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ABSTRACT 

Fruit instance segmentation algorithms are critical for target localization in fruit-picking robots, enabling accurate 

area estimation of fruits within images. However, existing methods often face limitations such as high 

computational cost, poor adaptability to low-power devices, and reduced detection performance in complex 

environments. To address these challenges, YOLOSeg-Jujube was proposed - an improved instance 

segmentation algorithm based on YOLOv8 - validated on a jujube image dataset annotated with bounding 

polygons. The architecture of YOLOSeg-Jujube was optimized through ablation studies to identify the most 

effective structure. The final network design includes Focus, CBS, Conv4cat, SPD, and SPPFr modules as the 

backbone, and a YOLOv8 head incorporating the SIoU loss function. Compared to YOLOv4-tiny, YOLOv5n, 

YOLOv7-tiny, and YOLOv8n, YOLOSeg-Jujube achieves reductions in parameter size of 62.8%, 9.8%, 73.9%, 

and 23.6%, respectively. The model achieves 83.5% B_mAP and 83.2% S_mAP, outperforming mainstream 

YOLO variants in both segmentation accuracy and area estimation of target objects. YOLOSeg-Jujube is robust, 

fast, and computationally efficient, making it suitable for deployment on resource-constrained platforms. 

Furthermore, it demonstrates strong potential for recognizing ripeness stages of fresh jujubes, providing technical 

support for intelligent harvesting systems in the field. 

 

摘要  

水果实例分割算法是水果采摘机器人目标定位的重要方法。能够确保对图像中的目标进行正确的区域估算。与此

同时，模型在复杂农业环境下计算成本高、不便于在低功耗计算设备上部署等都对水果采摘机器人用实例分割造

成限制。因此，为了解决这些问题，本研究在 YOLOv8 的基础上设计了 YOLOseg-Jujube，并在自然光照环境下

的红枣图像数据集上进行了验证。YOLOseg-Jujube 网络由 Focus、CBS、Conv4cat、SPD 和 SPPFr 组成骨干网

络，YOLOv8 head 和 SIoU loss 组成头部网络。通过对比，YOLOseg-Jujube 的参数分别比 YOLOv4-tiny、

YOLOv5n、YOLOv7-tiny 和 YOLOv8n 低 62.8%、9.8%、73.9% 和 23.6%。YOLOseg-Jujube 的 B_mAP 为 

83.5%，S_mAP 为 83.2%，YOLOseg-Jujube 在分割目标的面积估计方面性能优于 YOLO 主流变体的算法。

YOLOseg-Jujube 算法稳健、快速、准确，计算成本低，并且能够识别枣果的成熟阶段，可为田间鲜枣采摘机器

人的研究提供技术支撑。 

 

INTRODUCTION 

Jujube (Ziziphus jujuba) is a fruit that is known around the world for its high in vitamins and minerals and 

low calories. The fruit comes with a host of several health benefits to humans. Nevertheless, it is a difficult task to 

sort and harvest, including hand-picking the fruit, since their maturity stages, for example, change from green to 

dark red. Meanwhile, jujube fruit can be divided into white, crisp, or fully mature depending on its color, flesh 

firmness, and composition. A fruit detection method using deep learning offers the best solution to recognize and 

locate the jujube fruit targets in an image or video according to Yichen et al., (2022) and Defang et al., (2023). This 

method allows for proper monitoring, quick sorting, and accurate harvesting of fruit. Notwithstanding, an extensive 

investigation on jujube fruit instance segmentation is needed to consolidate fruit detection.  
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Furthermore, it is essential to develop an algorithm with fewer parameters, greater robustness, and better 

compatibility with low-power computing devices such as the Nvidia Jetson Nano and Raspberry Pi, which will help 

extend the packing robot's battery life and enhance picking efficiency. 

The ability to detect fruit targets using computer vision with deep learning has been widely investigated by 

researchers over the years, providing a groundbreaking outcome in fruit-quality detection and estimation (Wang 

Z., Walsh, & Koirala, 2019), fruit counting (Yanchao et al., 2022), yield prediction (Koirala, Walsh, Wang, & 

McCarthy, 2019), harvesting/picking robot applications (Lawal, 2021), and so on. However, the complex 

environment, such as occlusion, illumination, background, and nonstructural field, where fruits are grown, is still a 

difficult factor for fruit detection. Additionally, it is limited to rectangular bounding boxes, which in turn led to the 

introduction of fruit instance segmentation. Fruit instance segmentation is more granular with target shape 

deterministic through pixel characterization compared to fruit detection. 

The application of the You Only Look Once object detector has demonstrated remarkable performance for 

fruit detection. Using YOLOv3, Redmon & Farhadi, (2018), Wendong, Yakun, Jing, & Gang, (2021) improved the 

method, and reported an average precision (AP) of 95.56% and speed of 35.5 frames per second (fps) for real-

time object detection revealed AP of 90.05% and speed of 29.4 fps for kiwifruits detection in orchard. Fu et al., 

(2021), Yang-Yang et al., (2019), reported AP of 88.8% and speed of 40 fps for muskmelon fruit detection, Peichao, 

Hao, Kunfeng, Jiachao, & Shanda, (2023), designed MYOLO to achieved mean AP of 97.03% and speed of 50.6 

fps for mushrooms detection, and Liu G., Nouaze, Mbouembe, & Kim, (2020) proposed YOLO-Tomato to reached 

94.58% of AP and revealed that the factors of fruit detection are solvable. Next, Yunchao, et al., (2023), reported 

92.07% of AP and speed of 32.3 fps based on YOLOv4 (Bochkovskiy, Wang, & Liao, 2020) to detect each camellia 

oleifera fruit targets in orchard. The modification of YOLOv4-tiny by Borja & Tofael, (2021), revealed a speed of 

more than 50 fps and AP of 94.19% for real-time pear fruit detection and counting. Huang & Wu, (2023), designed 

GCS-YOLOv4-tiny and reported AP of 93.42% to detect different growth stages of fruits. Owning to YOLOv5 

Defang et al., (2023), proposed YOLO-Jujube and achieved AP of 88.8% and a speed of 245 fps to detect jujube 

fruit, and the counting method of red jujube by Yichen et al., (2022) recorded AP of 94% and speed of 35.5 fps.  

Bin Y et al.( 2021) reported AP of 86.75% and a speed of 66.7 fps to detect apple fruit targets, and  Bin Z. et al., 

(2022) realized AP of 97.4% to detect a dragon fruit using modified YOLOv5. The proposed YOLOv5s-cherry by 

Gai et al., (2021) for cherry detection revealed F1-score of 0.08 and 0.03 more than the YOLOv4 and YOLOv5, 

respectively. The YOLOv7 by Wang, Bochkovskiy, & Liao, (2023), was declared to have outperformed YOLOv4 

and YOLOv5 in object detection performance. Bin et al., (2022), revealed AP of 95.6% and 96.0% respectively 

using YOLOv7 and YOLOv7-tiny for dragon fruit detection, and Junyang et al., (2022), modified the YOLOv7 to 

achieved AP of 97.29% and a speed of 14.4 fps for citrus detection. In quest for improvement, YOLOv8 by Jocher 

et al, (2023), was introduced, having a new feature with anchor free that can directly predict the center of the target, 

rather than offset of the known anchor box. Anchor free reduces the number of box predictions to speeds up Non-

Maximum Suppression (NMS) post processing. YOLOv8 is designed to be flexible, easy to use, fast and accurate 

compared to previous versions of YOLO framework, but still in the development stage. Regardless, the YOLO 

variants algorithm for fruit detection has a complicated network topology that is hard to understand, cannot 

estimate the area of fruit targets in an image, cannot properly address occlusions by leaves, branches or other 

clusters, and are anchor-based detectors excluding YOLOv8. Furthermore, the YOLOv8 network is yet to be 

experimented for fruit detection, including for fruit instance segmentation. 

To approach fruit instance segmentation, several investigations have been conducted using Mask R-CNN 

(He, Gkioxari, Dollár, & Girshick, 2017) as two-stage detector. Santos, et al., (2020), addresses occlusions and 

recorded F1-score up to 91%, and the DualSeg proposed by Jinhai et al., (2023), reported 83.7% for grape instance 

segmentation. Chan et al., (2021), demonstrated robustness against various illuminations and complex 

backgrounds, and yielded AP of 94.7% for mangoes instance segmentation. The amodal segmentation algorithm 

proposed by Jordi et al., (2023), was designed to predict the complete shape of apple different growth stages 

under visible and occluded regions and it achieved an AP between 44% and 51% with a mean absolute error 

(MAE) of 4.5 mm. Dandan & Dongjian, (2022), improved Mask RCNN by fusing an attention module into the 

backbone network to enhance feature extraction ability and apples were accurately segmented under various 

conditions, having a recall, precision, F1-score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, 

respectively, with average run-time of 4 fps. Pengyu et al, (2021), developed a suppression branch and added it 
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Mask R-CNN for apple segmentation. The experimental results showed a significantly enhanced F1-score of 90.5% 

and detection time of 4 fps. The MASU R–CNN proposed by Tian et al, (2020), for instance segmentation of apple 

flowers reached precision of 96.43%, recall of 95.37%, F1-score of 95.90%, and mAP of 59.4%, outperforming 

other state-of-the-art models. Liu et al., (2019), reported AP and inference time of 89.47% and 2.9 fps, respectively, 

on improved Mask-RCNN for cucumber instance segmentation. Nevertheless, the research experimented on 

Mask-RCNN for fruit instance segmentation tends to have a very large weight-size, which slower the detection 

speed. The detection speed of a single-stage is faster than a two-stage detector, according to Koirala et al., (2019) 

and (Olarewaju M. Lawal, 2021). For this reason, Kang & Chen, (2020), developed single-stage DaSNet-v2 for 

fruit detection and instance segmentation, and semantic segmentation of branches under complex orchard 

environment. The results demonstrated a weight-size of 8.1 MB with speed of 18 fps, but still require further 

performance improvement. Recently, Mubashiru, (2023), designed YOLOv5-LiNet based on YOLOv5 for fruits 

instance segmentation, which achieved box AP of 89.3%, instance segmentation AP of 88.5%, and real-time 

speed of 385 fps with weight-size of 3.0 MB. However, there are a few experiments using YOLO framework, 

including anchor-free YOLOv8 for fruit instance segmentation. Therefore, this article developed YOLOseg-Jujube 

based on improved YOLOv8n architecture to real-time detect and segment fruit targets in the complex environment.  

 

MATERIALS AND METHODS 

Dataset description 

The jujube fruit dataset used in this paper was obtained by Defang et al., (2023), set for ripeness inspection 

method. According to Defang et al., (2023), the images were collected from Gaolang Red Date Picking Garden, 

Linxian County, Luliang, Shanxi, China using Huawei mate30pro and mate40pro of resolution 1904×4096 and 

2736×3648 pixels, respectively. With reference to white and crisp mature stage under complex environment such 

as leaf occlusion, overlap occlusion, dense target fruit, branch occlusion, illumination, earth background, sky 

background, and other fruit natural scenes, these images were taken in the morning, midday and afternoon with 

constantly changing shooting angle and distance. Table 1 describes the image dataset details under different 

conditions. A total of, 1959 images in JPG format and recorded video in mp4 were collected. Furthermore, these 

images were randomly divided into 80% train-set, 15% valid-set, and 5% test-set, and the ground truth bounding 

boxes of each target in an image were hand labeled into 80R (Crisp mature ripeness) and 70R (White mature 

ripeness). Nevertheless, the image dataset was improved for jujube fruit instance segmentation in this paper using 

Labelme  annotation tool. Similarly, the supposed polygon shape of the fruit targets in an image was drawn without 

special attention to the condition of the image, and the annotation files were saved in COCO format. Then, the 

COCO format was converted into the Poly-YOLO txt format. The Poly-YOLO txt format takes target category 

followed by xy to xn yn for instance segmentation, where xy is the coordinate for n polygon point. A total of, 10912 

and 1921 bounding polygons were created respectively from 1569 train-set and 292 valid-set, similar to the box’s 

information of Defang et al., (2023). The 98 test-set images and the provided video were not annotated, but rather 

treated as unseen data, used to measure the level of algorithm robustness towards generalization. 

 

Table 1 

Image dataset details under different conditions 

Time taken Occlusions Dense targets Close targets illumination Others 

Morning 280 95 131 105 39 

Midday 268 99 150 110 33 

Afternoon 270 85 166 92 36 

Source: (Defang et al., 2023) 

 

YOLOseg-Jujube 

The architecture of YOLOseg-Jujube makes use of some key components to perform both fruit detection and 

instance segmentation tasks according to Fig. 1. As a build on YOLOv8n, it consists of backbone, neck and head 

network. The backbone is basically a series of convolutional layers that extract relevant features from the input 

image. It comprised of Focus, CBS, Conv4cat, SPD, and SPPFr network.  
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Similar to YOLOv5，the Focus network performs a slicing operation to split high-resolution feature maps into 

multiple low-resolution feature maps of four times, to obtain every pixel in an image without information lost. In this 

way, the width (W), height (H) information is concatenated in the channel space, then convolved to a downsampled 

feature map according to Fig. 1.  

As the 1st downsampling network in layer 0, it increases the generalization capability. The CBS is a 

convolution layer activated with SiLU (Elfwing, Uchibe, & Doya, 2017) after batch normalization (BN) layer. The 

placed CBS_3,2 in 1st layer is for downsampling to provide a more scalable approach, CBS_1,1 in 8th layer is for 

dimensionality reduction and retaining the salient features, and CBS_3,1 placed in 9th layer has the ability to learn 

features common to different situations for better generalization. The knowledge of integrated Conv4cat into 2nd, 

4th and 6th layer of backbone was derived from Defang et al., (2023) and Du et al., (2020), where the 

complementary features of low-layer concatenate high-layer to enable sharing of information and the ability to 

learn more diverse features. For having similar W and H, where C is the number of channels, the X ∈ RH×W×C1 of 

feature maps in CBS_1,1, Y ∈ RH×W×C2 of feature maps in CBS_3,1 and Z ∈ RH×W×C3 of feature maps in CBS_1,1 

concatenated to produced O ∈RH×W× (C1 + C2 + C3) of features as indicated in Fig. 1 and stated in Eq. 1. 

 = [ , , ] O X Y Z              (1) 

The space-to-depth (SPD) proposed by Sunkara & Luo, (2022), shown in Fig. 2 was placed at the 3rd, 5th 

and 7th layer of the backbone to permutes the spatial blocks of the input into the depth dimension. This network 

was used to combine feature maps of different size without discarding any feature data. The idea of SPD was to 

solve the performance degradation with low-resolution images and small objects, and have shown to outperforms 

the state-of-the-art deep learning models using YOLOv5 detector. Since the image dataset is associated with 

dense fruit targets, SPD was employed serving both as a feature extractor and as downsampling operation. 

According to Fig. 2, the intermediate feature map X of size (S × S × C1) in Fig. 2(b) is sliced into a sequence of 

sub-feature maps, each with a shape of (S/2, S/2, C1). This operation effectively downsamples X by a factor of 2 

in Fig. 2(c). These sub-feature maps concatenate along the channel dimension to obtain a feature map X’ in Fig. 

2(d) with a reduced spatial dimension by scale and an increased channel dimension by scale2. After that, a non-

strided convolution added to retain all the discriminative feature information X’’ as in Fig. 2(e). The SPD feature 

transformation can be defined by Eq. 2. 

' 2 ''

1 1 2( ,  ,  ) , , , ,
S S S S

X S S C X scale C X C
scale scale scale scale

   
→ →   

   
  (2) 

The SPPF layer was originally used to speed up the computation of the network by pooling features of 

various scales into a fixed-size feature map. However, it experienced loss of feature information during learning, 

including a slower detection speed for having three maxpooling layers with a convolution layer being concatenated. 

For this reason, SPPFr was designed to have a single maxpooling layer concatenated with a convolution layer. As 

in the operation described by Equation (1), the feature maps from the CBS module are concatenated with those 

from the MaxPool layer, as shown in Figure 1. The SPPFr module, serving as the final layer of the backbone, was 

added at the 10th position to enhance feature representation, reduce missed detections, and improve detection 

speed. 

YOLOseg-Jujube used similar neck network as YOLOv8n. The neck combines path aggregation network 

(PAN) and feature pyramid network (FPN) for multiscale feature fusion. The Upsample layers of 11 th and 14th 

increase the resolution of the feature maps collected from the backbone and concatenated with 6 th layer of 

Conv4cat and 4th layer of Conv4cat, respectively, followed by C2f module. The C2f module as shown in Fig. 1 

combines the high-level features with contextual information to improve detection accuracy. It consists of two 

CBS_1,1, split and three Bottlenecks, which is placed at the 13th, 16th, 19th and 22nd layer of the neck. Meanwhile, 

CBS_3,2 in 17th and 20th layer does downsampling operation before being concatenated with 13th and 10th layers, 

respectively. Having obtained feature maps from backbone, the C2f 16th, 19th and 22nd layer of neck passes the 

information to detection module for small, medium and large scale.  

Furthermore, the framework of YOLOseg-Jujube makes used of an anchor free paradigm whose head 

network is designed to be decoupled, meaning that it processes classification, and regression tasks independently. 

This enables each branch to focus on its respective task and to improve the overall accuracy of the algorithm.  
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The detection module is part of the head, and uses a set of convolution and linear layers to map high-

dimensional features and predict bounding boxes and polygons, and class probabilities. During training, the loss 

function plays a critical role in updating the network's weights by measuring the difference between the predicted 

bounding boxes and the ground truth coordinates. For classification (Cls) loss, binary cross-entropy (BCE) was 

used, as shown in Figure 1.  

 

 
 

Fig. 1 - The network architecture of YOLOseg-Jujube 

 

For regression loss, the proposed model adopts the SCYLLA-IoU (SIoU) loss function (Gevorgyan, 2022) 

combined with Distribution Focal Loss (DFL) (Xiang et al., 2022), in contrast to the Complete IoU (CIoU) loss with 

DFL used in YOLOv8 (Zheng et al., 2020). This substitution enhances bounding box regression by considering 

angle, distance, and shape alignment more effectively. SIoU loss improves the speed of training and the accuracy 

of inference depending on the cost of angular, distance, shape, and IoU. The loss function Lbox embodies all the 

costs by Eq. 3, where the distance cost (∆) takes into account the angle cost, shape cost (Ω) is unique for each 

dataset, and IoU is the difference between the predicted box (B) and real box (Bgt) with reference to union and 

intersection.  

For DFL as shown in Eq. 4, it focuses on the distribution of the close to target location and enables probability 

density near the location. Here si is the sigmoid output, xi and xi+1 is the interval, x is label. 

 

 = 1 IoU+  
2

boxL
 +

−      (3) 

 

                     
1( , ) 1 1 = (( ) log( ) + ( ) log( )) 

i is s i i i iDFL x x s x x s
+ + +− − −                      (4) 

 

Finally, the overall architecture of YOLOseg-Jujube was designed to be low computation cost, fast, flexible, 

and efficient, while still achieving high fruit detection and instance segmentation accuracy. 

 

 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

597 

 
Fig. 2 - SPD-Conv for low resolution images and small objects (scale = 2, stride =1)  

(Sunkara & Luo, 2022) 

 

Experiment and evaluation 

The training and testing of YOLOseg-Jujube, including compared YOLO-mainstream variants were 

implemented using YOLOv8.0.40 platform on hardware and environment information stated in Table 2. The 

algorithms received an input image of 640×640×3 pixels, 16 batch, 0.937 momentum, 0.0005 weight decay, 0.7 

IoU, 0.015 hue, 0.7 saturation, 0.4 lightness, 1.0 mosaic, 0.5 scale, 0.1 translate, 7.5 Bbloss, 0.5 Clsloss, 1.5 

DFloss, and 100 epochs for training from scratch. At the time, the weight for training the algorithms was randomly 

initialized from the scratch. The developed algorithms were exported from PyTorch (pt) to open neutral network 

exchange (ONNX), and to NCNN, developed by Tencent. The NCNN format was deployed using ncnn-android-

yolov8 (Kang & Chen, 2020) on mobile phone. The NCNN was optimized to run faster than known frameworks on 

mobile phone CPUs. 

Table 2  

Hardware and environment description 

Hardware Configure Environment Version 

System Ubuntu20.04 Python 3.9.12 

CPU Core i7-12700F Conda 23.1.0 

GPU RTX3060 (16G) PyTorch 1.12.1 

RAM 32G CUDA 11.3.1 

Hard-disk 1.0T CUDNN 8.8.0 

 

The algorithms were evaluated using the metrics stated in Eq. (5)-(11) respectively for precision (P), recall 

(R), average precision (AP), mean average precision (mAP), speed, number of parameters (params), and giga 

floating point operations per second (GFLOPs). TP is the true positive for correct detections, FN is the false 

negative for missed detections, FP is the false positive for incorrect detections, P(R) means that P is a function of 

R, AP is the area under curve (AUC) for single-class, mAP is mean AP values over multiclass, C is the total number 

of classes, j is the serial number, i is the input-size, k is the convolution kernel-size, o is the output-size and H×W 

is the size of outputted feature map. Speed is used to measure the real-time in frames per second (fps), params 

(106) is the number of trainable parameters, layer is the network topology, and GFLOPs estimate the number of 

floating-point arithmetic operations. 

TP
P = 

TP+FP
       (5) 

TP
R = 

TP+FN
       (6) 
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1

(R)
0

AP= P dR        (7) 

 
C

jj=1
AP

mAP = 
C


      (8) 

 

speed = frames time       (9) 

 

( )params = i k k o o   +        (10) 

 

GFLOPs = H W params        (11) 

 

RESULTS AND DISCUSSION 

Ablation studies on YOLOseg-Jujube 

The ablation studies conducted on YOLOseg-Jujube are needed to find out what features of the algorithm 

are responsible for achieving a good performance. The process involves removing and adding some features of 

algorithm and seeing the effects on performance. Computation cost, detection accuracy, and speed were taken 

into consideration. Computation cost is simply based on the size of the algorithm in GFLOPs and params. While 

the layer 1–9 was held constant throughout the backbone network, Table 3 shows that changes in layer 0 and 10, 

including the neck network and loss function, caused a variation in computation cost. The added CBS_3,2/Focus 

and SPPF/SPPFr respectively in layer 0 and 10 of Method 1–12 show differences in params and GFLOPs. 

Moreover, the contribution to computation cost of methods with SPPFr is less than methods having SPPF. The 

shown number of layers in Table 3 as network topology is a support to this fact. Without no significant difference 

with the used loss function, the incorporated PAN-FPN constituted an increased in params and GFLOPs compared 

to the FPN. Using only params, the level of computation cost is measure as the equality of Method1, Method5 and 

Method6 is greater than the similarity of Method2–4, Method7 and Method10–12, and also higher than the equals 

of Method8 and Method9.  

Table 3 
 Ablation studies on YOLOseg-Jujube based on computation cost 

Algorithm Layer 0 Layer 10 Neck Loss Layers Params GFLOPs 

Method1 CBS_3,2 SPPF PAN-FPN CIoU 168 2.53 11.3 

Method2 CBS_3,2 SPPFr PAN-FPN CIoU 167 2.49 11.2 

Method3 CBS_3,2 SPPFr PAN-FPN SIoU 167 2.49 11.2 

Method4 Focus SPPFr PAN-FPN CIoU 169 2.49 11.3 

Method5 Focus SPPF PAN-FPN CIoU 170 2.53 11.4 

Method6 Focus SPPF PAN-FPN SIoU 170 2.53 11.4 

Method7 Focus SPPFr PAN-FPN SIoU 169 2.49 11.3 

Method8 Focus SPPFr FPN CIoU 153 2.16 11.0 

Method9 Focus SPPFr FPN SIoU 153 2.16 11.0 

Method10 Focus SPPFr PAN-FPN EIoU 169 2.49 11.3 

Method11 Focus SPPFr PAN-FPN DIoU 169 2.49 11.3 

Method12 Focus SPPFr PAN-FPN GIoU 169 2.49 11.3 

 

The depicted validation losses in Fig. 3 are used to compliment computation cost and to predict the 

performance of Method1–12 by showing the consistence decreasing pattern. They measure the real position of 

fruit targets in an image during network training, where Fig. 3(a) is the bounding box, Fig. 3(a) is for instance 

segmentation via bounding polygon, Fig. 3(c) is for classification, and Fig. 3(d) is for DFL to enable general 

distribution of target position.  
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Having shown a closely related level of neural network depth among Method1–12, the validation of class 

loss is deeper than box loss, segment loss and DFL according. This is as a result of more correctness found in 

class loss compared to box loss, segment loss and DFL. Excluding Method10, which shows a less deep network 

in Fig. 3(a) because it has EIoU compared to others, it is difficult to examine the deepest and best performing 

network. But it can be addressed using Fig. 4 of mAP. This means that a decreasing loss of validation as algorithm 

learns is an increase in the mAP. Fig. 4(a) show that the aggregated mAP of 80R at 74.6% and 70R at 92.2% 

seen in Method7 is higher than other methods. Similarly, Figure 4(b) shows that Method 7 also achieves superior 

aggregated mAP values of 74.6% at 80R and 91.9% at 70R, further confirming its performance advantage over 

alternative approaches. Next to the mAP performance of Method7 is Method4, having scored 0.1% less under 

80R with the same value under 70R of Fig. 4(a), and the same value under 80R with 0.1% less under 70R of Fig. 

4(b). Despite having a similar backbone network, as indicated in Table 3, the improved mAP of Method7 was 

triggered with the added SIoU loss against the CIoU loss incorporated into Method4. The obtained results verify 

that the mAP level of Method7 is higher than the rest methods. For justification, the test-set images were tested 

on Method1–12 to investigate robustness towards generalization. And the sample of the tested image associated 

with sky background and occlusions is presented in Fig. 5. The methods were able to detect and segment a 

number of fruit targets perfectly, but were noted with difference in confidence score, including missed or false 

detection. For example, the confidence score of detected and segmented 70R target at the base of Fig. 5(g) 

recorded 62%, which is more than 59% of Fig. 5(a), 51% of Fig. 5(b), 34% of Fig. (c), 38% of Fig. 5(d), 29% of Fig. 

5(e), 44% of Fig. 5(f), 47% of Fig. 5(h), 55% of Fig. 5(i), 33% of Fig. 5(j), 52% of Fig. 5(k), and 40% of Fig. 5(l). 

This demonstrated the superiority of Method7 over other methods. 

   
(a)                                                                                                 (b) 

  
                                                  (c)                                                                                                   (d) 

 

Fig. 3 - The validation of (a) box, (b) segmentation, (c) class, and (d) DFL loss during ablation on 

YOLOseg-Jujube 
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(a) (b) 

Fig. 4 - The mAP@50% of validation (a) box and (b) segmentation for each class during ablation on 

YOLOseg-Jujube 

 

 

   
(a)                                                  (b)                                                   (c) 

 

   

                                     (d)                                                   (e)                                                   (f) 
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                                      (g)                                                  (h)                                                    (i) 

   
                                      (j)                                                   (k)                                                    (l) 

Fig. 5 - The detected and segmented fruit targets of class 80R and 70R obtained from an image  

with shy background and occlusions using (a)–(l) for Method1–12 

 

Table 4 provides a comprehensive analysis of mAP for both box and segmentation, including speed, to 

show the outstanding performance of Method7 compared to Method1–6 and Method8–12. The mAP is more 

accurate because it measures the overall global relationship between P and R. Using Method7, the 83.5% of 

B_mAP is 1.1%, 0.5%, 1.0%, 0.2%, 0.5%, 1.5%, 1.9%, 0.7%, 1.2%, 1.0% and 1.1% more accurate respectively 

than Method1–6, Method8–12 under fruit targets detection, and 83.2% of S_mAP is 1.1%, 0.5%, 1.3%, 0.1%, 

0.3%, 1.5%, 2.1%, 0.7%, 1.3%, 1.0% and 1.1% more accurate respectively than Method1–6, Method8–12 under 

fruit targets instance segmentation. Considering computation cost as a criterion for a faster detection speed, 

Method7 at 323 fps is faster than Method1 at 309 fps, Method2 at 315 fps, Method3 at 321 fps, Method4 at 320 

fps, Method5 at 306 fps, Method6 at 317 fps, Method10 at 313 fps, Method11 at 319 fps, and Method12 at 318 

fps, but not than Method8 at 342 fps and Method9 at 344 fps. The faster speed of Method8 and Method9 is 

attributed to applied FPN, unlike Method7 having PAN-FPN as shown in Table 4. Considering the overall 

performance of all methods, Method7 is the best and was chosen for our YOLOseg-Jujube after the ablation 

studies. 

Table 4  

Summary of Ablation study on YOLOseg-Jujube using valid-set and videos 

Algorithm B_P 

(%) 

B_R 

(%) 

B_ mAP 

(%) 

S_P 

(%) 

S_R 

(%) 

S_ mAP 

(%) 

Speed 

(fps) 

Method1 78.8 76.4 82.4 78.3 76.8 82.1 309 
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Algorithm B_P 

(%) 

B_R 

(%) 

B_ mAP 

(%) 

S_P 

(%) 

S_R 

(%) 

S_ mAP 

(%) 

Speed 

(fps) 

Method2 77.1 79.6 83.0 77.2 79.3 82.7 315 

Method3 82.4 74.7 82.5 82.2 74.6 81.9 321 

Method4 83.8 74.3 83.3 83.9 74.3 83.1 320 

Method5 80.8 75.7 83.0 80.8 75.4 82.9 306 

Method6 81.3 76.3 82.0 81.2 76.1 81.7 317 

Method7 80.1 77.7 83.5 80.4 77.2 83.2 323 

Method8 79.8 74.5 81.6 79.7 74.1 81.1 342 

Method9 76.4 80.3 82.8 81.6 75.4 82.5 344 

Method10 77.1 77.9 82.3 77.6 77.3 81.9 313 

Method11 78.8 76.6 82.5 78.8 76.7 82.2 319 

Method12 78.4 78.4 82.5 78.0 78.2 82.1 318 

 

Comparison with YOLO-mainstream variants 

Having considered Method7 as YOLOseg-Jujube, its performance was compared to YOLO-mainstream 

variants as shown in Table 4. For computation cost, the obtained params from YOLOseg-Jujube are 62.8%, 9.8%, 

73.9%, and 23.6% respectively less compared to YOLOv4-tiny, YOLOv5n, YOLOv7-tiny and YOLOv8n. In the 

case of GFLOPs, YOLOseg-Jujube is 82.7%, 83.8% and 5.8% lower than YOLOv4-tiny, YOLOv7-tiny and 

YOLOv8n, respectively, but not with YOLOv5n at -2.7%. With reference to B_mAP and S_mAP, the displayed 

results in Table 4 demonstrated the outstanding performance of YOLOseg-Jujube against YOLO-mainstream 

variants. For having 83.5% of B_mAP and 83.2% of S_mAP, YOLOseg-Jujube is 0.2% and 0.3%, 2.7% and 2.4%, 

0.6% and 0.4%, and 2.1% and 1.9% more accurate than YOLOv4-tiny, YOLOv5n, YOLOv7-tiny and YOLOv8n, 

respectively. Furthermore, the algorithms were evaluated for their real-time detection speed using video as an 

important aspect of performance. The findings demonstrated that YOLOseg-Jujube is faster than YOLOv4-tiny 

YOLOv5n, YOLOv7-tiny and YOLOv8n as indicated in Table 4. Therefore, the aggregated performance in terms 

of reduced computation cost, accuracy and speed indicated that the algorithm of YOLOseg-Jujube was better than 

YOLOv4-tiny YOLOv5n, YOLOv7-tiny and YOLOv8n. YOLOseg-Jujube is robust against changeable environment 

and capable of understanding the ripeness stages of jujube fruit targets in an image. 

Table 4  

Performance comparison of algorithms using valid-set and videos 

Algorithm Param

s 

GFLOP

s 

B_P

% 

B_R

% 

B_ 

mAP% 

S_P

% 

S_R

% 

S_ 

mAP% 

Speed 

(fps) 

YOLOv4-tiny 6.70 65.5 76.5 79.3 83.2 76.4 78.8 82.9 297 

YOLOv5n 2.76 11.0 79.3 75.5 80.8 79.2 75.7 80.8 273 

YOLOv7-tiny 9.55 69.9 81.0 76.0 82.9 81.3 76.0 82.8 230 

YOLOv8n 3.26 12.0 79.5 75.7 81.4 79.3 75.6 81.3 272 

YOLOseg-

Jujube 

2.49 11.3 80.1 77.7 83.5 80.4 77.2 83.2 323 

 

To establish the superiority of YOLOseg-Jujube to YOLO-mainstream variants, the algorithms were 

evaluated on test-set images with (1) fruit occlusions, (2) fruit clusters, and (3) dense targets, and were subjected 

to an estimation of the area of targets. Fig. 6 shows that the algorithms were able to segment and estimate the 

area of targets according to their classes very well, but there were some differences in the area value, including 

missed and false detections. Using the (1) fruit occlusion image, Fig. 6(a–c) of YOLOv4-tiny, YOLOv5n and 

YOLOv7-tiny were noted with two false detections unlike Fig. 6(d–e) of YOLOv8n and YOLOseg-Jujube with one 

false detection. Each segmented target is not completely drawn in the occlusion situation, which results in only an 

estimation of its area. Future investigation is required.  

For (2) fruit clusters, all the algorithms segmented and estimated area perfectly, except for the difference in 

area value. Nevertheless, the obtained aggregated area values for YOLOseg-Jujube of Fig. 6(e) are higher than 

YOLOv4-tiny of Fig. 6(a), YOLOv5n of Fig. 6(b), YOLOv7-tiny of Fig. 6(c) and YOLOv8n of Fig. 6(d). This indicated 

that YOLOseg-Jujube instance segmentation is more robust than the YOLO-mainstream variants. In the case of 
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(3) dense targets, missed detections was observed in Fig. 6(a–c), but no missed detection was found in Fig. 6(d) 

of YOLOv8n and Fig. 6(e) of YOLOseg-Jujube. With this area calculation performance, YOLOseg-Jujube is the 

best candidate for the analysis of fruit-related phenotypic traits, such as number, size, shape and color. 

 

   
                                                                                        (a)                                                     
 

   
                                                                                            (b)                                                     
 

   
                                                                                           (c)                                                     
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                                                                                           (d)                                                    

 

   
                                                                                            (e)                                                     

Fig. 6 - The segmented targets with area obtained from images of (1) fruit occlusions, (2) fruit clusters, and (3) dense 

fruit evaluated on (a) YOLOv4-tiny, (b) YOLOv5n, (c) YOLOv7-tiny, (d) YOLOv8n and (e) YOLOseg-Jujube 

 

Furthermore, the developed YOLOseg-Jujube algorithm was evaluated and compared with YOLO-

mainstream variants on low-power computing device.  

Table 5 provides details of the exported ONNX and NCNN model deployed on mobile phone. Table 5 shows 

that ONNX’s size and exported time of YOLOseg-Jujube is smaller than YOLOv4-tiny YOLOv5n, YOLOv7-tiny 

and YOLOv8n. This is in support of the claims in Table 4 that the complexity of YOLOseg-Jujube is reduced 

compared to YOLO-mainstream variants.  

The obtained param and bin of the NCNN model also showed similar attributes, where the bin of YOLOseg-

Jujube is 62.5%, 10.2%, 73.8% and 23.2% less than YOLOv4-tiny, YOLOv5n, YOLOv7-tiny and YOLOv8n, 

respectively. With reference to the displayed Fig. 7, the detection speed of algorithms was obtained. Subjecting 

the algorithms to real-time instance segmentation, a number of fruit targets were detected and segmented perfectly 

as shown in Fig. 6, but with a floating confidence score. Nevertheless, the real-time speed is very crucial to mobile 

phone.  

Table 5 and Fig. 7(e) show that the real-time segmentation speed of YOLOseg-Jujube noted to be 26.24 

fps is 73.9%, 24.0%, 95.7% and 41.6% faster than YOLOv4-tiny of Fig. 7(a), YOLOv5n of 7(b), YOLOv7-tiny of 

7(c) and YOLOv8n of 7(d), respectively. This demonstrated that a decrease in bin results to an increase in speed. 

The obtained results also indicated that YOLOseg-Jujube is compatible and deployment friendly with low-power 

computing devices. 
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Table 5 

 Comparison of exported algorithms using simplified mode 

ONNX YOLOv4-tiny YOLOv5n YOLOv7-tiny YOLOv8n YOLOseg-Jujube 

Add 3 7 – 6 – 

BatchNormalization 3 – – – – 

Concat 13 19 20 19 22 

Conv 59 87 85 75 66 

Maxpool 3 3 6 3 2 

Mul 47 78 76 66 57 

Reshape 7 7 7 7 7 

Resize 2 2 2 2 18 

Sigmoid 47 78 76 66 57 

Slice – – – 8 4 

Transpose 1 1 1 1 1 

Size (MB) 25.6 10.5 36.5 12.5 9.5 

Export (s) 10.7 8.9 8.3 3.9 3.4 

NCNN      

Param (KB) 11.7 17.7 18.4 16.7 15.0 

Bin (MB) 12.7 5.3 18.2 6.2 4.76 

Speed (fps) 15.19 21.30 13.50 18.66 26.42 

 

     

                    (a)                               (b)                                 (c)                                 (d)                               (e) 

Fig. 7 - The output of fruit targets segmentation tested on a mobile phone using algorithm of (a) YOLOv4-tiny,  

(b) YOLOv5n, (c) YOLOv7-tiny, (d) YOLOv8n and (e) YOLOseg-Jujube 

 

 

CONCLUSIONS AND FUTURE WORK 

This paper explored the YOLOv8n based architecture to design YOLOseg-Jujube for fruit instance 

segmentation to consolidate fruit detection, including to solve the factors of complex environment faced by fruit 

detection. The ablation studies conducted on YOLOseg-Jujube resulted in the algorithm consisting of Focus, CBS, 

Conv4cat, SPD, and SPPFr as backbone network, and YOLOv8’ head with SIoU loss as head network. The 

computation cost in terms of params show that YOLOseg-Jujube is 62.8%, 9.8%, 73.9%, and 23.6% less than 

YOLOv4-tiny, YOLOv5n, YOLOv7-tiny and YOLOv8n, respectively. Likewise, the 83.5% of B_mAP and 83.2% of 

S_mAP noted in YOLOseg-Jujube is 0.2% and 0.3%, 2.7% and 2.4%, 0.6% and 0.4%, and 2.1% and 1.9% more 

accurate than YOLOv4-tiny, YOLOv5n, YOLOv7-tiny and YOLOv8n, respectively. The real-time speed of 

YOLOseg-Jujube demonstrated to be faster than YOLOv4-tiny YOLOv5n, YOLOv7-tiny and YOLOv8n on 

computer with GPU-RTX3060 and mobile phone, including having to be the best candidate for the analysis of fruit-

related phenotypic traits based on the conducted area calculation performance. The aggregated performance 

demonstrated that YOLOseg-Jujube is robust for generalization, low in computation cost, accurate, fast, flexible 
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for deployment on low-power computing devices, efficient and able to understand the ripeness stages of jujube 

fruit targets in an image and video. However, future investigations will require detection accuracy improvements, 

to solve each segmented target not completely drawn in the occlusion situation for proper area estimation, a 

simpler network topology, and the performance of other converted model format on mobile phones. 
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