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ABSTRACT 

Traditional rice seed classification methods rely on manual observation of morphological features, which are 

inefficient and limited in accuracy. To improve the efficiency and accuracy of rice seed classification, this paper 

proposes a deep learning-based rice seed classification method using the SE-ResNet network architecture. 

This architecture integrates SENet into ResNet50, enabling the model to capture and learn sensitive differential 

features among rice seeds. Through comparative experiments, the classification accuracies of SE-ResNet50, 

ResNet, and AlexNet on the rice seed dataset were 89.58%, 72.97%, and 76.35%, respectively. The results 

demonstrate that SE-ResNet50 significantly outperforms ResNet and AlexNet in classification accuracy, 

validating its superiority in rice seed classification tasks. 

 

摘要 

传统的稻种分类方法依赖人工经验对形态特征的观察，效率低且准确性有限。为提高稻种分类的效率及精度，

本文提出了一种基于深度学习的稻种分类方法，采用 SE-ResNet 网络结构，该结构将 SENet 集成到 ResNet 中，

使其能够捕捉并学习稻种之间的敏感性差异特征。通过对比实验，SE-ResNet50、ResNet50 和 AlexNet 三种网

络结构在稻种数据集上的分类准确率分别为 89.58%、72.97%和 76.35%。结果表明，SE-ResNet50 的分类准确率

明显高于 ResNet50 和 AlexNet，验证了其在稻种分类任务中的优越性。 

 

INTRODUCTION 

 Rice, as one of the most important global food crops, plays a pivotal role in agricultural production and 

food security. With the growing global population and increasing demand for food, improving rice yield and 

quality has become a critical goal in agricultural research. Among these efforts, the classification and 

identification of rice seeds are key to achieving precision agriculture and variety improvement. Accurate rice 

seed classification not only aids in seed quality control and variety identification but also provides scientific 

support for rice cultivation, processing, and trade. 

 In recent years, with the advancement of computer technology and machine vision, deep learning has 

gradually been applied to the agricultural domain. Significant progress has been made in rice seed 

classification. Traditional methods primarily rely on manual observation and morphological feature 

measurements, such as grain length, width, and shape. However, these methods suffer from subjectivity and 

inefficiency. In contrast, machine learning and deep learning-based approaches can automatically extract 

features from rice seed images and achieve efficient classification. Kamilaris et al., (2018), systematically 

compared deep learning with traditional methods and found that deep learning significantly outperforms 

traditional methods in agricultural tasks, establishing its theoretical superiority. Carneiro et al., (2024) 

systematically analyzed 37 recent studies that employed deep learning (DL) and machine learning (ML) 

models for grape variety identification, aiming to provide a detailed analysis of the classification process and 

highlight the strengths and limitations of each method. Based on this, researchers have explored various 

dimensions of convolutional neural networks (CNNs). Sladojevick et al., (2016) and Lu et al., (2017), employed 

basic CNN architectures for plant disease recognition, achieving average accuracies of 96.3% and 95.48%, 

respectively, demonstrating the versatility of CNNs in complex agricultural scenarios.  
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 Dymann et al., (2016), and Reyes et al., (2015), further expanded the application of CNNs, with the 

former achieving 86.2% accuracy in classifying 22 plant species and the latter focusing on vein pattern 

recognition in legumes, both overcoming the limitations of traditional manual feature extraction. 

 To enhance model performance, researchers have proposed various improvement strategies. Zhang 

et al., (2019), designed the GPDCNN model, which optimizes global pooling and dilated convolution to 

increase the receptive field while maintaining low computational complexity, significantly improving cucumber 

disease recognition. Lu et al., (2017), visualized feature hierarchies using deconvolution networks, enhancing 

model interpretability and discriminative power. Meanwhile, transfer learning has become an effective 

approach to address small-sample problems. Pereira et al., (2019), achieved efficient grape variety 

classification using a fine-tuned AlexNet model, while Too et al., (2019), systematically evaluated advanced 

architectures such as VGG, ResNet50, and DenseNet, finding that DenseNet achieved 99.75% accuracy in 

classifying 38 plant leaf categories with excellent anti-overfitting properties. Dong et al., (2024), addressed the 

challenge of identifying Camellia oleifera varieties caused by genetic diversity and morphological similarities 

by constructing a dataset of 30,890 leaf images and developing a deep learning model based on the 

Convolutional Block Attention Module (CBAM) and RegNetY-4.0GF. Sun et al., (2023), improved the 

EfficientNetv2 network model by introducing a transfer learning mechanism, the adaptive moment estimation 

optimization algorithm, and the MultiMarginLoss function, addressing the issue of low classification efficiency 

for southern medicinal plant leaves under complex backgrounds. They achieved a recognition accuracy of 

99.12%, representing a 1.17% improvement over the initial model. Zou et al., (2024), developed a pepper 

anthracnose fruit classification and recognition model based on MobileNet V2 and created a mobile-based 

pepper fruit anthracnose recognition system, addressing the challenge of real-time diagnosis of pepper fruit 

anthracnose in offline field environments. Peng et al., (2024), optimized the YOLOV7 model and proposed the 

WineYOLO-RAFusion model to achieve more comprehensive and accurate recognition of wine grape varieties. 

Through data augmentation, transfer learning, and parameter fine-tuning, the MobileNet V2 model achieved a 

precision rate of 97.31% on the test set, with a recognition time of only 75 ms per image. Although these 

improved models significantly enhance applicability, they are not well-suited for rice seed classification. 

 To address these limitations, this paper introduces the SE-ResNet50 model, combining deep learning 

with feature channel recalibration mechanisms to improve the accuracy and efficiency of rice seed 

classification. Comparative experiments validate the superiority of SE-ResNet50 in rice seed classification 

tasks, providing new technical support for agricultural intelligence. 

 
MATERIALS AND METHODS 

Dataset Construction 

 For this experiment, a publicly available dataset of rice seed images was employed. The dataset 

includes four types of rice seeds: AKITAKOMACHI, KOSHIHIKARI, THAI HOM MALI, and YANGDAO-8, as 

illustrated in Figure 1. To enhance the generalizability of the model and augment the diversity of the dataset, 

data augmentation techniques, including random rotation and mirroring, were employed. As a result, the 

dataset was expanded to a total of 5189 images. The collected seed samples were systematically divided into 

training and validation sets at an 8:2 ratio, as shown in Table 1. 

 

    
(a) AKITAKOMACHI (b) KOSHIHIKARI (c) THAI HOM MALI (d) YANGDAO-8 

 
Fig. 1 - Examples of images for each category in the dataset  

(a) represents the AKITAKOMACHI class, (b) represents the KOSHIHIKARI class, (c) represents the THAI HOM MALI class,  
(d) represents the YANGDAO-8 class.  
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Table 1  

Dataset Distribution 

Category Training Set validation Set 

AKITAKOMACHI 976 244 

KOSHIHIKARI 1056 263 

THAI HOM MALI 1150 287 

YANGDAO-8 971 242 

 
Dataset Construction 

SE-ResNet50-Based Rice Seed Classification Model 

 The SE-ResNet50 model proposed in this paper integrates the SE module into ResNet50. The SE 

module dynamically adjusts the weights of feature channels through Squeeze and Excitation operations, 

enhancing the network's ability to extract important features. 

 

ResNet50 Overview 

 ResNet50, or Residual Network, is an innovative deep learning model architecture widely used in 

computer vision (He et al., 2019; Veit et al., 2016; Rawat et al., 2017). ResNet50's deep network structure 

(over 100 layers) and exceptional performance have demonstrated its broad applicability in various computer 

vision tasks. The core innovation of ResNet50 is the introduction of residual learning to address the 

performance degradation problem caused by increasing network depth. This is achieved through the design 

of residual blocks, which allow direct information transfer between layers. Each residual block consists of 

multiple residual units, each comprising two convolutional layers and a skip connection that directly passes 

the input to the output. This skip connection not only helps maintain network stability but also enhances the 

network's ability to handle more complex data. The structure of the residual block is shown in Figure 2. 

 
Fig. 2 - Structure of the Residual Block  

The diagram summarizes the basic structure of a Residual Network (ResNet50),  
addressing the vanishing gradient problem in deep neural network training by introducing a skip connection.  

 

 The introduction of residual blocks significantly reduces the number of parameters and computational 

complexity in deep neural networks. Depending on the network depth, residual blocks can take different forms. 

Typically, ResNet50 employs two main types of residual blocks: the identity mapping module and the 

downsampling module. 

 The identity mapping module directly adds the input to the output when the dimensions of the input and 

output are the same. This process can be mathematically represented as: 

𝐹(𝑥) = 𝑥 + 𝐻(𝑥)                                                 (1) 

where: 

 x  is the input, 𝐹(𝑥) is the output of the residual block, and 𝐻(𝑥) is the nonlinear transformation within 

the residual block. In the identity mapping module, 𝐻(𝑥) is typically an identity transformation, that is 𝐻(𝑥) = 𝑥, 

hence the output 𝐹(𝑥) is equal to the input x  plus its own value, thus achieving an identity mapping. 

 The downsampling module is used when the dimensions of the input and output feature maps do not 

match. This operation reduces the dimensionality of the input feature map to match the output, ensuring the 

continuity and effectiveness of the network structure. This is typically achieved through convolutional 

operations. The mathematical representation of the downsampling module is as follows: 

 

𝐹(𝑥) = 𝑊𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 ⋅ 𝑥 + 𝐻(𝑥)                                          (2) 

where: 
 x  is the input, 𝐹(𝑥) is the output of the residual block, 𝐻(𝑥) is the nonlinear transformation within the 

residual block, and 𝑊𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒  is the weight matrix of the downsampling operation. 
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 These two modules are alternately combined to form the ResNet50 architecture, which is commonly 

used in constructing deep residual networks. Depending on whether the input and output dimensions are the 

same, either the identity mapping module or the downsampling module is selected, facilitating the training of 

deep networks and improving model performance. The structure of ResNet50 is shown in Figure 3. 

 

 
Fig. 3 - Structure of ResNet50 

 

 Figure 3 illustrates the overall structure of the ResNet50 model, detailing how data is processed at each 

stage of the network. The initial stage includes zero padding, a convolutional layer (CONV), batch 

normalization (Batch Norm), ReLU activation, and a max pooling layer (Max Pool). These layers are used to 

extract preliminary features from the image and reduce the size of the feature map. In stages 2 to 5, multiple 

residual blocks, including "Conv Block" and "ID Block," are used to capture deeper features while addressing 

the vanishing gradient problem through skip connections, thereby improving the network's learning efficiency. 

Each stage typically begins with a "Conv Block" to adapt to changes in feature map size and reduce 

computational complexity through bottleneck design. This is followed by several "ID Blocks" for further feature 

extraction without altering the feature map size. The network ends with a global average pooling layer (Avg 

Pool) to reduce the feature map to a fixed-size vector. This is followed by a flattening operation to convert the 

pooled output into a one-dimensional array. Finally, a fully connected layer (FC) maps the extracted features 

to the probabilities of each class. 

 

Introduction of the SENet-Block Module 

 The SENet-block module integrates the Squeeze-and-Excitation (SE) module into traditional 

convolutional neural network blocks (Hu et al., 2018; Wang et al., 2017; Vaswani et al., 2017). This integration 

enhances the feature representation capability of the network by dynamically adjusting the importance of 

feature channels, allowing the network to focus more on useful information. Although the SENet-block module 

may vary across different network architectures, the core idea remains the same: adding the SE module after 

traditional CNN blocks. The differences between rice seeds are often subtle, and with the development of 

hybrid rice varieties, these differences have become even more blurred, making the classification of rice seed 

varieties increasingly challenging. To address this issue, the introduction of the SENet-block module has 

proven to be an effective solution. The structure of the SENet-block module is shown in Figure 4. 

 
Fig. 4 - Structure of the SENet-Block Module 

 

 Figure 4 illustrates the workflow of the SENet (Squeeze-and-Excitation Network) module. First, the input 

feature map undergoes a Squeeze operation, which compresses the spatial information of each channel 

through global average pooling. Next, the Excitation operation generates weights for each channel through 

two fully connected layers. Finally, the Scale operation multiplies these weights with the original feature map 

to produce the recalibrated output feature map. This process dynamically adjusts the channel weights, 

enhancing the network's ability to focus on important features and thereby improving model performance. 
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Squeeze Operation 

 Through global average pooling, the feature map U is compressed, merging the 𝐻 × 𝑊  spatial 

information of each channel into a single value, generating a 
2

1 1 C   channel descriptor. The purpose of this 

step is to extract global information from each channel.  

 The formula for global average pooling is: 

c 1 1

1
s ( , )

H W

ci j
u i j

H W = =
=


                                     (3) 

where: 

 cs  is the output feature of channel C  , 𝐻 × 𝑊  is the spatial dimension of the feature map U  , 

1 1

H W

i j= =   indicates the summation of all spatial positions (𝑖, 𝑗) in the feature map U , 𝑢𝑐(𝑖, 𝑗) is the value 

of the feature map U  at channel C  and position (𝑖, 𝑗). 

 

Excitation Operation 

 The channel descriptor is first processed by two fully connected layers. The first fully connected layer 

typically reduces the dimensionality and applies a ReLU activation function. The second fully connected layer 

maps the dimensionality back to the original number of channels 
2

C  and uses a sigmoid function to output 

the weight for each channel. This can be expressed as: 

 

𝑧 = 𝜎(𝑔(𝑠, 𝑊)) = 𝜎(𝑊2 × 𝛿(𝑊1𝑠))                  (4) 

where: 

 s  is the compressed channel descriptor obtained from the Squeeze operation, 
1

W  and 
2

W  are the 

weight matrices of the two fully connected layers,    represents the ReLU activation function,    is the 

sigmoid activation function, and z  is the weight for each channel. 
 
Scale Operation 

 The weights output from the Excitation step x  (one weight per channel) are multiplied with the 

corresponding channels of the original feature map U . This step enhances the channels that the model deems 

important and suppresses the less important ones. The formula for this step is as follows: 

 

𝑥̃c = 𝑧c ⋅ 𝑢c                      (5) 

where: 

 𝑥̃𝑐 is the recalibrated feature map for channel C , 𝑧𝑐 is the weight for channel C , and 
c

U  is the 

original feature map for channel C . 

 

 The above content details the complete structure and operational process of the SENet-block module. 

By embedding the SENet-block structure into ResNet50, the advantages of deep residual networks addressing 

the vanishing gradient problem through skip connections—are combined with the feature channel recalibration 

strategy of SENet-block, significantly enhancing the overall performance of the network. This integration not 

only preserves the residual learning advantages of ResNet50 but also optimizes the network's ability to process 

feature information through the feature channel recalibration mechanism, thereby effectively improving network 

performance. 

 

SE-ResNet50 Network Structure 

 SE-ResNet50 is a convolutional neural network architecture that integrates the Squeeze-and-Excitation 

(SE) module into ResNet50. This structure enhances the expressive power and performance of ResNet50 by 

adding a channel attention mechanism. By introducing the SE module, the network's ability to represent 

features is improved without significantly increasing computational cost, particularly in image classification and 

other visual tasks. The SE-ResNet50 model retains the advantages of the original ResNet50, such as using 

skip connections to train deep networks, while also enhancing the emphasis on channel-level features through 

the integration of the SE module. This makes the network more effective in handling complex images or other 

high-dimensional data. 



Vol. 76, No. 2 / 2025  INMATEH - Agricultural Engineering 
 

136 

 
Fig. 5 - Structure of the SE-ResNet50 Residual Block 

 

 Figure 5 illustrates the working principle of the SE module combined with skip connections. First, the 

input feature map X  (with dimensions H W C   )  is compressed through global average pooling into a 

channel descriptor of size 1 × 1 × 𝑐,extracting global information from each channel. Next, the descriptor is 

processed by two fully connected layers (FC): the first layer reduces the dimensionality to C r  and applies 

a ReLU activation function to introduce nonlinearity; the second layer restores the dimensionality to C  and 

generates weights for each channel using a sigmoid activation function. Finally, these weights are multiplied 

with the original input feature map through a scaling operation, producing the recalibrated feature map x  

which retains the original dimensions H W C   . This process dynamically adjusts the channel weights, 

enhancing the network's ability to focus on important features and thereby improving model performance 

without altering the feature map dimensions. 

 

Rice Seed Classification System 

 To enhance the usability and operational efficiency of the algorithm, this study has developed a rice 

seed classification application, realized through a dedicated graphical user interface (GUI). Utilizing an object-

oriented programming approach, the Qt framework has been employed for the design of this application. The 

Qt framework facilitates comprehensive interface design by instantiating objects, configuring their properties, 

and establishing event bindings. This not only achieves separation of the front-end and back-end but also 

enables real-time target detection. The framework provides an extensive suite of GUI development tools, 

encompassing over 620 classes and nearly 6,000 functions and methods. 

 During the operation, users can import the images of seeds that need to be classified into the system 

by clicking the "Upload Image" button. Subsequently, by clicking the "Start Detection" button, the system will 

automatically execute the classification process, as illustrated in the figure 6. 

 
Fig. 7 - Rice seed classification system 
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Network Model Training 

Experimental Platform and Training Parameters 

 The experimental environment runs on Windows 10 (64-bit) with 16 GB of RAM, an NVIDIA GTX1650Ti 

GPU, and an Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz processor. The programming platform is 

Anaconda 4.12.0, with CUDA 10.1, and the development environment is PyTorch, using Python 3.8. 

 All models in this experiment were trained on the same training set with identical parameters for rice 

seed classification. The number of epochs was set to 100, the learning rate was 0.0125, and the batch size 

was 16, ensuring the fairness and comparability of the experimental results. 

 

Model Evaluation Metrics 

 This method provides four key metrics—True Positives, False Positives, True Negatives, and False 

Negatives—to reveal the model's performance across different categories, offering a comprehensive 

understanding of its effectiveness. 

 Based on these four metrics, more complex evaluation metrics can be derived, such as precision, recall, 

and 
1

F  score. Precision  represents the ratio of correctly predicted positive instances to all predicted positive 

instances. Recall  reflects the ratio of correctly predicted positive instances to all actual positive instances. 

The 
1

F  score is the harmonic mean of precision and recall, providing a balanced measure between the two. 

These evaluation metrics collectively form a comprehensive framework for assessing model performance. The 

formulas for these metrics are as follows: 

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (6) 

Re𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (7) 

𝐹1 =
2×Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛×Re𝑐𝑎𝑙𝑙

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛+Re𝑐𝑎𝑙𝑙
                     (8) 

 For multi-class classification, Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is calculated as the ratio of true positives for each class to the 

sum of true positives and false positives for that class. Re𝑐𝑎𝑙𝑙 is calculated as the ratio of true positives for 

each class to the sum of true positives and false negatives for that class. The overall evaluation metrics are 

as follows: 

1
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1 1
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TP FP

n

i

n n

i i

=

= =

=

+



 
                            (9) 
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RESULTS AND ANALYSIS 

SE-ResNet50 Model 

 The accuracy and loss curves of the SE-ResNet50 model during training and testing are shown in Fig.7. 

  
(a) Training set results (b) Testing set results 

Fig. 7 - Accuracy and Loss Curves of the SE-ResNet50 Model 
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 Figure 6 shows the loss and accuracy curves of the SE-ResNet50 model during training and testing. On 

the training set, the loss (blue curve) initially decreases rapidly and stabilizes around 0.3 after 100 epochs, 

while the accuracy (red curve) increases quickly and stabilizes around 95%. On the testing set, the loss (blue 

curve) also decreases rapidly initially but exhibits more fluctuations, stabilizing around 0.4. The accuracy (red 

curve) on the testing set increases quickly but fluctuates more, stabilizing around 85%. 

 From Figure 6, it can be observed that the SE-ResNet50 model exhibits excellent convergence 

performance during training, with the loss decreasing rapidly and stabilizing. The model shows no signs of 

overfitting or underfitting, indicating good generalization ability. When applied to the classification task of four 

types of rice seed images, the model achieves an accuracy of 89.58% on the testing set. 

 

ResNet50 Model 

 The accuracy and loss curves of the ResNet50 model during training and testing are shown in Fig. 8. 

  
(a) Training set results (b) Testing set results 

Fig. 8 - Accuracy and Loss Curves of the ResNet50 Model 

 

 Figure 7 shows the loss and accuracy curves of the ResNet50 model during training and testing. On the 

training set, the loss (blue curve) decreases rapidly initially and stabilizes around 0.4 after 100 epochs, while 

the accuracy (red curve) increases quickly and stabilizes around 70%. On the testing set, the loss (blue curve) 

decreases rapidly initially but exhibits more fluctuations, stabilizing around 0.5. The accuracy (red curve) on 

the testing set increases quickly but fluctuates more, stabilizing around 60%. 

 From Figure 7 it can be observed that the ResNet50 model converges more slowly and fails to achieve 

the expected performance level. The model's performance on both the training and testing sets is suboptimal. 

When applied to the classification task of four types of rice seed images, the ResNet50 model achieves an 

accuracy of only 72.97%. 

 

AlexNet Model 

 The accuracy and loss curves of the AlexNet model during training and testing are shown in Figure 9. 

  
(a) Training set results (b) Testing set results 

Fig. 9 - Accuracy and Loss Curves of the AlexNet Model 

 

 Figure 8 shows the loss and accuracy curves of the AlexNet model during training and testing. On the 

training set, the loss (blue curve) decreases rapidly initially and stabilizes around 0.4 after 100 epochs, while 

the accuracy (red curve) increases quickly and stabilizes around 70%.  
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 On the testing set, the loss (blue curve) decreases rapidly initially but exhibits more fluctuations, 

stabilizing around 0.5. The accuracy (red curve) on the testing set increases quickly but fluctuates more, 

stabilizing around 60%. 

 From Figure 8, it can be observed that the AlexNet model also converges more slowly and fails to 

achieve its best performance. The model's performance on both the training and testing sets is suboptimal. 

When applied to the classification task of four types of rice seed images, the AlexNet model achieves an 

accuracy of 76.35%. 

 

Comparison of Different Networks 

 To validate the impact of different networks on model accuracy, this study conducted experiments using 

SE-ResNet50, ResNet50, and AlexNet. The comparison results are shown in Table 2. 

Table 2  

Comparison of Experimental Results 

Model Precision Recall 
1

F  Score 

SE-ResNet50 0.8950 0.8922 0.8928 

ResNet50 0.7212 0.7202 0.7194 

AlexNet 0.7484 0.7582 0.7511 

 
 Table 2 shows the performance comparison of SE-ResNet50, ResNet50, and AlexNet in the rice seed 

image classification task. SE-ResNet50 achieves the best performance in precision (0.8950), recall (0.8922), 

and F1 score (0.8928), significantly outperforming ResNet50 (precision: 0.7212, recall: 0.7202, F1 score: 

0.7194) and AlexNet (precision: 0.7484, recall: 0.7582, F1 score: 0.7511). These results demonstrate that SE-

ResNet50 achieves significantly higher accuracy in rice seed image classification compared to the unmodified 

ResNet50 and AlexNet networks, highlighting the superiority of the selected network model in this task. 

Specifically, the deeper network layers and feature recalibration strategy (i.e., SENet) of SE-ResNet50 enable 

it to achieve better classification results in fine-grained image classification tasks such as rice seed 

classification.  

 These experimental results comprehensively and convincingly demonstrate that SE-ResNet50 offers 

higher accuracy and stability in rice seed image classification, validating its significant advantages in 

classification performance. 

 

Results Presentation of the Rice Seed Classification System  

 Rice Seed Classification System visually presents the application effectiveness of the constructed 

intelligent classification model through its user interface (UI), emphasizing the classification process and output 

results of test set samples. The core interface design focuses on structured output presentation, including 

(pred_label, pred_class, pred_score), as illustrated in Fig.10. Experimental results demonstrate that the 

system effectively validates model performance. By visually correlating confidence scores (pred_score) with 

variety labels (pred_class), it provides an intuitive assessment basis for evaluating the practical applicability 

and classification accuracy of the model in real-world scenarios. This capability further facilitates subsequent 

model optimization and system deployment decisions. 
 

  
(a) Classification results for AKITAKOMACHI 

variety 

(b) Classification results for KOSHIHIKARI variety 
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(c) Classification results for Thai Hom Mali variety (d) Classification results for YANGDAO-8 variety 

Fig. 10 - Test Result Chart 

 

CONCLUSIONS 

 This study innovatively proposes an SE-ResNet network architecture and develops a rice seed 

classification system, effectively addressing the technical limitations of traditional methods and existing deep 

learning models in fine-grained agricultural image recognition. The main contributions include: 

  (1) The novel integration of Squeeze-and-Excitation (SE) blocks into ResNet50 architecture significantly 

enhances the model's discriminative feature extraction capability for morphologically similar rice seeds through 

channel attention mechanisms. The proposed system achieves outstanding performance with precision of 

0.8950, recall of 0.8922, and F1-score of 0.8928 on a dataset comprising 5,189 images across four varieties. 

  (2) A Qt framework-based graphical user interface (GUI) application system was developed, enabling 

real-time rice seed classification and structured output presentation (including category code pred_label, 

variety name pred_class, and confidence score pred_score), providing an intelligent tool for seed quality 

control and breeding decision-making. 

 These research outcomes offer an effective technical solution for agricultural intelligence development. 

Future studies will focus on expanding the system's applications in smart agriculture through the incorporation 

of multimodal sensor data and model lightweight design. 
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