), CA (Hou et al., 2021), ELA (Xu et al., 2024), etc.  

In this study, the focus is on the localization of clam meat, which exhibits an irregular shape and a 

yellowish color after the shell is opened. Under varying lighting conditions, the clam meat often shares a similar 

color with the inner surface of the shell, making accurate localization challenging. To address this, it is crucial 

to minimize channel information loss during the extraction of spatial and channel features in order to obtain a 

clearer target contour. To achieve this, the Efficient Local Attention (ELA) module is introduced to enhance 

feature map processing and preserve critical information for more accurate contour detection. 

ELA performs pooling operations along the width and height dimensions of the input tensor to extract 

global features in both directions. These features preserve both channel and spatial information, aiding the 

neural network in accurately locating target coordinates. Additionally, the pooling mechanism provides a global 

receptive field, enabling the establishment of long-range dependencies between elements. To further refine 

feature extraction while maintaining computational efficiency, one-dimensional convolution is applied. This 

approach ensures effective feature representation without reducing the number of channels.  

GroupNorm is applied to normalize data batches (Wu et al., 2018), effectively mitigating the problem 

of vanishing gradients and enhancing the generalization capability of the network. Using the Sigmoid activation 

function, directional weight coefficients are computed and subsequently multiplied with the input feature map 

to refine the feature representation. Integrating the ELA module before the SPPF structure enables more 

accurate localization of regions of interest and improves the network’s feature learning capacity. The 

architecture of this structure is illustrated in Figure 3. 
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Fig. 3 - ELA attention mechanism architecture diagram.  
X,Y Avg Pool is average pooling operation along the X and Y directions; Conv1d is one-dimensional convolution operation;  

GroupNorm is group normalization layer; Sigmoid is the sigmoid activation function 

 
 The ELA attention mechanism is calculated as follows: 

𝑍𝑐
ℎ(ℎ) =

1

𝑊
∑ 𝑥𝑐(ℎ, 𝑖)0≤𝑖<𝑊 (1) 

𝑍𝑐
𝑤(𝑤) =

1

𝐻
∑ 𝑥𝑐(𝑗, 𝑤)0≤𝑗<𝐻 (2) 

𝑦ℎ = 𝛿 (𝐺𝑛(𝐹ℎ(𝑧ℎ))) (3) 

𝑦𝑤 = 𝛿 (𝐺𝑛(𝐹𝑤(𝑧𝑤))) (4) 

𝑌 = 𝑥𝑐 × 𝑦ℎ × 𝑦𝑤 (5) 

 
Here, Z

h 

c (h) is the pooled output of the c th channel at height h. W is the Width of input features. xc (i,j) is 

the elements at (i,j) in channel c. Z
w 

c (w) is the pooled output of the c-th channel at width w. H is the Width of 

input features. zh is the characteristic map after pooling in the vertical direction. Fh is One-dimensional 

convolution in the vertical direction. Gn is grouping normalization. δ is sigmoid activation function. yh is the 

vertical attention weights. zw is the characteristic map after pooling in the vertical direction. Fw is One-

dimensional convolution in the vertical direction. yw is the vertical attention weights. Y is the output result. 
 

Loss function optimization 

The loss function is the core of the deep learning parameter optimization process. The model 

parameters are adjusted by minimizing the loss function to improve the prediction accuracy and generalization 

ability of the model. The loss function mainly considers the influence factors such as Euclidean distance, 

intersection over union and aspect ratio between the real box and the prediction box. The most widely used 

loss functions are GIOU (Rezatofighi et al., 2019), CIOU (Zheng et al., 2020), and SIOU (Gevorgyan, 2022), 

etc. The original network of YOLOv5 uses CIOU as the loss function. CIOU considers the overlap area, 

distance and aspect ratio of the predicted box and the ground truth box. However, the penalty term on the 

aspect ratio does not take into account the same aspect ratio of the two frames and the increase and decrease 

of the aspect gradient at the same time. 

Therefore, this paper introduces EIOU to address this issue, which overcomes the limitations of 

conventional IoU-based losses by decomposing the aspect ratio penalty into two separate components - height 

and width - and calculating them independently. This approach enhances detection accuracy and accelerates 

network training. The EIoU loss is calculated as follows: 

  

   𝐸𝐼𝑂𝑈 = 𝐼𝑂𝑈 −
𝜌2(𝑏, 𝑏𝑔𝑡)

(ℎ𝑐)2 + (𝑤𝑐)
−

𝜌2(ℎ, ℎ𝑔𝑡)

ℎ𝑐
−

𝜌2(𝑤, 𝑤𝑔𝑡)

𝑤𝑐
(6) 

𝐿𝐸𝐼𝑂𝑈 = 1 − 𝐸𝐼𝑂𝑈 (7) 

                                                 

Here, IOU is the intersection over union of ground truth box and predicted box. h,hgt is the height of gt-

box (ground truth box) and p-box (predicted box). w,wgt is the Width of gt-box and p-box. ρ(b,bgt) is the Euclidean 

distance between the gt-box and p-box, and hc, wc is the height and width of the smallest external rectangle. 

LEIOU  is the Value of EIOU's losses. 
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Detection head improvement 

Clam meat detection falls under the category of small target detection, with irregular and indistinct edges. 

Therefore, high localization accuracy is essential, and the TSCODE decoupled head is employed to enhance 

target detection performance. The YOLOv5 original network structure uses a coupled detection head to 

complete the classification and positioning tasks of the target at the same time. However, for some feature 

regions, there are rich semantic features inside and a lot of boundary texture on the boundary. The 

classification task needs to pay attention to the internal position, while the positioning task needs to pay 

attention to the boundary position. There is a conflict between the two requirements. If the same feature map 

is used, spatial misalignment may occur, affecting the positioning accuracy (Song et al., 2020; Wu et al.,2020). 

The TSCODE decoupled header enables the two to be performed separately. It uses the Semantic Context 

Encoding (SCE) module to generate feature encoding containing high semantic information, and Detail 

Preserving Encoding (DPE) to provide high-resolution feature maps containing edge information to perform 

the classification and localization tasks respectively. Its structure is shown in Fig. 4. 

 

Fig. 4 - TSCODE decoupled head architecture diagram.  
SCE is Semantic context encoding operation; DPE is Detail preserving encoding operation;  

cls_out is the classification results; reg_out is the Predicted Bounding Box location and size information;  
conf_out is the confidence for predicted bounding box 

 

Set up the experimental platform 

A test rig was constructed to verify the real-world deployment performance of the proposed algorithm. 

The test system consists of a small conveyor, a gantry-type test rig, an XY linear synchronous belt, a binocular 

camera, an Arduino control board, and a laser emitter. To accurately analyze the spatial relationship between 

the laser emitter and the clam meat, multiple coordinate systems were established: OA at the position of the 

shell meat, OB at the position of the laser emitter, OC at the position of the binocular camera, and OW at the 

base of the test bench. The configuration of the experimental setup and coordinate systems is illustrated in 

Fig. 5.  

 

 
Fig. 5 - Test rig schematic diagram 
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RESULTS 

Experimental environment 

The core processor (CPU) used in this test was Intel I7-11700K, and the graphics card was NVIDIA RTX 

A4000 24G. The operating system was Win11, The deep learning framework was built using PyTorch 1.8.1, 

CUDA 11.1, and TensorFlow 2.4.1, with Python 3.8.19 as the programming language. At the beginning of 

training, the input image size was set to 640 * 640, the training was optimized by SGD, the maximum number 

of iterations was set to 1200 rounds, the batch_size was set to 8, and the maximum learning rate was set to 

0.001. The cosine annealing learning rate adjustment algorithm was used to dynamically adjust the learning 

rate, so as to accelerate the convergence speed of the model and enhance the generalization ability of the 

model. 

 

Evaluation indicators 

To assess the model's real-world performance, several evaluation indicators are used, including 

Precision (P), Recall (R), mean Average Precision (mAP), number of model parameters, box loss (box_loss), 

and object loss (obj_loss). The calculation formulas are as follows: 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (8) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (9) 

      

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
(10) 

𝑚𝐴𝑃 =
∑ 𝐴𝑃

𝑁
(11) 

Here, TP (True Positives) represents the number of samples that were correctly rejected, FP (False 

Positives) represents the number of incorrectly rejected samples. FN represents the number of samples that 

were missed, AP represents the average precision of the model's assessment of a class of targets and mAP 

represents the mean accuracy of all categories of targets. 

Box_loss represents the error between the ground truth box and the predicted box. 

Obj_loss represents the probability of error in the model's judgement of the presence or absence of an 

object in the predicted box. 

 

Comparison of ablation experimental performance 

To evaluate the impact of individual improvements on the target detection performance, ablation 

experiments were conducted using YOLOv5s as the baseline model. Three components were tested: the ELA 

attention mechanism, the SIoU loss function, and the TSCODE decoupled head. Each component was added 

separately to the baseline, and then all were integrated to form the final improved YOLOv5s model. The results 

of the ablation experiments are summarized in Table 1, where “√” indicates that the corresponding component 

was applied, and “—” indicates that it was not. 

 
Table 1 

Results of the ablation experiment 

ELA EIOU TSCODE 
Precision  Recall mAP_0.5* 

[%] [%] [%] 

— — — 91.98 94,46 91.66 

√ — — 91.92 94.81 91.70 
— √ — 92.16 95.78 92.48 

— — √ 92.50 96.51 92.57 
√ √ √ 93.03 97.03 93.55 

Note: * mAP_0.5 is the mean average precision of each category when the Intersection over Union threshold is 0.5 

 
 
It can be observed from Table 1 that adding the ELA attention mechanism alone results in a change of 

-0.06% in Precision, and slight improvements of 0.35% in Recall and 0.04% in mAP. When the SIoU loss 

function is applied individually, the three indicators increase by 0.18%, 1.32%, and 0.82%, respectively.  
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The introduction of the TSCODE decoupled head alone leads to improvements of 0.52% in Precision, 

2.05% in Recall, and 0.91% in mAP.  

When the modalities for improvement are combined, the accuracy rate of the improved YOLOv5s model 

reaches 93.03 %, the recall rate is 97.03 %, and the mAP value is 93.55 %. Compared with YOLOV5s, it 

increased by 1.05 %, 2.57 % and 1.89 % respectively.  

The results demonstrate that the use of the TSCODE detection head, which decouples classification 

and localization tasks, effectively prevents mutual interference between the two and significantly enhances 

detection accuracy. The SIoU loss function improves the convergence behavior of the detection frame. While 

the ELA attention mechanism enhances Recall, it causes a slight decrease in Precision. The most notable 

performance improvement is achieved when all three components are combined, yielding results that 

outperform the original YOLOv5s algorithm. Accordingly, the improved model is named EET-YOLOv5.  

 

Performance comparison of YOLOv5 algorithms for different sizes 

To evaluate whether the improved model maintains high detection accuracy while remaining lightweight, 
a performance comparison was conducted against more complex models from the YOLOv5 series. All models 
were tested under identical conditions. The comparison results are presented in Table 2. 

Table 2 
Comparative experimental results 

Model 
Precision Recall mAP_0.5 

Model 
parameter 
quantity 

Detection 
speed 

[%] [%] [%] [M] [ms] 

EET-YOLOv5 93.03 97.03 93.55 11.62 13.3 

YOLOv5m 95.92 96.72 93.32 21.23 14.4 

YOLOv5l 92.03 95.73 89.83 46.51 20.8 

YOLOv5x 96.01 95.81 95.01 86.77 39.5 

 
Analysis of the results in the table shows that the average accuracy of EET-YOLOV5 is 0.23% higher 

than YOLOv5m and 1.46% lower than YOLOv5x. The number of model parameters is 54.7%, 25%, and 13.4% 

of the YOLOv5m, YOLOv5l, YOLOv5x, respectively. And the detection speed is 1.1 ms, 7.5 ms, and 26.2 ms 

faster than the three, respectively.  

Based on the results, it can be seen that the EET-YOLOv5 algorithm exceeds the detection accuracy of 

YOLOV5m, approaches the detection accuracy of YOLOv5x, and has an advantage in detection speed, 

despite having fewer parameters. Its application in clam meat detection scenarios can ensure the detection 

accuracy while achieving model lightweight. 

 

Performance comparison of different target detection models 

In order to prove the superiority of EET-YOLOv5 algorithm, it is compared with other algorithms. Table 

3 shows the performance parameters of the four networks. 

Table 3 
Comparative experimental results 

Model 
Precision Recall mAP_0.5 

Model 
parameter 
quantity 

Detection 
speed 

[%] [%] [%] [M] [ms] 

EET-YOLOv5 93.03 97.03 93.55 11.62 13.3 

YOLOv4 86.47 91.20 91.13 61.05 14.1 

Faster-RCNN 88.50 90.24 89.06 63.09 52.9 

SSD 81.31 86.78 81.43 10.71 8.4 

 
 
Analysis of the data in the table shows that the average accuracy of EET-YOLOv5 is improved by 

2.42%,4.49%,12.12% compared to YOLOv4, Faster-RCNN and SSD, respectively. The number of model 
parameters is 19.0%, 18.4% and 108.4% of the three, respectively. The detection speed is improved by 0.8 

ms, 39.6 ms and decreased by 4.9 ms over SSD compared to the former two respectively. 
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The analysis based on the results is as follows： 

1) Compared with YOLOv4, YOLOv5 applies the CSP structure more widely in Backbone and Neck 

modules, and can calculate the anchor frame size automatically, which improves the detection speed and 

reduces the model parameters while guaranteeing the accuracy, and the improved EET-YOLOv5 has a greater 

improvement in accuracy. 

2) Faster-RCNN as a two-stage detection algorithm, has a significantly lower detection speed than EET-

YOLOv5, which is a single-stage detection algorithm. Since the detection algorithm proposed in this study is 

intended for use on a dynamically operating production line, real-time performance is critical. The low detection 

speed of Faster R-CNN would negatively impact production efficiency, making it unsuitable for this application 

scenario. 

3) The lightweight detection algorithm SSD demonstrates advantages over EET-YOLOv5 in terms of 

fewer parameters and faster detection speed. However, its detection accuracy is significantly lower than that 

of EET-YOLOv5.  

To sum up, EET-YOLOv5 is more suitable for clam meat detection. The comparison of average precision 

across different models is illustrated in Figure 6. 

 

Fig. 6 - Mean average precision (mAP) curves of different target detection algorithms 
Epochs is the number of training rounds 

 

 

To provide a more intuitive comparison, the detection results of the four target detection algorithms on 

the same test set are visualized. The results are presented in Figure 7. 

 

EET-YOLOv5 
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YOLOv4 

    

Faster-RCNN 

   

SSD 

    A B C 

Fig. 7 - Results from various object detection networks 

 

As shown in Figure 7, panels A and B represent detection results under normal illumination conditions. 

Under these conditions, YOLOv4 and SSD exhibit both missed and false detections, along with low confidence 

scores. While Faster R-CNN and EET-YOLOv5 successfully detect all targets, the confidence scores produced 

by Faster R-CNN are lower than those of EET-YOLOv5. Panel C shows detection performance under 

simulated strong indoor lighting. In this scenario, all detection networks except EET-YOLOv5 fail to detect one 

or more targets. EET-YOLOv5 successfully detects all clam meat instances with higher confidence than the 

other models. These comparative experiments demonstrate that EET-YOLOv5 achieves the best overall 

performance across varying lighting conditions. However, the experiments also revealed that in a few cases 

where clams were severely damaged during shelling, EET-YOLOv5 missed detections due to irregular shapes 

of the clam meat. This issue may be addressed by improving the shell-opening method and further optimizing 

the target detection network. 
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Workbench experiment 

To validate the real-world deployment effectiveness of the proposed algorithm, a workbench experiment 

was conducted for clam meat positioning. A test bench was constructed, where a binocular vision system was 

used to capture the position parameters of the clam meat. Based on the detected coordinates, the system 

calculated the movement parameters for the XY synchronous belt, guiding a laser emitter to align precisely 

above the target. Successful laser irradiation of the clam meat indicated accurate positioning. 

The experiment was conducted in the Marine Products Processing Laboratory at Shandong University 

of Technology. The setup is shown in Figure 8. A total of 120 positioning trials were carried out, achieving an 

average positioning time of 1.8 seconds and an average success rate of 92.7%, demonstrating the system's 

feasibility for practical application. 

 

 

Fig. 8 - Workbench experiment 

 

CONCLUSIONS 

Intelligent shelling technology plays a key role in maintaining the freshness of clam meat while improving 

the efficiency of shell-meat separation, and it represents a promising development direction for the processing 

of Ruditapes philippinarum. In this study, an improved target detection network - EET-YOLOv5, based on 

YOLOv5 - was proposed for identifying clam meat on an automatic shelling production line.  

Several enhancements were introduced to the original YOLOv5s architecture. The Efficient Local 

Attention (ELA) mechanism was added to the backbone network to suppress irrelevant information and 

enhance feature learning. The original CIoU loss function was replaced with the EIoU loss function to improve 

detection accuracy and network training speed. Additionally, the original detection head was replaced with the 

TSCODE decoupled head to improve both localization precision and classification accuracy. Ablation and 

comparative experiments were conducted to validate the effectiveness of these improvements. On a custom 

dataset, the proposed EET-YOLOv5 network achieved 93.03% precision, 97.03% recall, 93.55% mean 

average precision (mAP), and a detection speed of 13.3 ms, while maintaining high detection accuracy under 

varying lighting conditions. The main source of false detections was attributed to clam meat deformation 

caused by shelling, which can be addressed by improving the shell-opening process. The algorithm was 

deployed on a physical test bench for real-world positioning experiments, achieving an average positioning 

time of 1.8 seconds and a success rate of 92.7%. Although the model complexity of EET-YOLOv5 is slightly 

higher than that of the original YOLOv5s, the improvement in detection performance is substantial. Compared 

to other mainstream detection algorithms such as YOLOv4, Faster R-CNN, SSD, and models in the YOLOv5 

series, EET-YOLOv5 shows clear advantages and is capable of meeting the demands of clam meat detection 

in production environments. 
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