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ABSTRACT 

Due to their delicate and thin skin, ‘Huangguan’ pears are very vulnerable to pressure and impact during 

picking, packing and transportation, which can cause bruising. Early detection of bruises allows for timely 

identification of affected fruits to reduce potential food safety risks. However, early bruises in ‘Huangguan’ 

pears, particularly those that occur within the 30 minutes, often show no visible differences in external features 

compared to healthy tissue, making conventional techniques such as manual and machine vision sorting 

ineffective. Accordingly, a near-infrared (NIR) camera imaging technique combined with deep learning 

segmentation algorithm for early bruise ‘Huangguan’ pears detection is proposed in this study. Firstly, a near-

infrared camera imaging system is applied to collect early bruise images of ‘Huangguan’ pears, and then a 

lightweight segmentation model based on the DeepLabV3+ architecture, referred to as MCC-DeepLabV3+ is 

presented. In the MCC-DeepLabV3+ model, MobileNetV2 is used as the backbone network, reducing the 

parameter size and enhancing deployment efficiency. Additionally, the coordinate attention (CA) mechanism 

is integrated into the shallow feature extraction and ASPP modules to improve the extraction of positional 

information across various features, minimizing the discrepancy between segmented areas and the actual 

bruised regions. Furthermore, a cascade feature fusion (CFF) strategy is incorporated into the encoder to 

reduce segmentation edge discontinuities and ensure effective multi-level semantic fusion, improving 

segmentation accuracy. The experimental results show that the proposed model has achieved a mIoU of 

95.68%, and mPrecision of 97.58% on the self-built dataset of early bruising in ‘Huangguan’ pears. Compared 

to benchmark models such as U-Net, SegNet, PSPNet and HRNet, the proposed model demonstrates superior 

segmentation performance, offering promising support for the development of nondestructive detection 

techniques for agricultural product quality. 

 

摘要 

由于黄冠梨的表皮细腻而娇嫩，在采摘、包装和运输过程中非常容易受到压力和冲击，这可能导致瘀伤。早期

发现瘀伤可以及时识别受影响的水果，有助于减少潜在的食品安全风险。然而，皇冠梨的早期瘀伤，特别是那

些在 30 分钟内发生的瘀伤，与健康组织相比，通常在外部特征上没有明显的差异，这使得人工和机器视觉分类

等传统技术的效果不佳。因此，本研究提出了一种结合深度学习分割算法的近红外(NIR)相机成像技术用于早期

皇冠梨瘀伤检测。首先，采用近红外相机成像系统采集黄冠梨的早期瘀伤图像，然后，提出了一种基于

DeepLabV3+架构的轻量级分割模型，称为 MCC-DeepLabV3+。该模型采用 MobileNetV2 作为骨干网络，减

少了参数大小，提高了部署效率。此外，将坐标注意（CA）机制集成到浅层特征提取和 ASPP 模块中，提高了

不同特征之间的位置信息提取，最大限度地减少了分割区域与实际损伤区域之间的差异。在编码器中引入级联

特征融合（CFF）策略，减少了分割边缘不连续，保证了有效的多级语义融合，提高了分割精度。实验结果表

明，在自建的黄冠梨早期瘀伤数据集上，该模型的 mIoU 和 mPrecision 分别达到了 95.68%和 97.58%。与 U-

Net、SegNet、PSPNet 和 HRNet 等基准模型相比，该模型显示出优越的分割性能，为水果早期无损检测技术

的发展提供了有力的支持。 
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INTRODUCTION 

“Huangguan” pear is a high-quality pear variety widely grown in China, which has become an important 

cash crop in many areas because of its attractive appearance, delicate texture and high yield. However, the 

soft structure and high water content of ‘Huangguan’ pears make them susceptible to physical trauma or impact 

damage during harvesting, packing and transport, resulting in early tissue bruising. Bruising is usually defined 

as damage to the subcutaneous tissue of fresh produce that does not result in rupture of the epidermis (Al-

Dairi et al., 2024). Early bruises in ‘Huangguan’ pears are cosmetically indistinguishable from healthy tissue 

and are difficult to detect with the naked eye, but they provide an ideal environment for microbial colonisation. 

If early damage is not detected and treated in a timely manner, the resulting microorganisms may spread and 

infect other healthy fruits, thus seriously affecting product quality and economic value (Opara et al., 2014). 

Traditionally, testing the quality of ‘Huangguan’ pears in packinghouses has relied on manual inspection by 

trained professionals (Patel et al., 2024), but this method is highly subjective and suffers from limitations such 

as time-consuming, labour-intensive and the possibility of secondary damage to the fruit (Li et al., 2024). To 

cope with these shortcomings, machine vision technology based on RGB images is widely used (Manavalan, 

2020; Arumuga et al., 2023; Tian et al., 2024). The technology achieves a reduction in labour costs and the 

rate of misjudgement as well as an increase in detection speed during the inspection process by capturing 

RGB images of fruits and combining them with image processing algorithms (Du et al., 2020). However, since 

the RGB image inspection method relies on surface visible light information, its detection effect is mainly limited 

to surface defects visible to the naked eye and restricted to early bruises or internal damage hidden under the 

fruit skin (Li et al., 2021). Therefore, this method still has significant shortcomings in meeting the needs of early 

bruise detection. 

It is well known that when fruit undergoes physical trauma, the pulp tissue is damaged and a series of 

complex physiological and biochemical reactions occur at the site of injury, altering the density and vibrational 

strength of the molecular bonds (Li et al., 2018). These changes affect the sugar and water content, which 

leads to alterations in optical properties, making it possible to utilize optical properties for early identification of 

internal damage. Several studies have used hyperspectral imaging to extract spectral information to evaluate 

the intrinsic and extrinsic qualities of fruit. Zhu et al., (2016) applied hyperspectral imaging and chemo-metrics 

to predict the integrated quality of tomato non-destructively and determine the optimal harvesting period. Wu 

et al., (2023) used HSI combined with spectral and texture features to detect and classify early damage of 

Lingwu longdate based on 1D convolutional neural network (1D-CNN). Liu et al., (2023) used hyperspectral 

imaging, transfer learning and convolutional neural network modelling techniques to detect early mechanical 

damage in pears, and the resulting model achieved an accuracy of 96.61% on the test set, which was 3.64% 

higher than the pre-fine-tuning network. The above studies show that HSI performs well in fruit damage 

detection, but it faces challenges in practical applications such as high equipment cost, complex data 

processing and high computational resource requirements (Mei et al., 2023). Compared with hyperspectral 

imaging and processing, NIR imaging offers simpler data processing, eliminating the need to analyse large 

amounts of spectral band information, which significantly simplifies data processing and reduces inspection 

costs. Due to the higher absorption of NIR light by bruised tissue, NIR cameras are able to acutely capture 

subcutaneous damage that cannot be identified by the naked eye and visible light, and visualise healthy tissue 

and damaged areas by combining spectral information with spatial information (Ünal et al., 2024). In addition, 

the high sensitivity of NIR cameras to changes in key components such as moisture and sugar, as well as their 

small size and light weight, make them ideal for early bruise detection in fruit. 

Based on near infrared imaging, traditional machine learning techniques are combined for fruit damage 

detection. Nandi et al., (2016), proposed an automatic mango ripeness grading method based on support 

vector machines (SVM) and fuzzy learning, achieving a grading accuracy of 87%. Hu et al., (2018) developed 

an algorithm for bruised apple identification using 3-D infrared imaging, featuring a vertex-based local binary 

pattern (vmLBP) for feature extraction and SVM for classification. The algorithm achieved a 91.83 ± 0.46% 

accuracy, outperforming traditional methods. However, the performance of machine learning models is highly 

dependent on feature selection, requiring manual elimination of redundant features or identification of the most 

representative information to minimize the effect of irrelevant input variables (Li et al., 2022), which is not only 

time-consuming but also depends on expert knowledge. In contrast, due to its powerful feature learning 

capabilities, deep learning has become an alternative technology in several areas of agriculture (Attri et al., 

2023), such as pest and disease detection (Shafik et al., 2024), crop yield estimation (Barbosa et al., 2021), 

water management (Chen et al., 2021), and soil analysis (Zhong et al., 2021).  
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Deep learning automatically learns important features from images through multi-layer neural networks, 

significantly simplifying the feature extraction process, thereby eliminating the reliance on experts to manually 

select features (Wu et al., 2020).This process not only improves classification accuracy but also reduces 

human intervention. In recent years, deep learning has demonstrated notable advantages in computer vision 

and agricultural applications. Yuan et al., (2022), developed an early bruise detection system for apples by 

combining near-infrared imaging with deep learning, achieving an accuracy rate exceeding 99%. The powerful 

learning and inference capabilities of deep learning give it a clear edge in fruit damage detection tasks, 

enabling more accurate and efficient automated detection.  

Based on the analysis of the aforementioned detection methods and deep learning techniques, this 

paper proposes a method for early bruise detection in ‘Huangguan’ pears that integrates near-infrared imaging 

technology with deep learning algorithms. DeepLabV3+ (Chen et al., 2018), as a basic framework for 

segmentation model is employed for detecting damaged regions in near-infrared images of ‘Huangguan’ pears, 

with MobileNetV2 (Sandler et al., 2018) chosen as the backbone network to reduce the model’s parameter 

size. Additionally, the coordinate attention (CA) (Hou et al., 2021) mechanism is introduced at both shallow 

and deep feature levels within the encoder to enhance the model’s ability to detect bruise regions and improve 

segmentation accuracy. Furthermore, the cascade feature fusion (CFF) (Zhao et al., 2018) strategy is 

incorporated to better integrate shallow and deep semantic features, thereby enhancing the continuity of edge 

detection. Experimental results demonstrate that the improved model achieves early bruise detection in 

‘Huangguan’ pears with a model size of only 6.103MB, while key metrics, such as mIoU and mPrecision, reach 

95.68% and 97.58%, respectively, significantly improving both detection efficiency and accuracy.  

 

MATERIALS AND METHODS 

Experimental samples and damage device 

The skin colour of ‘Huangguan’ pears closely resembles the colour of bruising in its early stages, making 

bruise identification particularly challenging. Bruise samples of ‘Huangguan’ pear were prepared as shown in 

Figure 1.  

 

(a) (b) (c)

(d) (e) (f)

 
Fig. 1 - Process of bruise sample and data preparation 

 

A total of 120 ‘Huangguan’ pears, free of damage and disease, were purchased from a supermarket 

and stored at room temperature. These pears were categorized into three groups based on size: large, medium, 

and small, as shown in Figure 1(a). The diameters of the large pears ranged from 90 to 100 mm, medium 

pears from 80 to 90 mm, and small pears from 70 to 80 mm. 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 
 

259 

Since early-stage bruises on ‘Huangguan’ pears are not visible to the naked eye, it is difficult to obtain 

naturally bruised pears. Therefore, the bruised pear samples were artificially created. To simulate various 

levels of compressive bruising, a universal testing machine was used to perform mechanical compression 

tests, as shown in Figure 1(b). First, ten pears from each size group were randomly selected for preliminary 

compression tests to determine their biological yield and rupture points, providing a reference for pressure 

control during the bruise sampling process. The results, shown in Figure 1(c), indicated that the rupture force 

range for large pears was between 515.73 N and 749.91 N, for medium pears between 457.87 N and 755.73 

N, and for small pears between 414.91 N and 689.29 N. Then, it was determined that the maximum lower 

bound of the rupture force range was 515.73 N, and the minimum upper bound was 689.29 N. For the 

subsequent bruise sampling, 90 pears were subjected to forces ranging from 520 to 680 N. To simulate varying 

degrees of internal bruising that ‘Huangguan’ pears may experience during harvesting and transport, a 

universal material testing machine applied pressure to the equatorial region of the pears. The pressure was 

initially set at 520 N and incrementally increased by 10 N until it reached 680 N.  

 

Near infrared camera imaging system and image acquisition process 

A NIR camera employed as the imaging device in this experiment is the IUA4100KPA model, 

manufactured by Hangzhou Jiecheng Instrument Co., Ltd., which features a Sony sensor with a resolution of 

2688 × 1520 pixels and a maximum frame rate of 90 frames per second. The lens used is a C-M0418IR (3MP) 

high-definition industrial lens produced by FordTech, ensuring high-resolution, high-quality image capture 

suitable for precise detection of surface bruises on ‘Huangguan’ pears. The imaging system, shown in Figure 

1(d), comprises a ring light source, a dark box, and a stand, providing stable and uniform illumination. The 

camera and lens are positioned at the centre of the ring light source, with the samples placed on a black 

background plate. The height and aperture of the lens were adjusted for optimal imaging conditions, and the 

camera’s aperture and focal length were fine-tuned to ensure clarity and high resolution. This imaging system 

minimizes environmental interference and provides consistent, accurate image acquisition, laying a robust 

foundation for subsequent image processing and analysis. 

Immediately after pressure application and bruise induction, NIR images were captured and 

subsequently collected at 10 min, 20 min, and 0.5 hour intervals to enrich the sample set. To ensure the 

diversity and comprehensiveness of the dataset, images were taken from multiple angles and positions. After 

removing unclear or substandard images, a final dataset consisting of 2700 high-quality NIR images of bruised 

‘Huangguan’ pears was obtained, as shown in Figure 1(e). These images were annotated using LabelImg 

software, where the intact regions of the pears were marked in red, and the bruised regions were highlighted 

in green. A visualization of the labelled images is shown in Figure 1(f). The dataset was ultimately divided into 

training, validation, and test sets in an 8:1:1 ratio, comprising 2160, 270, and 270 images, respectively. 

 

DESIGN OF BRUISE SEGMENTATION MODEL 

DeepLabV3+ is a state-of-the-art deep learning-based semantic segmentation model designed to 

address the challenges of spatial information loss and low-resolution outputs commonly encountered in 

traditional convolutional neural networks for segmentation tasks. Its key innovations include the incorporation 

of atrous convolution and encoder-decoder architecture, which significantly enhance feature extraction 

capabilities and improve the resolution of segmentation results. In the model architecture, the input image is 

first processed by the backbone network, Xception, which extracts hierarchical features: shallow features that 

retain spatial details and deep features that encode rich contextual semantics. The deep features are then 

refined through the atrous spatial pyramid pooling (ASPP) module, which employs atrous convolutions with 

varying dilation rates and global pooling to effectively capture multi-scale contextual information and enrich 

feature representation. During the decoding stage, low-resolution deep feature maps are upsampled and fused 

with high-resolution shallow feature maps. This fusion process, followed by additional convolutional operations, 

restores the spatial resolution of the feature maps to match that of the input image, ultimately producing precise 

and high-quality segmentation outputs. 

Although DeepLabV3+ demonstrates strong performance in multi-scale feature processing and output 

resolution enhancement, it exhibits certain limitations when applied to the segmentation of early bruise regions 

in near-infrared images of ‘Huangguan’ pear. The early bruise regions have minimal visual differences 

compared to healthy areas, particularly at the boundaries, making them challenging to distinguish, which leads 

to segmentation discontinuities and missed detections around these boundaries.  
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Furthermore, the high computational complexity of Xception as the backbone network restricts the 

model's scalability and efficiency in processing large-scale mass near-infrared datasets. To address these 

challenges, this paper proposes an improved model, MCC-DeepLabV3+. First, the original Xception backbone 

is replaced with MobileNetV2, which significantly reduces both the parameter count and computational 

complexity while retaining robust feature extraction capabilities. Second, a coordinate attention (CA) 

mechanism is integrated into the shallow features and ASPP modules of the backbone network. This 

enhancement improves the model's ability to capture spatial information at multiple feature levels, thereby 

increasing segmentation accuracy and mitigating missed detections. Finally, a cascaded feature fusion (CFF) 

strategy is introduced during the fusion of shallow and deep features. This strategy ensures a more effective 

integration of multi-level semantic information, addressing edge discontinuities and further improving the 

overall segmentation quality. The architecture of the improved model is illustrated in Figure 2.    

1×1 Conv Concat 3×3 Conv

C
F

FCA

Unsample By 2

Unsample By 2

Unsample By 4

Add

1×1 Conv

3×3 Conv

Rate=6

3×3 Conv

Rate=12

3×3 Conv

Rate=18

Image 

Polling

1×1 

Conv

CA

Encoder

Decoder

MobileNetV2

Improved-ASPP

Low-Level

Features

CA

CA

CA

CA

 
Fig. 2 - The structure of the improved DeepLabV3+ model for bruise ‘Huangguan’ pear detection 

 

Lightweight backbone network 

The Xception network, employed in DeepLabV3+, possesses robust feature extraction capabilities. 

However, its architecture, composed of numerous stacked convolutional layers, involves extensive multi-level 

computations, leading to a high parameter count and significant computational complexity. This computational 

burden presents a bottleneck for the early bruise segmentation task of ‘Huangguan’ pears, where rapid 

processing of large-scale near-infrared images is required. To address this issue, the MCC-DeepLabV3+ 

model replaces Xception with MobileNetV2. MobileNetV2 is a lightweight network architecture that leverages 

depthwise separable convolutions instead of standard convolutions, significantly reducing the parameter count 

and computational complexity. Additionally, its inverted residual structure minimizes feature redundancy while 

maintaining high representational power, enabling efficient feature extraction with a low computational cost.  

Input Filters*4 Maps*4 Input
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Filters*4
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(a) standard convolution (b) depth separable convolution 

Fig. 3 - Structures of standard convolution and depth-separable convolution 
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Depthwise separable convolution is the core operation in MobileNetV2 for achieving model 

lightweighting. It decomposes the standard convolution operation into two independent steps: depthwise 

convolution (DW) and pointwise convolution (PW), effectively reducing the computational load of the model. 

As shown in Figure 3, compared with standard convolution, depthwise separable convolution is divided into 

two parts: first, depthwise convolution performs convolution independently on each input channel to extract 

spatial features; then, pointwise convolution applies 1×1 convolutions to perform point-by-point operations, 

linearly combining features from different channels and fusing spatial and channel information. This 

decomposition significantly reduces the computational complexity. 

Specifically, as shown in Figure 3, depthwise convolution (DW) extracts spatial features by 

independently processing each input channel, while pointwise convolution (PW) fuses spatial and channel 

information through 1×1 convolutions. The computational complexity of depthwise separable convolution can 

be represented by the following two formulas: 

    = F F K KDW M D D D DC       (1) 

    = PW F FC M N D D  (2) 

where DF is the dimension of the feature map, DK represents the size of the convolution kernel, M is the number 

of input channels, and N is the number of output channels. 

Under equations (1) and (2), the total computation of the depth separable convolution can be expressed 

as Eq.(3). In contrast, the standard convolution is computationally intensive, which is calculated as Eq.(4). 

Comparing Eq. 3 and Eq. 4, it can be seen that the computational complexity of the depth-separable 

convolution is reduced to 
2

1 1

KN D
＋  of the standard convolution, which allows MobileNetV2 to maintain a 

high feature extraction capability while reducing the computational effort. 

 =      = + ＋F F K K F FDS DW PW M D DC D D M NC C D D  (3) 

   =  C F KSC F KM N D D D D  (4) 

In addition, MobileNetV2 introduces a novel inverted residual block, optimized based on traditional 

residual networks. While traditional residual networks mitigate the vanishing gradient problem through skip 

connections, the inverted residual block enhances computational efficiency and feature representation through 

a “dimensionality enhancement-extraction-dimensionality reduction” design, as illustrated in Figure 4. 

Specifically, the 1×1 convolution is used to reduce dimensions initially, followed by 3×3 depthwise separable 

convolution for feature extraction, and finally, another 1×1 convolution to restore the feature dimensions. The 

use of a linear activation function Relu6 helps to minimize feature loss during dimensionality reduction and 

improves the efficiency of information flow. Thus, by introducing deeply separable convolutions and inverted 

residual structures, MobileNetV2 reduces the model’s parameter count while maintaining strong feature 

extraction capabilities. 

Relu Relu Relu

1×1 3×3 1×1

Relu6 Relu6 Relu6

Dwise 

3×31×1 1×1

 
(a) Residual network (b) Inverted residual network 

Fig. 4 - The structure of inverted residual network 

 

Introduction of CA attention mechanism 
In semantic segmentation tasks, the traditional DeepLabV3+ model relies on shallow features to provide 

spatial information and utilizes the ASPP module to extract multi-scale contextual information. However, this 

architecture exhibits certain limitations. Firstly, shallow features are different to capture the global positional 

information of bruise regions due to their small receptive fields. Secondly, the ASPP module demonstrates 

relatively weak capability in capturing spatial location information, although it focuses on aggregating cross-

scale semantic features.  



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 
 

262 

These challenges are exacerbated in the segmentation of early bruises in ‘Huangguan’ pears, where 

the subtle visual differences between healthy and bruised regions, combined with blurred boundaries, 

significantly increase the segmentation difficulty. To address these issues, this paper introduces the coordinate 

attention (CA) mechanism into the shallow feature and ASPP modules of the MCC-DeepLabV3+ model to 

enhance their spatial localization capabilities. In the shallow feature extraction stage, the CA mechanism 

strengthens the representation of local spatial details in bruise regions by leveraging cross-channel information 

modeling and orientation-awareness properties. In the ASPP module, the CA mechanism compensates for its 

inherent limitations in capturing spatial location information, enabling the model to more accurately perceive 

the boundary positions of bruise regions. This enhancement effectively improves the spatial localization 

capability of the model, thereby increasing the accuracy and continuity of boundary segmentation for early 

bruise regions in ‘Huangguan’ pears. Therefore, the introduction of the coordinate attention (CA) mechanism 

enables the encoding of channel relationships and remote dependencies based on precise location information, 

and the structure is shown in Figure 5. 
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Fig. 5 - Structure of the coordinate attention mechanism module 

 

From Figure 5, to globally encode the height H and width W directions of the input feature map F, the CA 

mechanism implements a global average pooling operation along the H and W directions, respectively, which 

generates the corresponding two 1D feature maps zh and zw, as follows: 
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(5) 

where zh and zw denote the aggregation results of the feature map in the H and W directions, respectively. The 

zh and zw obtained above are spliced and downscaled by a 1×1 Conv H1 operation to generate an intermediate 

feature map Z of size C/r×1×(W＋H), where r is the channel reduction ratio. Next, batch normalization and 

nonlinear activation operations are applied to Z to obtain the processed feature map f, where   denotes the 

nonlinear activation operation. 

  = 1H ,h wZ z z  (6) 

 ( )  =  BNf Ζ  (7) 

Then, f is split into fh and fw in both H and W directions and the attention weights gh and gw are computed 

by 1×1 Conv Hh, Hw operations and Sigmoid activation function, respectively: 

 ( )  =  hH hhg f  , ( )  =  wHw wg f  (8) 

where σ denotes the Sigmoid function. 

 

Finally, the input feature maps are multiplied with the generated attention weights gh and gw in the X and 

Y directions, respectively, to obtain the final feature maps after fusing the attentional information: 

 =  '

h wF F g g

 

  (9) 
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Integration of CFF module 

In DeepLabV3+, the backbone network generates features at varying levels of abstraction during feature 

extraction. Shallow features are particularly effective for pixel-level localization tasks and ability to excel at 

capturing edge details and local information due to their high resolution. In contrast, deep features are 

progressively abstracted and aggregated through a multi-layer network, encapsulating rich global semantic 

information, which helps in understanding overall image context and category differentiation. Effective fusion 

of shallow and deep features is the key to achieving a more comprehensive and robust feature representation. 

However, the traditional DeepLabV3+ decoder employs a simple concatenation method for feature fusion, 

which inadequately addresses the distinct characteristics and synergistic relationships between shallow and 

deep features. This limitation can result in the loss of critical detail information, particularly in challenging 

scenarios such as segmenting bruised areas with blurred boundaries. Consequently, issues such as edge 

discontinuities and breaks may arise, significantly compromising segmentation accuracy. 

To address these challenges, this study introduces the cascaded feature fusion (CFF) module to more 

effectively integrate shallow and deep features. The core processes of the CFF module are illustrated in Figure 

6. First, the shallow feature map F1 undergoes a 3×3 dilated convolution with a dilation rate of 2 to adjust the 

channel dimensions. Simultaneously, the deep feature map F2 is upsampled by a factor of two using bilinear 

interpolation, followed by the same dilated convolution operation to align its dimensions and receptive field 

with F1. This approach not only ensures feature resolution consistency but also expands the receptive field, 

enabling the capture of richer contextual information while reducing computational overhead. Next, batch 

normalization is applied to both feature maps to standardize data distribution, which accelerates network 

training and enhances model convergence. Finally, the normalized F1 and F2 are element-wise added, and the 

result is processed through a ReLU activation function to produce the fused feature map, denoted as F12. 

The integration of the CFF module enables a more effective combination of the edge detail information 

from shallow features and the global semantic information from deep features. This enhancement significantly 

improves segmentation accuracy for bruised areas while ensuring smoother and more continuous boundary 

delineation. Moreover, the optimized design of the CFF module reduces computational costs, thereby 

improving overall segmentation efficiency.  
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Fig. 6 - Structure of the cascaded feature fusion module 

 

RESULTS AND ANALYSIS 

Experimental setup and evaluation metrics 

The experiment uses Windows11 operating system. The hardware platform employs Intel I7-11700K 

CPU and NVIDIA GeForce RTX 4080 GPU with 32G video memory. Network construction, debugging, training 

and testing are carried out under the Pytorch framework based on the Python language, in which the torch 

version is 1.13 and the CUDA version is 12.1. The size of the input image is set to 512×512, and the batch 

size and the number of iterations are set to 2 and 300, respectively, for the training process. In the experiment, 

the initial learning rate is set to 0.01, and the model is optimized by using SGD. The network is initialized by 

loading pre-training weights.   

For quantitatively comparing the performance of semantic segmentation network models in detecting 

bruises on ‘Huangguan’ pears, four evaluation metrics were used: mean Intersection over Union (mIoU), mean 

Pixel Accuracy (mPA), mean Precison (mPrecision) and mean Recall (mRecall). mIoU is the ratio of the 

intersection to the union of the ground truth and predicted labels, averaged over all classes. mPA represents 
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the proportion of correctly classified samples, providing an intuitive measure of overall performance. 

mPrecision refers to the proportion of true position samples among those predicted as positive by the model, 

which serves as an evaluation of the model’s accuracy in predicting positive cases. mRecall measures the 

model's ability to correctly identify positive samples, indicating the proportion of true positive samples correctly 

predicted from all actual positive samples. The four evaluation metrics are defined as follows: 

 𝑚𝐼𝑜𝑈 =
1

𝑘+1
∑

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
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   (10) 
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In the above formulas, TP (True Positive) refers to cases where the prediction is positive and the ground 

truth is also positive. FP (False Positive) denotes situations where the prediction is positive but the ground 

truth is negative. FN (False Negative) refers to instances where the prediction is negative but the ground truth 

is positive. TN (True Negative) indicates cases where both the prediction and the ground truth are negative. 

 

Comparison experiment of different models 

To verify the effectiveness of the proposed MCC-DeepLabV3+ model in early bruise segmentation of 

‘Huangguan’ pears, it is compared with five classical segmentation models: UNet (Ronneberger et al., 2015), 

SegNet (Badrinarayanan et al., 2016), PSPNet (Zhao et al., 2017), HrNet (Sun et al., 2019), and DeepLabV3+. 

The experiments were conducted using the same parameter settings and test conditions, and the performance 

of each model in detecting bruises was visualized through segmentation results. 

Figure 7 illustrates the segmentation performance of different models on randomly selected test data.  

        

        

        

(a) Input 
(b) Groud-

truth 
(c) UNet (d) SegNet (e) PSPNet (f) HrNnet 

(g)DeepLab

V3+ 
(h) Ours 

Fig. 7 - Comparison of segmentation results of different networks 

 

UNet performs poorly in locating bruise regions. In UNet，the upsampling process often introduces noise 

and skip connections that tend to mix high-level features leads to frequent misclassification of healthy tissue 

as bruise regions. SegNet suffers from significant loss of spatial information due to multiple pooling operations 

during the decoding stage, especially when precisely segmenting boundary regions. PSPNet is prone to 

missing bruise features, indicating insufficient sensitivity to the characteristics of bruise regions. HrNet retains 

high-resolution feature maps through its multi-resolution parallel network branches, capturing global context 

information.  
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However, this design may overlook local details, especially when the contrast between the background 

and bruise areas is low, leading to misclassification of the background as bruise regions. Among the five 

models, DeepLabV3+ achieves relatively better performance. However, its spatial convolutions have limited 

capacity to preserve spatial location information, leading to some healthy regions being misclassified as bruise 

areas. In Figure 7(h), the proposed MCC-DeepLabV3+ model demonstrates more precise bruise segmentation 

compared to the other five models, significantly reducing misclassification and omission errors. It closely aligns 

with the ground truth shown in Figure 7(b), delivering more reliable and accurate segmentation results. 

To further validate the performance of the proposed MCC-DeepLabV3+ model, mIoU, mPrecision, and 

mRecall metrics were evaluated on the ‘Huangguan’ pear bruise dataset, with results summarized in Figure 8. 

MCC-DeepLabV3+ achieved superior performance across all metrics, with mIoU, mPA, mPrecision, and 

mRecall reaching 95.68%, 97.43%, 97.58%, and 96.43%, respectively, outperforming all comparison models. 

For instance, in terms of mIoU, the proposed model demonstrated improvements of 3.93%, 12.14%, 9.45%, 

16.80%, and 3.84% over UNet, SegNet, PSPNet, HrNet, and DeepLabV3+, respectively. These results show 

that the proposed model's robustness and effectiveness in achieving high segmentation accuracy and 

accurately detecting bruise regions. The above qualitative and quantitative comparison results show that MCC-

DeepLabV3+ performs excellently in the task of early bruise segmentation in ‘Huangguan’ and pear. It 

effectively addresses the limitations of classical segmentation models, such as inaccurate bruise localization, 

insufficient boundary smoothing and incorrect segmentation. With higher segmentation accuracy and 

enhanced robustness, the model provides a practical and efficient solution for bruise detection in industrial 

applications. 

 

 
Fig. 6 - Comparison of segmentation performance of different semantic segmentation networks 
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CA after MobileNetV2 
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Structure 3： 

CA after MobileNetV2 and in ASPP 

Fig. 7 - The structure of CA attention mechanisms in different positions 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 
 

266 

To determine the optimal application of the attention mechanism in DeepLabV3+, three different encoder 

architectures shown in Figure 9 were designed and evaluated on the custom ‘Huangguan’ Pear dataset. These 

architectures include: incorporating the attention mechanism only after the shallow feature output from 

MobileNetV2 (referred to as “CA after MobileNetV2”), integrating it solely within the ASPP module (“CA in 

ASPP”), and applying it to both MobileNetV2 output and the ASPP module (“CA after MobileNetV2 and in 

ASPP”). Figure 10 illustrates the segmentation results of the three structures, while Table 1 presents their 

performance metrics. 

As shown in Table 1, Structure 3 achieved the highest performance across all metrics, with mIoU, mPA, 

mPrecision, and mRecall reaching 95.22%, 96.93%, 96.41%, and 95.57%, respectively. Specifically, as 

depicted in Figure 10, structure 1 enhances the extraction of local features but lacks reinforcement of deep 

semantic features, leading to inadequate global information capture. This limitation reduces segmentation 

accuracy, particularly for irregular bruise morphologies, which are prone to misclassification. Structure 2 (in 

ASPP) improves global contextual perception and optimizes the receptive field across multi-level features, 

enabling more accurate contour detection. However, it struggles with fine boundary delineation. In contrast, 

structure 3 combines the strengths of both approaches. The attention mechanism applied after MobileNetV2 

refines edge features and improves detail segmentation, while the mechanism in the ASPP module 

strengthens global semantic feature representation and ensures effective spatial information capture. This 

dual-attention mechanism achieves a balanced integration of global and local features, significantly enhancing 

overall segmentation performance and edge detail accuracy. By combining subjective visual evaluations with 

objective performance metrics, it is evident that the dual-attention mechanism substantially improves the 

performance of DeepLabV3+ in ‘Huangguan’ pear bruise segmentation. This approach not only preserves the 

integrity of global semantic features but also restores fine edge details, thereby enhancing both segmentation 

accuracy and model robustness. Therefore, it was selected as the final design in this study. 

Table 1  

Comparison of network segmentation performance after adding attention mechanism  

at different locations 

Network type mIoU mPA mPrecision mRecall 

Structure 1 92.06% 95.21% 95.26% 93.21% 

Structure 2 92.14% 95.56% 95.94% 94.59% 

Structure 3 95.22% 96.93% 96.41% 95.57% 

 

Image1 

     

Image2 

     

Image3 

     
 

(a) Input 
(b) Groud- 

Truth 

(c) Structure 

1 

(d) Structure 

2 

(e) Structure 

3 

Fig. 8 - Comparison of segmentation results after adding attention mechanism at different locations 
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Ablation experiment 

To verify the contribution of each module in ‘Huangguan’ pear bruise detection, this study conducts 

ablation experiments using a self-constructed dataset, with DeepLabV3+ as the base framework. By 

comparing the effects of embedding the MobileNetV2 backbone network, the Coordinate Attention (CA) 

mechanism, and the Cascaded Feature Fusion (CFF) module, the effectiveness and individual contributions 

of these modules are thoroughly evaluated. The test effect graphs and performance metrics for different 

module combinations are shown in Figure 11and Table 2, respectively. 

Firstly, the backbone of DeepLabV3+ was replaced from Xception to MobileNetV2, reducing the model 

parameters from 54.71M to 5.82M, nearly a tenfold decrease. This number of parameters has decreased, but 

the mIoU, mPA, mPrecision, and mRecall metrics improved from 91.24% to 93.52%, 95.56% to 96.55%, 95.94% 

to 96.56%, and 95.59% to 96.55%, respectively, demonstrating the effectiveness of the lightweight design. 

The efficient depthwise separable convolutions and inverted residual structure of MobileNetV2 significantly 

reduce the parameter count while maintaining robust feature extraction capabilities, offering a practical solution 

for resource-constrained industrial applications. Next, the CA mechanism was embedded in both the output of 

MobileNetV2 and the ASPP module, keeping the model parameters unchanged at 5.82M. However, the 

performance improved further, with mIoU, mPA, mPrecision, and mRecall reaching 93.54%, 96.59%, 96.64%, 

and 96.57%, respectively. The CA mechanism effectively enhances the model's ability to capture global spatial 

information by combining spatial coordinates with channel attention. Specifically, it strengthens long-range 

dependencies through global average pooling in the horizontal and vertical directions, improving the model's 

capability to handle complex bruise shapes while significantly reducing omissions and misclassifications. This 

demonstrates the critical role of the CA mechanism in enhancing the spatial feature representation of the 

model. Finally, the introduction of the CFF module slightly increased the model parameters to 5.87M but 

improved performance. Compared to the initial network with Xception as the backbone, the mIoU, mPA, 

mPrecision, and mRecall improved by 1.65%, 1.10%, 0.77%, and 1.07%, respectively. The CFF module 

employs a cascaded feature fusion strategy, combining fine-grained details from shallow features with global 

semantics from deep features, enhancing the model's ability to capture multi-level features, improving 

segmentation accuracy. 

Table 2 

The segmentation performance comparison of different modules 

DeepL

abV3+ 

Backbone 

CA CFF 
Params 

(M) 

mIoU 

(%) 

mPA 

(%) 

mPrecisi

on (%) 

mRecall 

(%) Xception MobileNetV2 

√ √    54.71 92.14 95.56 95.94 95.59 

√  √   5.82 93.52 96.55 96.56 96.55 

√  √ √  5.82 93.54 96.59 96.64 96.57 

√  √  √ 5.87 93.66 96.61 96.68 96.61 

√  √ √ √ 6.10 95.68 97.43 97.58 97.43 

 

Figure 11 illustrates the segmentation performance of the model on the test set after the progressive 

addition of different modules. Comparing Figure 11(c) and Figure 11(d), it can be observed that replacing the 

backbone network with MobileNetV2 resulted in clearer segmentation of bruise regions, enhancing the model's 

initial segmentation capability. Further comparison between Figure 11(d) and Figure 11(e) shows that the 

introduction of the CA attention mechanism significantly improved the model's feature extraction capability, 

leading to more precise segmentation and clearer delineation of bruise contours. Comparing Figure 11(e) and 

Figure 11(f), the inclusion of the CFF module enhanced the handling of edge details in early bruise region 

segmentation, effectively avoiding issues such as edge blurring or irregularities. Overall, the segmentation 

results of the proposed model (Figure 11(g)) are more closely aligned with the ground truth (Figure 11(b)), 

demonstrating the effectiveness of the combined modules in improving segmentation accuracy and detail 

preservation. 
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The above objective metrics and subjective segmentation results from the ablation experiments 

demonstrate that the MobileNetV2 backbone significantly reduced the model's parameters, improving 

segmentation efficiency. The CA mechanism enhanced the model's ability to represent spatial positional 

information, resulting in more accurate segmentation. Meanwhile, the CFF module, by integrating multi-level 

features, further improved the localization accuracy and detail preservation in bruise regions. Together, these 

three modules achieve a balance between lightweight design and high performance. 
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Fig. 9 - Comparison of segmentation results of different modules 

 

CONCLUSIONS 

This paper introduces a lightweight semantic segmentation network, MCC-DeepLabV3+, designed for 

early bruise detection in ‘Huangguan’ pears using near-infrared (NIR) imaging technology and deep learning 

techniques. A universal testing machine was employed to generate real early bruises, and a corresponding 

dataset of early bruising in ‘Huangguan’ pears was prepared. The proposed network adopts MobileNetV2 as 

the backbone, which effectively reduces the parameter size of the original Xception model, thereby addressing 

the issue of model complexity. Furthermore, a Coordinate Attention (CA) mechanism is integrated into both 

the shallow feature extraction stage and the Atrous Spatial Pyramid Pooling (ASPP) module, significantly 

enhancing the model’s segmentation performance and improving its ability to process edge details. The 

introduction of the Cascaded Feature Fusion (CFF) module further optimizes the integration of shallow detail 

features with deep semantic information, which is crucial for improving accuracy in detecting early bruises. 

To assess the performance of the proposed model, a series of comparative experiments with classical 

segmentation networks such as UNet, SegNet, PSPNet, HrNet, and DeepLabV3+ was conducted. The 

evaluation focused on key metrics, including mIoU, mPA, mPrecision, and mRecall, as well as a detailed 

analysis of the segmentation results on the test set. Our findings reveal that MCC-DeepLabV3+ consistently 

outperforms the other models across all evaluated indices, demonstrating superior segmentation reliability and 

performance in detecting early bruises in ‘Huangguan’ pears. 

In terms of attention mechanisms, the impact of adding CA attention mechanisms at various stages of 

the network, specifically at the shallow input of the MobileNetV2 backbone and within the ASPP module, was 

explored. Our results indicate that incorporating CA attention mechanisms at both locations simultaneously 

significantly improves model performance, compared to models with either individual or no attention 

mechanisms. This reinforces the importance of integrating attention mechanisms at multiple stages of the 

network to enhance segmentation results. 

To further validate the effectiveness of the proposed enhancements, ablation experiments were 

conducted, which confirmed that MCC-DeepLabV3+ outperforms various combinations of individual 

improvements.  
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The model's segmentation results closely align with the ground truth labels, showcasing its ability to 

accurately detect early bruises in ‘Huangguan’ pears. This advancement provides a new, efficient, and precise 

approach for early bruise detection, which can be effectively applied in automated fruit quality detection and 

precision agriculture. 

In conclusion, the enhanced MCC-DeepLabV3+ network introduced in this paper offers significant 

improvements in the accuracy and efficiency of early bruise detection in ‘Huangguan’ pears. While the 

proposed model demonstrates impressive performance, there remains potential for further optimization. Future 

research will focus on refining both the accuracy and speed of detection to further enhance the practicality and 

effectiveness of this approach for real-world applications in agriculture. Additionally, addressing challenges 

such as the detection of complete overlap between bruises in densely packed pears will be a key area for 

future improvement. 
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