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ABSTRACT  

The diamondback moth (Plutella xylostella) is a destructive pest that severely compromises Chinese cabbage 

production. Infestations caused by this pest significantly reduce both yield and quality, making efficient and 

accurate detection crucial for cultivation management. To address the challenges of detecting small targets 

and extracting phenotypic features in complex environments, this study proposes SAFF-YOLO—a YOLO11-

based pest detection algorithm specifically designed for diamondback moths in Chinese cabbage fields. First, 

the loss function was refined to enhance the model's learning capacity for pest samples, optimizing it for 

precision-driven bounding box regression. Second, Alterable Kernel Convolution (AKConv) was incorporated 

into the backbone network, strengthening feature extraction capabilities while reducing model parameters. 

Third, Single-Head Self-Attention (SHSA) was integrated into the C2PSA (Channel and Position Spatial 

Attention) module, enhancing the backbone network's feature processing efficacy. Fourth, the neck network 

employed Frequency-aware Feature Fusion (FreqFusion) as the upsampling operator, specifically designed 

for precise localization of densely distributed targets. Finally, the Feature Auxiliary Fusion Single-Stage Head 

(FASFFHead) detection module was implemented to boost multi-scale target detection adaptability. 

Experimental results demonstrate that SAFF-YOLO achieved detection metrics of 90.7% precision, 89.4% 

recall, and 92.4% mAP50 for diamondback moths in Chinese cabbage, representing improvements of 7.4%, 

8.0%, and 8.4% respectively over YOLO11. With only 7.3 million parameters and computational cost of 12.8 

GFLOPs, this corresponds to 60.1% and 40.7% reductions compared to the baseline model. These results 

confirm an optimal balance between model lightweighting and high detection accuracy. Under complex field 

conditions characterized by small and densely distributed targets, severe background interference, and intense 

illumination, SAFF-YOLO consistently demonstrates robust detection capabilities, effectively reducing both 

false negative and false positive rates while maintaining high operational robustness. This research provides 

a practical solution for real-time diamondback moth detection in field-grown Chinese cabbage. 

 

摘要 

小菜蛾是严重危害白菜生产的害虫，其导致的虫害会使白菜产量、质量严重下降，因此高效、准确地检测小菜

蛾对白菜栽培至关重要。针对复杂环境下小菜蛾检测存在目标小、表型特征提取困难等问题，本研究提出了基

于 YOLO11的白菜小菜蛾害虫检测算法 SAFF-YOLO。首先，改进损失函数来增强模型对害虫样本的学习能力，使

其更适合边界框回归的准确性需求；引入可变核卷积（Alterable Kernel Convolution，AKConv）作为主干网

络，增强了特征提取能力，减少了模型参数的数量；将单头自注意力（Single-Head Self-Attention，SHSA）

集成至 C2PSA（Channel and Position Spatial Attention）模块中，提高了骨干网络的特征处理能力；颈部

网络使用频率感知特征融合（Frequency-aware Feature Fusion，FreqFusion）作为上采样算子，旨在更好的

对密集目标识别定位；最后通过 FASFFHead（Feature Auxiliary Fusion Single-Stage Head）检测头增强模

型对不同尺度目标的检测能力。试验结果表明，SAFF-YOLO 对白菜小菜蛾的检测准确率、召回率、平均精度均

值（mean average precision，mAP50）达到 90.7%、89.4%和 92.4%，对比 YOLO11 各提高了 7.4%、8.0%和 8.4%，

且参数量为 7.3Ｍ，每秒浮点运算次数（Giga Floating-point Operations Per Second，GFLOPs）为 12.8，

相较于基准模型分别降低 60.1%和 40.7%，实现了模型轻量化和较高检测精度的平衡。在小菜蛾小且密集、背

景干扰严重、光照强烈等复杂环境下，SAFF-YOLO 均能较好地识别出目标个体，有效地降低漏检率和误检率，

具有较好的鲁棒性。本研究可为田间白菜小菜蛾实时检测提供有效技术支持。 
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INTRODUCTION 

Globally cultivated Chinese cabbage (Brassica rapa subsp. pekinensis) serves as a nutritionally 

essential vegetable crop. However, expanding cultivation and climate change have escalated 

phytopathological threats (Ritonga et al., 2024; Li et al., 2016; Zhang et al., 2024; Shi et al., 2025). The 

diamondback moth (Plutella xylostella), a devastating pest for Chinese cabbage, imposes substantial 

economic losses on farmers and challenges sustainable agricultural production systems annually (Ahmed et 

al., 2022; Shehzad et al., 2023; Li et al., 2016). Adult diamondback moths exhibit phloem-feeding behavior 

and rapid reproduction rates, impairing normal plant development and causing yield reduction in Chinese 

cabbage (Rahman et al., 2019). Larval chewing damage during growth stages induces extensive defoliation 

and leaf perforation, with severe infestations leading to complete leaf skeletonization (Hussain et al., 2020; Hu 

et al., 1997). Morphologically distinct between life stages, adults are flight-capable with predominantly gray-

brown to dark brown coloration, while larvae exhibit green or pale yellow pigmentation that enables adaptive 

concealment within host plants. This phenotypic divergence creates significant detection challenges across 

developmental phases of diamondback moth (Chen et al., 2011). Consequently, developing rapid and accurate 

detection methods for diamondback moth in Chinese cabbage, coupled with effective monitoring of pest 

population dynamics, to implement targeted control measures, enables comprehensive pest management 

across critical growth stages - seedling, rosette, and heading phases - thereby safeguarding crops from 

significant yield losses. This constitutes an urgent agricultural priority demanding immediate resolution. 

The rapid advancement of artificial intelligence has positioned machine learning and deep learning-

based object detection algorithms as pivotal technologies in plant disease and pest identification research 

(Chakrabarty et al., 2024). At present, representative two-stage object detection methods such as Faster 

RCNN (Ali et al., 2023; Hou et al., 2023; Wang et al., 2017) and representative single-stage object detection 

methods such as SSD (Zhai et al., 2020; Lyu et al., 2021), YOLO are widely used for the detection and 

recognition of targets such as crop diseases and pests (Wang et al., 2024; Dongfang et al., 2024). To address 

the challenge of early identification of pests and diseases such as coffee leaf rust and miner pests, Fragoso 

et al., (2025), proposed a real-time detection solution based on the YOLO series models (versions 8 to 11). 

The models were trained using the BRACOL dataset. Results demonstrated that YOLOv8s exhibited the 

optimal inference speed, with its qualitative predictive performance being significantly superior to other 

versions. While maintaining high accuracy, it meets the requirements for real-time field monitoring, thereby 

delivering robust technological support for the sustainable management of coffee cultivation. Slim et al., (2023), 

proposed an intelligent pest detection system based on the YOLOv5 deep learning model by employing 

transfer learning and data augmentation techniques, the system addressed the challenge of insufficient training 

data. A companion mobile application was developed to assist farmers in real-time pest identification, 

localization, and quantification. This system significantly reduced farm inspection costs while also providing 

efficient, data-driven decision-making support for pest management. Liang et al., (2024) proposed an 

optimized YOLOv8n architecture for corn pest detection, incorporating Deformable Attention (DAttention) and 

Spatial and Channel Reconstruction Convolution (SCConv) modules. Trained on a dedicated corn pest dataset, 

this approach maintains high detection accuracy at 71 frames per second (FPS), enabling rapid and precise 

field-level infestation monitoring.  

In field agriculture, micro-dense pests constitute the predominant infestation type. To address small-

target detection challenges, optimizing object detection network architectures has emerged as the primary 

technical approach (Wen et al., 2022). Teixeira et al., (2023), used the YOLOv5 deep learning model to achieve 

efficient recognition on the Pest24 dataset in response to the challenge of automatic detection of agricultural 

pests. Their experiments revealed that the relative scale of insects is a critical factor influencing detection 

accuracy. This approach provides a novel solution for pest detection in scenarios characterized by dense small 

objects, while also highlighting that enhancing the detection capability for small-sized insects represents a 

promising future research direction. Addressing the challenge of citrus disease detection, Dananjayan et al., 

(2022), developed the meticulously annotated CCL'20 dataset, and systematically evaluated the performance 

of seven state-of-the-art CNN detectors. Experimental results demonstrated that Scaled YOLOv4 P7 achieved 

the fastest inference speed for early-stage disease prediction, while CenterNet2 with Res2Net-101 DCN-

BiFPN significantly outperformed others in detection accuracy for early-stage diseases, leveraging multi-scale 

feature fusion and attention mechanisms to excel particularly in identifying small-target lesion areas. This 

framework provides an efficient technical solution for real-time citrus disease diagnosis, effectively balancing 

the dual demands of inference speed and detection accuracy.  
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Tian et al., (2023), proposed MD-YOLO (Multi-scale Dense YOLO) featuring fused feature 

extraction/aggregation pathways with DenseNet blocks and adaptive attention modules. Deployed on sticky 

insect boards, this IoT-embedded system detects three lepidopteran pest species with validated field 

performance, demonstrating practical applicability. 

While object detection algorithms have demonstrated considerable success, significant challenges 

persist in small-target detection research. When detecting minute pests, inherent complexities include multi-

scale targets, dense clustering, and frequent occlusion scenarios. Although algorithmic advances have 

mitigated feature degradation caused by edge information loss and background interference, such accuracy 

improvements typically incur increased computational complexity that exceeds the capabilities of edge 

deployment platforms (Liu et al., 2020; Lippi et al., 2021; Song et al., 2023). To address these constraints, 

SAFF-YOLO is proposed—a lightweight architecture for diamondback moth detection in Chinese cabbage—

which maintains high detection accuracy while substantially reducing computational footprint for efficient edge 

device implementation. 
 

MATERIALS AND METHODS 

Data Acquisition and Processing 

The primary image acquisition for our diamondback moth dataset was conducted in Anda City, Suihua 

Municipality, Heilongjiang Province. To ensure data reliability and enhance dataset diversity for robust model 

generalization, 1,772 raw images were compiled in lossless PNG format, supplemented with carefully selected 

web-sourced imagery to augment phenotypic variation and ecological representativeness. 

To ensure model fidelity, data acquisition employed multiple device platforms including iPhone 15 Pro 

and Honor 30 Pro, capturing images at dual resolutions (1280×720 and 4096×3072 pixels) thereby enhancing 

the recognition system's robustness and generalization capabilities across diverse imaging conditions and 

hardware configurations. 

The initial dataset comprises raw images categorized into diamondback moth larvae and adults, 

supplemented through comprehensive data augmentation techniques including geometric transformations 

(translation, rotation), photometric adjustments (saturation/exposure modulation), random occlusion, and 

Gaussian noise injection. As depicted in Figure 1, these augmentations simulate diverse field conditions to 

enhance dataset variability while improving model sensitivity to phenotypic variations, ensuring sustained high 

recognition accuracy in complex real-world environments. 

  

  

Fig. 1 - Data Enhancement 

 

A final dataset of 4,794 images was selected to ensure data quality and diversity, which was then divided 

into training, validation, and test sets at an 8:1:1 ratio. To ensure annotation accuracy, this study employed the 

open-source labeling software LabelImg to manually annotate diamondback moth specimens in images, 

ultimately establishing the Plutella xylostella Dataset. 
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SAFF-YOLO-based lightweight detection method for the diamondback moth 

YOLO11 is an advanced single-stage object detection model whose architecture comprises three core 

components: a backbone network, a neck network, and a detection head. Building upon its predecessors, 

YOLO11 incorporates significant optimizations—including a more powerful backbone network to enhance 

feature extraction efficiency and an innovative neck design featuring an enhanced EfficientDet-inspired FPN 

architecture to improve multi-scale object detection capabilities. The detection head employs a refined design 

that achieves precise prediction of object categories and locations, enabling efficient and accurate identification 

and localization of diverse targets even in complex, dynamic scenarios. The overall architectural layout of the 

YOLO11 model is illustrated in Figure 2. 

 
Fig. 2 - YOLO11 network structure 

 

Despite its capability to accurately detect and identify targets, support multi-class object detection, and 

perform real-time tracking, YOLO11 remains challenged in achieving precise detection of early-stage small-

scale pest infestations in field conditions. Specifically for diamondback moth detection, it struggles to extract 

phenotypic characteristics and accurately identify small targets. To address these limitations, this study 

proposes SAFF-YOLO (an enhanced YOLO11-based algorithm) for detecting diamondback moth infestations 

in Chinese cabbage fields, which significantly improves performance in agricultural pest detection tasks. The 

architecture of the proposed model is illustrated in Figure 3. 

 
Fig. 3 - Structure of the SAFF-YOLO network 
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The original loss function was replaced with the Unified-IoU (UIoU) loss function (Luo et al., 2024), which 

dynamically adjusts the model's focus on prediction boxes of varying quality to optimize bounding box 

regression accuracy in object detection, thereby enabling more precise pest localization. The AKConv 

lightweight convolutional module was introduced to replace partial network structures (Zhang et a., 2023), 

enhancing feature extraction capability while reducing model parameters. Furthermore, SHSA and C2PSA 

modules were integrated into a unified SHSA_C2PSA module (Yun et al., 2024), which augments the 

backbone network's feature processing capacity, improves small-target detection performance, and reduces 

computational redundancy and memory access costs.  

The neck network employs FreqFusion as its upsampling operator (Chen et al., 2024), enhancing 

localization in dense object scenarios while reducing computational complexity and improving processing 

speed. Within the detection head, the adaptive spatial feature fusion (ASFF) method was integrated with the 

P2 detection layer, evolving into a novel FASFFHead module (Liu et al., 2019). This integration mitigates 

feature loss during cross-scale fusion and implements secondary feature extraction for small targets, thereby 

enhancing model recognition accuracy. 

 

Improvement of Loss Function 

In the context of diamondback moth detection, the YOLO11 model faces challenges due to target density, 

minute scale, occlusion, and partial body visibility, leading to suboptimal recognition performance. To address 

this limitation, the original Complete Intersection over Union (CIoU) loss was replaced with the Unified-IoU 

(UIoU) loss function. This novel approach dynamically reallocates model focus from low-quality to high-quality 

prediction boxes through adaptive weight assignment, enhancing detection performance on both high-

precision and densely clustered datasets while maintaining training efficiency. The mechanism effectively 

captures spatial relationships and overlapping region information among targets. The UIoU computation is 

formalized in Equation (1). 

𝐿𝑈𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝛼𝜈                     (1) 

where ρ denotes the Euclidean distance between two points, b represents the center coordinate of the 

prediction box, bgt indicates the ground truth box center, c is the diagonal length of the smallest enclosing 

rectangle, α serves as a scaling coefficient for balance, and v incorporates the aspect ratios of both prediction 

and target boxes into the sigmoid function. This formulation fulfills a dual role: (1) thresholding values to prevent 

excessive oscillation, and (2) quantifying aspect ratio consistency between boxes. The formal definitions of α 

and v are given in Equations (2) and (3), respectively. 

𝛼 =
𝜈
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                             (2) 
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In the formula, 𝜔1 and 𝜔 represent the lengths of the target box and the predicted box, while h1 and h 

represent the widths of the target box and the predicted box.  

The derivative calculation of UIoU is shown in equations (4) and (5).  
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UIoU achieves adaptive weight allocation for prediction boxes of varying quality through strategic scaling 

of both prediction and ground truth boxes. This approach eliminates redundant bounding box computations 

while maintaining geometric integrity. After acquiring the bounding box dimensions (height, width) and center 

coordinates, UIoU applies scale factors to proportionally expand or contract these dimensions. This controlled 

scaling dynamically modulates the model's attention across prediction box qualities—where box contraction 

intensifies focus on high-quality predictions, thereby enhancing precision detection performance for well-

defined targets. 
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AKConv 

Convolutional kernels have achieved remarkable success in deep learning, yet they exhibit two inherent 

limitations. First, the confinement to local receptive fields restricts their capacity to capture global contextual 

information, while their fixed sampling patterns further limit adaptability. Second, conventional square-shaped 

kernels with fixed dimensions cause parameter counts to increase quadratically with kernel size. These rigid 

sampling geometries and kernel shapes struggle to adapt to the diverse target morphologies and scales across 

datasets and spatial locations (Zhang et al., 2023). 

To overcome these limitations, AKConv (Adaptive Kernel Convolution) is introduced, which employs a 

flexible convolutional mechanism permitting kernels with arbitrary parameter counts. By dynamically adjusting 

kernel shapes to accommodate diverse image characteristics, this approach enhances model adaptability and 

computational efficiency. Consequently, AKConv not only improves model performance but also reduces 

parameter quantities. The architectural configuration of the AKConv module is illustrated in Figure 4. 

 
Fig. 4 - AKConv structure diagram 

 

AKConv introduces a novel coordinate generation algorithm that dynamically adapts sampling shapes 

to varying images and targets. This algorithm generates initial sampling coordinates for kernels of arbitrary 

sizes and geometries (Fig.5), significantly enhancing flexibility in detecting multi-scale targets. To 

accommodate target variations, AKConv adjusts sampling positions of non-rectangular kernels through 

learned offsets, thereby improving feature extraction accuracy. 

 

 

Fig. 5 - Adaptive initial sampling shape 

 

Unlike traditional convolutional kernels that employ regular sampling grids, AKConv targets deformable 

kernels with irregular geometries. This innovation necessitated the development of an arbitrary-size 

convolution algorithm that generates initial sampling coordinates Pn for convolutional kernels (Wu et al., 2024). 

The algorithm first generates a regular sampling grid, subsequently constructs an irregular grid for residual 

sampling points, and finally concatenates both components into a unified sampling structure.  
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Within this framework, the top-left coordinate (0,0) serves as the sampling origin. Given initial 

coordinates Pn and kernel parameters 𝜔 for irregular convolution, the convolutional operation at position P0 

is formally defined by Equation (6). 

𝐶𝑜𝑛𝑣𝑃0 = ∑𝜔 × (𝑃𝑛 + 𝑃0)                      (6) 

AKConv resolves the fundamental mismatch between irregular sampling coordinates and fixed-size 

convolution operations through its algorithmic innovations.  

Traditional convolution suffers from quadratic growth in both parameter count and computational load 

with increasing kernel size, leading to inefficiency in resource-constrained environments. In contrast, AKConv's 

unique design reduces model parameters and computational overhead, enabling dynamic complexity 

adjustment according to task requirements and hardware capabilities. Furthermore, AKConv adapts to spatial 

feature variations through offset-adjusted kernel positioning, effectively handling non-rigid deformations, 

occlusions, and complex backgrounds. This capability significantly enhances detection robustness for 

subsequent diamondback moth identification. The schematic representation of this adaptation process is 

illustrated in Fig. 6. 

 

 

Fig. 6 - Offset adjustment sample shape 

 

Single-Head Self-Attention 

Accurate extraction of spatial location information is critical in object detection tasks. In pest-containing 

images where natural backgrounds dominate, convolutional kernels process non-target regions, introducing 

substantial redundant information that compromises pest recognition accuracy. The Single-Head Self-

Attention (SHSA) mechanism addresses this by applying attention to a subset of input channels (CP=rC), 

reducing computational redundancy while integrating global and local features to enhance efficiency and 

precision. As illustrated in Fig. 7, SHSA operates by: (1) applying a single-head attention layer to a channel 

subset (CP=rC), where r denotes the reduction ratio) for spatial feature aggregation, while (2) preserving 

original information in remaining channels. 

 

Fig. 7 - Structure of SHSA attention mechanism 

 

The calculation formulas for its operation are shown in equations (7) to (10). 

𝑆𝐻𝑆𝐴(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡 ( x~ 𝑎𝑡𝑡，𝑋𝑟𝑒𝑠) 𝑊𝑄                  (7) 
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x~ 𝑎𝑡𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑎𝑡𝑡𝑊𝑄，𝑋𝑎𝑡𝑡𝑊𝐾，𝑋𝑎𝑡𝑡𝑊𝑉)              (8) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄，𝐾，𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑𝑞𝑘)𝑉              (9) 

𝑋𝑎𝑡𝑡，𝑋𝑟𝑒𝑠 = 𝑆𝑝𝑙𝑖𝑡(𝑋，|𝐶𝑝，𝐶 − 𝐶𝑝|)                 (10) 

where WQ, WK, and WV denote projection weight matrices, dqk represents the dimensionality of queries and 

keys, and Concat signifies the concatenation operation. To maintain memory access consistency, the initial Cp 

channels serve as representative proxies for the complete feature map. Moreover, SHSA's final projection 

operates across all channels—not solely the initial Cp subset—ensuring efficient propagation of attention 

features to residual channels. 

 

Frequency-aware Feature Fusion 

Feature extraction of diamondback moths is challenged by small target regions, uneven density 

distribution, and low image resolution, resulting in insufficient valid information. However, dense image 

prediction requires high-precision category information and spatial boundaries. Conventional feature fusion 

methods underperform in maintaining category feature consistency and preserving boundaries, often causing 

significant intra-class feature variations and boundary ambiguity. 

FreqFusion is a frequency-aware feature fusion framework comprising three core modules: an Adaptive 

Low-Pass Filter Generator (ALPF), an Offset Generator, and an Adaptive High-Pass Filter Generator (AHPF). 

The ALPF predicts spatially adaptive low-pass filters to mitigate intra-class inconsistency; the Offset Generator 

predicts feature offsets to refine internal representations and boundary characteristics; while the AHPF extracts 

high-frequency details for precise boundary delineation. As illustrated in Fig.8, these modules operate 

synergistically to resolve intra-class inconsistencies and boundary ambiguities in dense image prediction. 

Through frequency-aware feature refinement, this integrated mechanism enhances model performance. 

 

Fig. 8 - FreqFusion structure diagram 

 

The generation calculation formula for FreqFusion is shown in Equations (11) and (12). 

𝑌𝑖,𝑗
𝑙 = 𝑌̃ 𝑖+𝑢,𝑗+𝑣

 𝑙+1 + 𝑋̃ 𝑖,𝑗
 𝑙                         (11) 

𝑌̃ 
 𝑙+1 = ℱ𝑈𝑃(ℱ𝐿𝑃(𝑌𝑙+1))，𝑋̃𝑙 = ℱ𝐻𝑃(𝑋𝑙) + 𝑋𝑙               (12) 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 

 

 150  

In this formulation, ℱ UP denotes the low-pass filter predicted by the ALPF generator, while (u, v) 

represents the offset values predicted by the Offset Generator for feature coordinates at (i, j), and ℱUP signifies 

the high-pass filter generated by AHPF. These components collectively resolve class inconsistency and 

boundary displacement by: (1) adaptively smoothing high-level features using spatially adaptive low-pass 

filtering, (2) replacing inconsistent features through resampling of adjacent class-consistent features, and (3) 

enhancing high-frequency boundary details in low-level features. 

Feature Auxiliary Fusion Single-Stage Head 

In object detection, conventional YOLO series achieve efficient detection through multi-scale feature 

fusion. While the YOLO11 detection head demonstrates advantages, it exhibits limitations in complex scenes 

or small object detection. The FASFFHead addresses this by: (1) introducing auxiliary feature layers and a 

feature selection module, (2) fusing multi-level features to enhance network sensitivity towards multi-scale and 

complex objects, and (3) improving extraction and representation of multi-scale features for superior 

discriminative feature capture. As illustrated in Fig. 9, the FASFFHead primarily consists of two key 

components: a Shallow-level Feature Fusion module (SFB) and a High-level Feature Extraction module (HFE), 

operating through the following mechanism. 

 

Fig. 9 - FASFFHead structure diagram 

 

Within the SFB module, shallow-level and high-level features are integrated through a cascaded residual 

network and feature pyramid structure. This fusion preserves detailed spatial information from shallow features 

while incorporating global semantic context from high-level features, thereby enriching feature maps and 

enhancing representational capacity. The HFE module subsequently processes these fused features through 

depthwise convolutional layers to extract deep contextual information, while employing a Spatial Pyramid 

Pooling (SPP) layer to capture multi-scale representations. This dual mechanism significantly improves 

detection capability for objects across varying scales. 

By synergistically combining SFB and HFE modules, the FASFFHead effectively fuses auxiliary features 

with high-level representations from the backbone network. This integration substantially boosts detection 

performance, simultaneously enhancing feature expressiveness while improving model robustness and 

generalization capability for practical object detection applications. 

 

RESULTS AND ANALYSIS 

Test environment and evaluation index 

To ensure experimental validity, detailed hardware and software configurations are specified in Table 1. 

Table 1 

Software and Hardware Environment Configuration Table 

Configuration Parameter Configuration Item 

CPU 16 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz 
RAM 120GB 
GPU NVIDIA GeForce RTX 4090 24GB 

Operating system Ubuntu 18.04 
CUDA 12.4 

Compiled language Python 3.9 

Deep learning framework PyTorch3.8.0 
Epochs 200 

Batch size 32 
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The evaluation employs three metrics: mAP@50, precision (P), and recall (R). Precision quantifies the 

proportion of true positives among all positive predictions, while recall measures the proportion of actual 

positives correctly identified. Their computational formulations are given by Equation (13) and Equation (14), 

respectively. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (13) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (14) 

where FN denotes the number of false negatives (missed detections), FP represents false positives (detections 

with IoU below the threshold), and TP indicates true positives (detections with IoU ≥ threshold).  

For mAP computation, the average precision (A) corresponds to the area under the Precision-Recall (P-

R) curve, calculated as specified in Equation (15). 

𝐴 = ∫ 𝑃(𝑅)𝑑𝑅
1

2
                        (15) 

 

Performance comparison test of different models 

To evaluate the pest recognition and detection performance of the SAFF-YOLO model, comparative 

experiments were conducted against prevalent object detection models: Faster R-CNN, SSD, YOLOv8, 

YOLOv9, YOLOv10, and YOLO11. Identical experimental setups (hardware/software configurations) were 

maintained across all models to ensure methodological rigor and validity. Model performance was 

comprehensively assessed using five metrics: precision, recall, mean average precision (mAP), floating-point 

operations (FLOPs), and parameter count. Comparative results are presented in Table 2. 

 

Table 2 
Training effect of different models 

Model Precision(%) Recall(%) mAP0.5(%) GFLOPs Model Size(MB) 

Faster-RCNN 82.1 80.3 83.7 124.2 71.6 
SSD 80.1 77.9 80.7 61.1 39.2 

YOLOv5 81.3 76.8 81.8 5.9 4.4 
YOLOv8 82.0 79.9 84.6 6.9 5.4 
YOLOv10 81.7 78.4 82.3 6.6 5.2 
YOLO11 83.3 81.4 84.0 21.6 18.3 

SAFF-YOLO 90.7 89.4 92.4 12.8 7.3 

 

According to Table 2, the SAFF-YOLO model demonstrates mAP@50 improvements of 8.7%, 11.7%, 

10.6%, 7.8%, 10.1%, and 8.4% over Faster R-CNN, SSD, YOLOv5, YOLOv8, YOLOv10, and YOLO11, 

respectively. These gains indicate superior target localization accuracy, enhanced recognition capability for 

pests in complex backgrounds and dense populations, and higher confidence scores with improved reliability 

in detection outcomes. 

 

Ablation Experiments 

Targeting diamondback moth infestation detection, this study progressively enhanced the YOLO11 

architecture. Each modification underwent statistical analysis to validate efficacy in pest recognition, with 

quantitative results detailed in Table 3. 

 

Table 3 
SAFF-YOLO model ablation experiments 

Model Precision(%) Recall(%) mAP0.5(%) GFLOPs Model Size(MB) 
YOLO11 83.3 81.4 84.0 21.6 18.3 

YOLO11-U 85.0 83.5 85.8 21.6 18.3 
YOLO11-UA 83.1 82.3 85.1 5.5 4.4 

YOLO11-UAB 86.2 83.7 86.7 5.4 4.3 
YOLO11-UABC 88.6 87.3 89.6 6.1 4.3 

SAFF-YOLO 90.7 89.4 92.4 12.8 7.3 

Note: U represents replacing the UIoU loss function; A represents the AKConv improvement; B represents the SHSA 
improvement; C represents the FreqFusion improvement 
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Stage 1: UIoU replacement improved precision, recall, and mAP50 of baseline YOLO11 by 1.7%, 2.1%, 

and 1.8% respectively. Stage 2: AKConv modification reduced parameter count by 76% and computational 

load by 16.1 GFLOPs versus baseline. Stage 3: Integrating SHSA and FreqFusion modules increased mean 

average precision by 1.7-2.9 percentage points without computational overhead, enhancing all metrics.  

Final integration: Incorporating the FASFFHead module, SAFF-YOLO demonstrated significant 

improvements over YOLOv11 across all evaluated metrics: a 40.7% reduction in model size, an 8.8 GFLOPs 

decrease in computational cost, and respective gains of 7.4% in precision, 8.0% in recall, and 8.4% in mAP50. 

This demonstrates SAFF-YOLO's superior accuracy and robustness when detecting micro-scale pests in 

dense infestations with scale variations and homogeneous backgrounds. 

 

Model visualization analysis and comparison 

Comparative detection results for diamondback moths using YOLOv5, YOLOv8, YOLO11, and SAFF-

YOLO are presented in Fig. 10, validating SAFF-YOLO's superior performance in this study. Visual evidence 

demonstrates SAFF-YOLO's enhanced robustness in complex environments with significant interference, 

effectively reducing false positives and misclassifications prevalent in baseline YOLO variants. Under 

challenging conditions featuring small target pests and high identification difficulty, comparator models exhibit 

frequent false detections, duplicate identifications, and low-confidence predictions. SAFF-YOLO significantly 

outperforms these models through improved environmental adaptability and superior discriminative feature 

representation capabilities. 

YOLOv5 

 
  

YOLOv8 

   

YOLO11 

 
  

SAFF-YOLO 

   

Fig. 10 - Target detection results of different models for the little Chinese cabbage diamondback moth 

 

SAFF-YOLO: Diamondback Moth Pest Detection System 

This study designed and implemented a visualization detection system for diamondback moths using the 

PyQt framework, as illustrated in Fig.11. PyQt integrates Python's concise syntax with Qt's robust functionality, 

offering comprehensive GUI components, cross-platform compatibility, and efficient signal-slot mechanisms. 

This architecture ensures consistent and stable user interfaces across diverse operating systems. 

The application implements two core functionalities: 

1) Pest image import module: Supports four input modalities: single image import, batch directory import, 

video file processing, and real-time camera-based detection. 

2) Detection visualization interface: Presents detection metadata including inference duration, target count, 

pest classification, confidence scores, and bounding box coordinates. Post-detection, the system generates a 

comprehensive report listing target serial numbers, file paths, categories, confidence values, and positional 

coordinates. 
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Fig. 11 - Diamondback Moth Pest Detection System 

 

CONCLUSIONS 

This study addresses key challenges in Chinese cabbage pest detection—including scale variation, target 

density, and phenotypic feature extraction difficulties—by proposing SAFF-YOLO: an efficient algorithm for 

diamondback moth detection on Chinese cabbage plants. The architecture modifies the YOLO11 framework 

through: (1) replacing the baseline loss function with UIoU to enhance discriminative learning of moth 

characteristics; (2) integrating AKConv lightweight convolutions and embedding SHSA attention within the 

C2PSA module to strengthen feature extraction while reducing parameters; (3) implementing FreqFusion as 

the neck network's upsampling operator for dynamic computation allocation and precise spatial localization; 

and (4) incorporating the FASFFHead for multi-scale detection capability enhancement. Experimental results 

demonstrate SAFF-YOLO's 11 MB model size reduction and 8.8 GFLOPs computation decrease versus 

YOLO11, while achieving 7.4% precision, 8.0% recall, and 8.4% mAP improvements—confirming superior 

efficiency and accuracy in cabbage moth detection. This approach enables precise localization of infestations 

for timely intervention in cabbage cultivation, offering valuable references for pest management in related 

agricultural systems. 
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