
Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

531 

RESEARCH ON A DETECTION ALGORITHM FOR DRY-DIRECT SEEDED RICE 

BASED ON YOLOv11N-DF 

/ 

基于 YOLOv11n-DF 的旱直播水稻检测算法研究 

 
Mingyang LI, Bin ZHAO*), Song WANG, Di WANG 

College of engineering, Heilongjiang Bayi Agricultural University, Daqing/ China 

Tel: +86-13589180106; E-mail: limingyangwf@126.com 
DOI: https://doi.org/10.35633/inmateh-76-45  

 
 

Keywords: YOLOv11n, Automatic detection, Dry direct-seeded rice, DSConv, FASFFHead 
 
 

ABSTRACT 

Identifying dry-direct seeded rice seedlings provides valuable information for field management. To address 

the challenges of seedling detection in cold-region dry-direct seeded rice fields, this study proposes an 

enhanced YOLOv11n-DF model. Key innovations include: 1) integrating DSConv into the C3k2 module to 

optimize phenotypic feature extraction, and 2) employing the FASFF strategy to improve scale invariance in 

the convolutional head. Experimental results show that the improved model achieves an mAP50 of 96%, with 

high recall, precision, and a processing speed of 251.5 FPS, outperforming the original YOLOv11n by 5 

percentage points in mAP50, and surpassing YOLOv7–YOLOv10 in detection accuracy. The proposed 

algorithm effectively addresses challenges such as seedling occlusion and non-uniform distribution, offering a 

robust solution for automated seedling monitoring in precision agriculture. 

 

 

摘要 

识别旱直播秧苗，可为田间管理提供一定苗情信息。本研究为应对寒地旱直播稻田的幼苗检测难度大的问题，

提出改进 YOLOv11n-DF 方法。该方法引入了两个关键创新：1）DSConv 引入 C3k2 模块以优化水稻表型特征

提取，2）利用 FASFF 策略优化卷积头增强模型特征尺度不变性。实验结果表明，改进后模型的 mAP50、召回

率（R）、检测精度（P）分别为 87.12%、77.07%和 84.11%，处理速度为 49.5 FPS，mAP50 较改进前 YOLOv11n

提高 4.28 个百分点，在检测精度方面超过了同类目标检测网络（YOLOv7~10）。该算法有效地处理了旱直播

秧苗相互遮挡和非均匀分布挑战，为精准农业应用中的自动秧苗监测提供了新的解决方案。 

 

 

INTRODUCTION 

Dry-direct seeding is a rice cultivation method that replaces traditional transplanting with direct 

mechanical seeding. This planting approach - often referred to as dry-direct seeding - offers advantages such 

as water conservation, labor savings, and greater planting efficiency (Li et al., 2023). As a major production 

area for high-quality rice, Heilongjiang Province adopted dry-direct seeding technology in response to labor 

shortages and the development of drought-tolerant rice varieties (Liu et al., 2022). However, the emergence 

rate of dry-direct seeded rice is highly sensitive to climatic conditions, particularly in the cold regions of 

Northeast China, often resulting in uneven or unstable seedling emergence, which impairs rational dense 

planting (Li et al., 2024). Accurate identification and counting of seedlings provides a scientific basis for 

evaluating planting density, which reflects both sowing quality and varietal performance. Notably, the accuracy 

of seedling identification directly impacts the reliability of seedling counting (Liu et al., 2024). 

The traditional rice seedling emergence number counting is determined manually, which is time-

consuming, costly and difficult to implement (Zhu et al., 2024). In the past decade of research, machine vision 

technology has been gradually applied to the field of agricultural engineering, which greatly improves the 

reliability of agricultural information acquisition and provides a new solution idea for the detection of dry-direct 

seeded rice seedlings. For example, Lu et al. (2021) proposed the use of the TasselNetv3 segmentation 

network to achieve accurate rice plant counting. Similarly, Takaho et al. (2022) employed the Super Green 

Index (SGI) algorithm to predict seedling growth. 
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Interference from occlusion and background noise can affect image segmentation techniques. In 

addition, target detection is an important method of acquiring agricultural information. Yi et al. (2022) used a 

peak detection-based algorithm to count sunflower and soybean seedlings. Rojas et al. (2022) used a principal 

component analysis combined with an SVM detection algorithm to detect weeds. This type of hand-designed 

algorithm has strong specificity for target detection and better performance on tidy crops with obvious 

characteristics. Along with the introduction of deep learning methods for target detection, the way of agricultural 

information acquisition has become more diversified. Velumani et al. proposed the density statistics of maize 

seedlings by Faster R-CNN. Shen et al. (2024) utilized the improved YOLOv8 algorithm to achieve the 

detection of pod pepper. Qiu D.F. (2024) realized the detection of locust targets by improving the YOLOv7. 

improvement to achieve locust target detection. The single-stage target detection algorithm in deep learning 

networks directly realizes the simultaneous regression of target localization and classification through the end-

to-end network architecture, and compared with the two-stage target detection algorithm, it discards the 

candidate region generation, reduces the computational redundancy and maintains a better detection accuracy 

at the same time. 

Currently, there is limited research on target detection in complex scenarios such as dry-direct seeded 

rice seedlings, which are characterized by high planting density, complex backgrounds, and severe mutual 

occlusion. For instance, Huang et al. (2024) and Li et al. (2023) optimized YOLOv5 for the plant counting of 

oilseed rape seedlings, achieving improved detection accuracy. Although studies targeting this specific type of 

context-aware object detection remain scarce, such research is crucial for advancing precision agriculture. 

In summary, while deep learning-based target detection algorithms demonstrate strong adaptability in 

agricultural applications, their detection accuracy remains limited when applied to dry-direct seeded seedlings, 

which often exhibit multi-scale morphological features and densely distributed, non-uniform row patterns. To 

address this issue, this paper proposes an improved YOLOv11n-based method tailored for the dry strip sowing 

environment. The approach enhances the feature extraction capabilities of the backbone network and 

improves the model’s ability to capture deep, multi-scale features of densely distributed seedlings, thereby 

achieving more accurate detection of dry-direct seeded rice plants. 

 

MATERIALS AND METHODS 

Data Acquisition and Pre-processing 

Image data was acquired on 18 June 2024 at the Jian Sanjiang Qixing Farm in Jiamusi City, 

Heilongjiang Province, China. Acquisition took place between 08:00 and 11:00 under clear weather conditions. 

Figure 1 shows the image acquisition device and the acquisition route diagram. The DJI Mavic 3T UAV was 

used at a height of 3 m and a speed of 1 m/s, in accordance with the planned route, to acquire images at an 

orthographic angle. The original image was filtered to remove some of the edges of the paddy field images 

and 640×640 pixel images were randomly extracted from different areas of the image, totaling 1489. 

Operation handle and 

image feedback interface

Camera lens device
DJI Mavic 3T

Flight Path

 
Fig. 1- Image acquisition equipment and range 

 

The rice variety under study is “Magic Rice 119”, which was planted according to the pattern of 

alternating wide and narrow row spacing (300 mm/200 mm). Field management followed the “dry sowing and 

water pipe” cultivation technique, in which the paddy field is irrigated after the four-leaf stage of rice growth. To 

accurately capture the morphological characteristics of dry-direct seeded rice seedlings and avoid the influence 

of water reflections on plant feature extraction, images were collected during the pre-irrigation stage. This 

standardized image acquisition process provides a reliable data foundation for subsequent rice phenotyping. 
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(a) Rice field environment (b) Background Straw (c) Post-irrigation environment 

Fig. 2- Live streaming of dry rice paddy environment 

Data set construction 

Adobe Lightroom was used to preprocess 1489 of the images: adjusting contrast, exposure and 

saturation to enhance the distinction between straw and seedlings, and combining sharpening and noise 

reduction to highlight the details of the plants and reduce background noise, resulting in a darker background 

and more distinctive morphological features of the seedlings, which facilitated the algorithm's extraction of 

plant features. Mixed preprocessing and original images are used to enhance the adaptability of the model, 

and 90504 “rice” target frames are labeled by Labelimg. Finally, the independent training set, validation set 

and test set are divided according to the ratio of 8:1:1, which ensures the reliability of model training and testing 

while guaranteeing the richness of data. 

 

Model selection and construction 

The heterogeneity of plant morphology, the narrow, linear structure of rice leaves, and the low contrast 

between dark green moss and light green leaves on wet soil surfaces make classical target detection 

algorithms highly susceptible to lighting and background interference, hindering the effective capture of 

seedling features. Furthermore, due to the nature of strip sowing and variable soil moisture, seedling 

distribution is often non-uniform, exhibiting both aggregated bands and random sparsity. This complexity 

requires the detection model to possess both robust feature extraction capabilities and the ability to adapt to 

irregular spatial distributions. 
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Fig. 3- YOLOv11n-DF model structure diagram 

 

The YOLO model, with the advantage of single-phase detection architecture, exhibits excellent 

detection performance in the complex environment. Among them, YOLOv11 embeds multi-attention through 

the C2PSA mechanism, which strengthens the feature fusion ability and can cope with the scale changes and 

background interference in the large field environment (He et al., 2025). The YOLOv11 algorithm provides five 

different depth models, YOLOv11n, YOLOv11s, YOLOv11m, YOLOv11l, and YOLOv11x, in order to cope with 

different detection scenarios. It is important to note that the number of floating-point computations and 

parameters increases with the increase of the model depth. Among them, the model depth of YOLOv11n is the 

shallowest, which requires the least number of floating-point computational parameters to maintain better 

accuracy, while the training cycle is shorter than other models (Wang et al.,2025). This is consistent with the 

application scenario of high-efficiency real-time dry-direct seeded rice detection. Therefore, this paper selects 

the YOLOv11n algorithm for optimizing the detection algorithm for dry-direct seeded rice. 
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In this study, the C3k2 module in the YOLOv11n network was optimized by integrating DSConv 

convolution, and the original Detect head was replaced with the FASFFHead to improve the model's 

consistency in handling seedling phenotypic feature scales. The structure of the improved YOLOv11n-DF 

algorithm is shown in Fig. 3. 

 

DSConv convolution 

The leaves of the dry-direct seeded rice seedlings sown in strips, exhibit distinct narrow and slender 

morphological characteristics at the four-leaf stage, forming interlocking bands that provide mutual shading. 

The convolutional layer, a critical component in shallow phenotypic feature extraction, has a direct impact on 

the model's ability to assess target features. As illustrated in Fig. 4, which compares different convolution 

strategies, the standard convolutional kernel extracts local features with spatial invariance using a fixed 

receptive field, based on local connections, weight sharing, and hierarchical abstraction. However, the stacked 

structure with globally shared weights struggles to adapt to the irregular morphology of seedlings. Therefore, 

employing structure-adaptive convolution is essential for achieving accurate detection. 
 

    
(a) Conv (b) Dilated Conv (c) Deformable Conv (d) DSConv 

Fig. 4 - Comparison of different convolution strategies 

 

Dynamic serpentine convolution focuses on slender and meandering local structures by adaptively 

adjusting the offsets of sampling paths, which enhances the model’s ability to capture features of elongated 

structures (Qi et al., 2023). These characteristics make DSConv significantly more effective than the rigid grid 

sampling used in traditional convolutional kernels for extracting features from non-rigid and non-linear 

structures in complex scenes (Zhang et al., 2024). To address the challenge of capturing the narrow, elongated 

structures of dry-direct seeded rice seedlings, this study introduces DSConv into the C3k2 module. This 

integration takes into account the distributional characteristics of dry-direct seeded seedlings and enhances 

the geometric perception of convolutions by dynamically adjusting the sampling paths of convolution kernels, 

allowing them to continuously extend along thin, curved leaf structures. A lightweight subnetwork is used to 

predict incremental offsets at each sampling point, with each point’s position determined by the cumulative 

offset from the previous point. This design ensures a smooth and continuous sampling path and prevents 

perceptual drift - a common issue in traditional deformable convolution caused by independent offset 

predictions.  

The incremental offset of each sampling point is calculated as follows: 

offset 0p (X;p ,p )k kf =                                     (1) 

where 𝑓offset is the offset prediction network; X is the input feature map; p0 denotes the coordinates of the 

center position of the current convolution kernel; p𝑘 represents the coordinates of the kth sampling point; 

along the x-axis. 

Since the offset values may be floating-point numbers, sampling at non-integer coordinates becomes 

necessary. To address this, bilinear interpolation is employed to compute the pixel values at these non-integer 

positions, ensuring smooth and continuous feature extraction. The interpolation is performed using the 

following formula: 

0 0X(p +p + p )= ( ,p +p + p ) X( )k k k kB q q                         (2) 

where B is a bilinear interpolation kernel decomposed into one-dimensional interpolations along the x and y 

directions; p𝑘 + Δp𝑘 is the dynamically adjusted coordinate of the kth sampling point; q refers to the four 

surrounding integer-coordinate neighbors. 

During the image acquisition process, the morphology of field-grown seedlings exhibits significant 

heterogeneity. To enhance the model’s generalization capability for seedling detection, a multi-feature fusion 

approach is proposed. This involves extracting feature maps 𝑓𝑙(𝐾𝑥) , 𝑓𝑙(𝐾𝑦) along the x-axis and y-axis, 

respectively, at the lth layer, using multi-morphology convolutional kernel templates generated by DSConv. 

The goal is to capture the shallow morphological features of the seedlings and to efficiently cluster key features, 

thereby improving detection robustness across varying seedling shapes. 
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During the target detection process, the model often fails to capture the shallow structural features of 

seedlings due to mutual occlusion among the leaves of dry-direct seeded rice. To reduce detection 

inaccuracies caused by disrupted seedling targets and to preserve the overall linear structure of the seedlings 

as much as possible, a topological continuity constraint loss is introduced into DSConv. This is achieved by 

calculating the bi-directional Hausdorff distance between the persistence maps of the predicted and ground 

truth labels, as defined by the following equation: 

* ( , ) max(max min ,max min
L OO L

H O L
v P u Pu P v P

d P P u v v u
  

= − −                      (3) 

where PO is the persistence map of the prediction, recording the birth and death times of topological features; 

PL is the persistence map of the ground truth labels used for comparison with PO; d*H represents the bi-

directional Hausdorff distance, which quantitatively measures the topological discrepancy between PO and PL. 

Serpentine convolution has been proven effective in extracting fine and narrow structural features of 

seedling leaves. Additionally, the C3k2 module has been optimized to enhance the model’s perception of 

seedling features through four key mechanisms: chained accumulation of dynamic offsets, bilinear 

interpolation of fractional coordinates, a multi-view feature fusion strategy and a topological continuity 

constraint loss. 
 

Multi-scale detection head  

Seedling scale diversity in field environments leads to inconsistent seedling features in feature maps, 

affecting single-stage target detectors. The paper proposes a FASFFHead for the head network as a four-head 

detection mechanism based on an adaptive spatial feature fusion design to maintain feature scale consistency 

in the seedling detection model (Liu et al., 2019). 

FASFF-1
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FASFF-3

Predict

Predict

Predict

   Level 1

Stride 32

Level 2

Stride 16

Level 3

Stride 8

Level 4

Stride 4

FASFF-4 Predict

 
Fig. 5 - Schematic diagram of FASFF 

 

The FASFFHead model adopts an improved feature fusion mechanism based on ASFF and introduces 

an additional small-scale target detection layer to the original 3-layer ASFF architecture, resulting in a 4-layer 

FASFF feature fusion framework (Li et al., 2023). This enhancement improves the algorithm’s ability to capture 

and integrate features of small seedlings, enabling cross-scale information fusion through dynamic 

optimization of multi-layer feature strategies. As shown in Fig. 5, the working principle diagram of the FASFF 

mechanism illustrates how Level 1 through Level 4 (represented by different colors) correspond to varying 

spatial resolutions in the feature pyramid, each encoding seedling features at different scales. The labels 

FASFF-1, FASFF-2, FASFF-3, and FASFF-4 denote the fusion operations applied at each respective level, 

enabling layer-wise feature fusion across different resolutions. 

To balance seedling feature representation, information retention, and computational efficiency, the 

FASFF method introduces a unified hierarchical structure for feature fusion. The core mechanism, Feature 

Aggregation and Selection (FAS), aims to standardize the resolution of feature maps from different hierarchical 

levels. For low-resolution seedling features, the number of channels is first compressed to match the target 

hierarchy using 1×1 convolution, followed by bilinear interpolation for up-sampling, thereby enhancing spatial 

resolution. In contrast, for high-resolution features, the resolution is first reduced via max pooling, and then 

3×3 convolution is applied to achieve effective down-sampling. 

Building on this foundation, a learnable spatial attention weight matrix is constructed. Through a 

parameterized weight learning module, the model dynamically learns the spatial contribution of features at 

each level, enabling adaptive aggregation of shallow features across multiple layers in the spatial dimension. 

This mechanism also preserves the local responses of features sensitive to different target scales, while 

effectively suppressing cross-level semantic conflicts and filtering out interfering information during feature 

fusion. 
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To address the scale inconsistency inherent in single-stage detection algorithms, FASFF enhances 

scale invariance by introducing an adaptive spatial feature fusion strategy. This approach improves the 

consistency across different feature scales by learning to suppress conflicting features. As a result, the model 

can flexibly determine which feature layers contribute most significantly to final predictions, depending on the 

contextual information at each specific location and scale. 

 

RESULTS 

Experimental Environment 

The hardware equipment platform in this experiment includes: CPU Intel Core I7-13700KF, RAM 32GB, 

GPU Nvidia GeForce RTX 4070TI Super 16G; the software platform includes: 64-bit Windows 10 operating 

system and deployed Cuda11.8, Cudnn11.x with Python 3.11, using Pytorch 2.0.1 depth learning framework, 

PyCharm2023.3.5 editor for network model training. The relevant hyper-parameters were set: the number of 

epochs was 400, the batch size was 16, the optimizer was selected as SGD, and the initial learning rate was 

set to 0.02 in order to improve the convergence rate. 
 

Evaluation index 

In order to verify the applicability of the improved model for dry-direct seeded rice seedling detection, 

this study selects key performance indicators for multi-dimensional evaluation: in terms of detection accuracy, 

Precision - P, Recall - R and mAP50 are used as the core indicators; for the model complexity and model 

volume, the floating point operations (GFLOPs) and model Size are selected for quantitative analysis, and the 

detection speed of the model is evaluated using the detection speed (FPS). By comparing the experiments 

with mainstream target detection algorithms, the proposed method is comprehensively verified to see if the 

enhancement effect of the proposed method in model accuracy meets the expectation. 
 

Model Performance Analysis 

The training set of dry-direct seeded rice seedlings was used to train the improved model. The results 

showed that the YOLOv11n-DF model achieved an mAP50 of 87.12%, precision (P) of 84.11%, and recall (R) 

of 77.07%. Compared with the pre-improvement baseline, the mean average precision (mAP50) increased by 

4.28 percentage points. Additionally, the model size remained compact at 12.7 MB, supporting efficient deployment. 

The loss function curve, shown in Fig. 6, illustrates that both training loss and validation loss decrease 

rapidly and in synchronization during the first 50 epochs. After approximately 300 epochs, both curves 

converge in parallel, indicating that the model has reached a Pareto optimal state. Throughout the training 

process, the two models exhibit similar trends, and no significant fluctuations are observed in the validation 

loss. The final convergence difference between training and validation loss remains below 2%. The YOLOv11n-

DF model, designed specifically for dry-direct seeding detection, does not exhibit overfitting or underfitting. 

Furthermore, it demonstrates strong memory retention and excellent generalization performance. 

 
Fig. 6 - Loss function curve 

 

As shown in Fig. 7, the detection results for both pre-processed and unpreprocessed images across 

different scenes are compared before and after the model improvement. The improved YOLOv11n-DF 

algorithm demonstrates a significantly enhanced ability to accurately detect dry-direct seeded rice seedlings 

in both types of images. Compared to the pre-improvement version, the improved model can more effectively 

identify individual seedlings, reduce redundant detections, and accurately focus on small targets - particularly 

in sparsely populated regions. These results highlight the enhanced robustness and adaptability of the 

improved algorithm under various image conditions. 
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 Unprocessed images Preprocessed images 

YOLOv11n 

      

YOLOv11n-DF 

      
 Sparse area Regular area Dense area Sparse area Regular area Dense area 

Fig. 7 - Sample images for image detection in different scenarios 

 

Ablation experiments 

To evaluate the effectiveness of the model improvements, ablation experiments were conducted based 

on the YOLOv11n baseline. The results demonstrated that both incorporating the DSConv mechanism into the 

C3k2 module and replacing the original detection head with the FASFFHead independently enhanced the 

model’s ability to detect dry-direct seeded rice seedlings. In particular, the FASFFHead yielded a notable 

improvement in mAP50, although the addition of multiple detection heads also led to a corresponding increase 

in GFLOPs. Further module combination experiments confirmed the good compatibility of the improved 

components. Integrating both DSConv and FASFFHead significantly increased GFLOPs due to the multi-head 

structure, but this trade-off was justified by the sustained accuracy gains. The experimental findings indicate 

that the proposed improvements form a two-tier optimization architecture: DSConv enhances the backbone's 

ability to extract linear structural and distributional features of seedlings, while the four-head FASFFHead 

improves multi-scale detection performance. The final YOLOv11n-DF model achieves an mAP50 of 87.12%, 

representing a 4.28% increase over the baseline, with only a 13% increase in computational cost, thus meeting 

the expected performance improvements. 

Table 1 

Results of ablation experiment 

YOLOv11n DSConv FASFFHead mAP Precious Recall FPS GFLOPs Size (M） 

√ - - 82.84% 80.62% 74.35% 273.4 6.3 5.3 

√ √ - 84.62% 82.55% 74.63% 168.7 6.5 5.6 

√ - √ 85.13% 83.20% 75.10% 154.7 7.1 11.8 

√ √ √ 87.12% 84.11% 77.07% 49.5 7.3 12.7 

Note: The bolded data in the table represents the maximum value of the same group 

 

Comparison of detection results across models 

To more clearly highlight the performance differences in dry-direct seeded rice seedling detection, a 

comparative experiment was conducted between the improved YOLOv11n-DF model and several mainstream 

YOLO-based architectures. These comparisons provide a comprehensive evaluation of the model’s 

effectiveness in handling the challenges of dry-direct seeded rice seedling detection. The detailed performance 

metrics and detection results are presented in Table 2. 
 

Table 2 

Comparison of detection results by model 

Models mAP Precious Recall FPS GFLOPs Size (M) 

YOLOv7t 80.70% 81.25% 72.13% 351.6 13 11.7 

YOLOv8n 80.91% 78.61% 72.22% 396.8 8.1 6 

YOLOv9t 79.17% 76.49% 70.42% 354.3 10.7 22 

YOLOv10n 80.83% 77.68% 72.53% 268.6 8.5 5.5 

YOLOv11n 82.84% 80.62% 74.35% 273.4  6.3 5.3 

YOLOv11n-DF 87.12% 84.11% 77.07% 49.5 7.2 12.7 

Note: The bolded data in the table represents the maximum value of the same group 
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Fig. 8(a) shows the change curves of the mAP50 of different models with the number of training rounds. 

As the number of training rounds increases, the mAP50 of each model shows a general growth trend, and all 

models achieve basic convergence after about 300 epochs, with only small fluctuations. Among them, the pre-

improved YOLOv11n model has a slower curve growth after 200 epochs, but still has some growth, and shows 

better learning ability in the detection of dry-direct seeding of rice seedlings. The improved YOLOv11n-DF 

grows second after the YOLOv7t model in the first 100 epochs, and the mAP does not fluctuate significantly 

in the training epoch, and still maintains a steady growth after 100 epochs, compared with the YOLOv11t 

model. After 300 epochs, the mAP50 stabilizes without significant growth, reaching a basic convergence. 

  
(a) mAP50 comparison curve chart (b) Model performance radar chart 

Fig. 8 - Comparative experimental results 

 

To visually compare the performance differences among the models, radar charts based on normalized 

results were generated, as shown in Fig. 8(b). The improved YOLOv11n-DS network demonstrates clear 

advantages in terms of mAP50, P, and R, aligning with the intended improvement objectives. These results 

confirm that the YOLOv11n-DS network, which integrates enhanced feature extraction in the backbone and a 

multi-head detection strategy, outperforms similar object detection models in the task of dry-direct seeded rice 

seedling detection. 

 

Visual Analysis 

The visual analysis of the model can break through the limitations of the “black-box” model in the deep 

network. Heat map localization analysis can quantify the intensity with which the model focuses on the target 

region, verify whether the improved model suppresses noise and strengthens the target region of seedling 

plants, and assess the interpretability of the improved YOLOv11-DF model for seedling detection.  

As shown in Fig. 9, Grad-CAM was used to visualize and analyze six detection scenarios. After 

integrating DSConv into the C3k2 module of the backbone network, the model exhibited a stronger focus on 

the banded distribution of dry-direct seeded rice seedlings, particularly in denser regions, compared to more 

sparse or scattered areas. The visualization shows that the model can effectively identify target regions in both 

preprocessed and original images, demonstrating enhanced generalization ability. Furthermore, the model’s 

attention is more concentrated on the seedling distribution in preprocessed images, suggesting that image 

preprocessing aids in the extraction of phenotypic features. Overall, the improved C3k2 module with DSConv 

significantly enhances the network’s ability to capture the structural and morphological characteristics of dry-

direct seeded rice seedlings, especially those arranged in regular banded patterns. 

 
 Unprocessed images Preprocessed images 

Original image 

      

Grad-CAM images 

      
 Sparse area Regular area Dense area Sparse area Regular area Dense area 

 

Fig. 9 - Grad-CAM visualization of detection scenarios 
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CONCLUSIONS 

This study proposes an individual seedling detection algorithm based on an enhanced YOLOv11n 

network, aimed at addressing the challenges posed by the heterogeneous morphology and uneven distribution 

of dry-direct seeded rice. The following section outlines the results of this method: 

(1) Use YOLOv11n to create a target algorithm that captures the visual traits of dry-direct seeded rice. 

The DSConv depthwise separable convolutional optimization C3k2 module strengthens the linear extraction 

of seedlings' traits, while a FASFF-based adaptive feature fusion mechanism improves the detection head's 

structure to better capture the multi-scale traits of seedlings.  

(2) Use comparison and ablation experiments to verify the effectiveness of model improvement. The 

YOLOv11n-DF model's accuracy and recall reached 84.11% and 77.07%, respectively. Its mAP50 was 87.12%, 

showing better detection performance than the original model and mainstream algorithms. This model 

accurately detected multiscale seedlings in complex field environments. 

(3) The interpretability of the model improvement is analyzed using visualization tools. DSConv 

improves the detection of linear phenotypic features of seedlings by the C3k2 module and focuses on seedlings 

with banded distributions. The four-detector-head architecture of FASFFHead mitigates the inconsistency in 

the scale of the fused multiscale features through dynamic weight allocation. The model improvement meets 

the design expectation, and YOLOv11n-DF has better generalization and interpretation. 

(4) In summary, the improved model can accurately detect dry-direct seeded rice seedlings. Subsequent 

research could reduce the model's complexity using a pruning technique to meet video detection requirements 

in field management. 
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