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ABSTRACT  

Crop diseases significantly diminish agricultural production, resulting in economic losses. Early detection and 

species identification remain major challenges. This paper introduces a lightweight Convolutional Neural 

Network (LCNet) designed for the detection of corn diseases, including blight, common rust, and gray leaf 

spot, using an efficient, low-latency model. The suggested architecture consists of three convolutional layers, 

three pooling layers, and one fully linked layer. Experimental findings indicate that LCNet surpasses the pre 

trained architecture MobileNetV2, DenseNet201, ResNet50, and different past study with an average accuracy 

of 94.65%. This method enables prompt disease identification, assisting farmers in averting significant crop 

losses while minimizing human labor in oversight and administration. 

 

ABSTRACT IN HINDI (हिन्दी) 

फसल की बीमाररयााँ कृलि उत्पादन को काफी कम कर देती हैं, लिसके पररणामस्वरूप आलथकक नुकसान होता है। इनका शीघ्र पता 

लगाना और प्रिालतयो ंकी पहचान प्रमुख चुनौलतयााँ बनी हुई हैं। यह पेपर एक हले्क कन्वोलू्यशनल नू्यरल नेटवकक  (एलसीनेट) का 

पररचय देता है, लिसे एक कुशल, कम-लवलंबता मॉडल का उपयोग करके ब्लाइट, सामान्य िंग और गे्र लीफ स्पॉट सलहत मकई रोगो ं

का पता लगाने के ललए लडजाइन लकया गया है। सुझाई गई वासु्तकला में तीन संकें लित परतें, तीन पूललंग परतें और एक पूरी तरह से 

िुडी हुई परत शालमल हैं। प्रायोलगक लनष्किों से पता चलता है लक एलसीनेट 94.65% की औसत सटीकता के साथ पूवक प्रलशलित 

आलकक टेक्चर मोबाइलनेट वी2, डेंसनेट201 रेसनेट50, और लवलिन्न लपछले अध्ययनो ंसे आगे लनकल िाता है। यह लवलि शीघ्र रोग की 

पहचान करने में सिम बनाती है, लिससे लकसानो ंको फसल के महत्वपूणक नुकसान को रोकने में सहायता लमलेगी िबलक लनरीिण 

और प्रशासन में कम से कम मानव श्रम की आवश्यकता होगी। 

  

INTRODUCTION 

The fast proliferation of plant diseases manifests an alarming risk to global crop production, especially 

for staple crops such as corn, which is a fundamental food supply for millions globally (Khan et al., 2024). 

Traditional disease detection approaches, dependent on human field inspections, are both time-intensive and 

deficient in the precision required for early-stage diagnosis (Hossain et al., 2023). Recent breakthroughs in 

artificial intelligence and deep learning have enabled the creation of automated, high-precision models for plant 

disease categorization, therefore markedly improving early detection capabilities (Hassan et al., 2021). 

Convolutional Neural Networks (CNNs) have become the predominant method owing to its capacity to extract 

hierarchical characteristics from leaf pictures, facilitating the recognition of intricate disease patterns (Li et al., 

2021). CNNs have emerged as a preeminent method in image-based illness classification, owing to its capacity 

to acquire hierarchical information, hence enhancing both accuracy and dependability. Several CNN 

architectures, including MobileNetV2 (Sandler et al., 2018a), ConvNet (Liu et al., 2022), and EfficientNet 

(Howard et al., 2017) etc. have been applied in previous research to detect and classify plant diseases with 

high precision. Recent research was used CNN-based deep learning models to improve the categorization of 

plant leaf diseases. In their study, Amin et al., (2022) suggested an end-to-end deep learning system for the 

detection of corn leaf diseases. Their methodology used two pre-trained convolutional neural networks, 

EfficientNetB0 and DenseNet121, to derive deep feature representations from corn leaf photos. The retrieved 

features were concatenated to build a more informative feature set, enhancing model performance. Moreover, 

data augmentation methods were used to enhance the variety of training samples.  
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The model was trained and evaluated using the PlantVillage dataset, with an exceptional classification 

accuracy of 98.56%, surpassing other models such ResNet152 (98.37%) and InceptionV3 (96.26%). Similarly, 

Khan et al., (2024), examined the use of deep transfer learning for the fine-grained categorization of corn leaf 

diseases. They used four pre-trained deep learning architectures-VGGNet, InceptionV3, ResNet50, and 

InceptionResNetV2-to identify complex disease patterns in corn leaves. ResNet50 demonstrated exceptional 

performance, with a validation accuracy of 87.51%, a precision of 90.33%, and a recall of 99.80%, 

underscoring its proficiency in precise illness detection. This research highlights the capability of deep learning 

methodologies in enhancing plant disease categorization, facilitating the development of more effective and 

efficient diagnostic models. 

This research presents a LCNet developed for the classification of corn leaf diseases, based on recent 

advancements. The proposed model improves computational efficiency with a streamlined architecture of three 

convolutional layers, three pooling layers, and one fully connected layer, therefore significantly reducing the 

number of trainable parameters while maintaining satisfactory classification accuracy. The key contributions 

of this study lie in the development of a lightweight CNN-based model specifically designed for the detection 

of corn leaf diseases, which are summarized as follows: 

1. Develop a compact and Lightweight CNN model tailored for the detection of corn diseases such as 

blight, common rust, and gray leaf spot. 

2. The architecture comprising three convolutional layers, three pooling layers, and a fully connected 

layer to achieve a balance between accuracy and computational efficiency. 

3. Achieve superior classification performance with LCNet, outperforming models like MobileNetV2, 

DenseNet201, and ResNet50, with an average accuracy of 94.65%. 

4. Facilitate early and precise identification of crop diseases, aiding farmers in preventing major yield 

losses while reducing reliance on manual monitoring. 

5. Conduct thorough experimental evaluations and comparative studies to validate the proposed model’s 

effectiveness against established deep learning approaches. 

The remainder of this paper is organized as follows: The next section provides a review of related studies. 

The subsequent section details the datasets, methodology, and research framework. Following this, the 

experimental results are presented and compared with previous works. Lastly, the final section summarizes 

the conclusions and outlines potential future research directions. 

 

LITERATURE SURVEY 

Recent years have seen considerable interest in the early identification and categorization of 

agricultural diseases with deep learning methods. Conventional techniques for disease diagnosis, including 

physical examination by agricultural specialists, are often time-consuming, labor intensive, and susceptible to 

inaccuracies. Researchers have investigated numerous CNN-based algorithms for automated illness 

diagnosis to tackle these problems. Notable designs, such MobileNetV2 (Howard et al., 2017), EfficientNet 

(Tan et al., 2019), and ConvNet (Liu et al., 2022) etc. have been widely used owing to their superior accuracy 

and resilience. Nonetheless, these models sometimes entail substantial computing expenses, rendering them 

less appropriate for real-time applications in resource-limited agricultural settings. 

The article written by Prasetyo et al., (2023), focuses on classifying corn plant leaves to distinguish 

healthy leaves from three disease types: Northern Leaf Blight, Common Rust, and Gray Leaf Spot, using a 

CNN model based on the ResNet-9 architecture to develop a strong classification system. The dataset 

included 9,145 photos, allocated into 80% for training and 20% for testing. The researchers performed an 

epoch comparison to ascertain the ideal model performance across five values: 5, 25, 55, 75, and 100 epochs. 

The optimal accuracy was attained after 100 epochs, which was then used for the final model training. 

Furthermore, hyperparameter tweaking experiments were conducted, concentrating on the number of workers 

(num_workers = 4) and batch size (batch_size = 32), which enhanced the model's performance. The final 

model had a classification accuracy of 99%. The research study done by Rachmad et al., (2023), examined 

the use of CNN for the early identification and categorization of corn illnesses, with the objective of reducing 

production losses in Indonesia, a nation heavily reliant on corn. The research used a collection of corn leaf 

photos gathered from agricultural areas in the Madura Region, focusing on four categorization categories: 

healthy, gray leaf spot, blight, and common rust. A variety of CNN designs, such as SqueezeNet, AlexNet, 

ResNet-101, ResNet-50, and ResNet-18, were assessed for their efficacy in illness categorization.  
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The research used Adam optimization with a learning rate of 0.0001, training models for five epochs 

with 100 iterations, and implemented a 70:30 division for training and testing. Among the evaluated designs, 

ResNet-50 exhibited exceptional performance, with an accuracy of 95.59%. These results underscore the 

capability of CNN-based models in automating corn disease identification, enabling early intervention to reduce 

agricultural losses. 

Ariska et al., (2024), investigated the use of CNN for the automated categorization of corn leaf 

diseases, using a dataset of 2,145 photos of leaf blight and 1,574 images of leaf spot, capitalizing on the 

network's capacity to extract and integrate local features for efficient disease detection. The model attained a 

remarkable classification accuracy of 99%, culminating in a final training accuracy of 99.06% and a validation 

accuracy of 98.50%. The research proposes further improvements by integrating contemporary architectures 

like EfficientNet B3 with transfer learning or MobileNet to boost accuracy and processing efficiency. These 

results highlight the efficacy of CNN-based solutions in precision agriculture, enabling early disease 

identification and enhanced crop management tactics. Waheed et al., (2020), examined the worldwide 

importance of corn and the adverse effects of diseases such as common rust, gray leaf spot, and northern 

corn leaf blight, highlighting the need for accurate and prompt disease identification to enhance crop output 

and quality. The suggested DenseNet model attained an impressive accuracy of 98.06%, surpassing 

conventional Convolutional Neural Network (CNN) designs like EfficientNet, VGG19Net, NASNet, and 

Xception Net, while using less parameters. This efficiency indicates the model's applicability for real-time use 

in agricultural contexts. The research highlights the effectiveness of enhanced deep learning models in 

diagnosing agricultural diseases, facilitating more sustainable and productive farming methods.  

The investigation done by Ahila Priyadharshini et al., (2019), presents a deep learning methodology 

using a modified LeNet architecture for the categorization of corn leaf diseases. The proposed CNN model is 

trained on corn leaf images from the PlantVillage dataset, differentiating among four categories: three disease 

classifications and one healthy category. The experimental findings indicate the model's efficacy, with an 

accuracy of 97.89%. These results underscore the efficacy of deep learning in agricultural disease diagnosis, 

providing an economical and precise option for automated crop health monitoring. The work underscores the 

significance of CNN-based models in precision agriculture, establishing a basis for future research on the 

optimization and implementation of these systems in practical agricultural contexts. The paper of Zhang et al., 

(2021), presents a CNN model enhanced with a Multi-Activation Function (MAF) module to improve detection 

accuracy for corn illnesses. Considering the constraints posed by limited illness datasets, the study employs 

image preprocessing methods to facilitate data augmentation. Furthermore, transfer learning and a warm-up 

training technique are used to expedite the learning process. The suggested model effectively identifies three 

corn diseases-maculopathy, rust, and blight-attaining a validation accuracy of 97.41%. To evaluate the efficacy 

of the MAF module, baseline testing and ablation experiments were performed on many CNN architectures. 

The findings indicate that the incorporation of the MAF module significantly enhances CNN performance, with 

optimal results achieved by the amalgamation of Sigmoid, ReLU, and Mish activation functions on ResNet50, 

resulting in a 2.33% increase in accuracy. The results illustrate the efficacy of optimized CNN models in 

agricultural contexts, providing a dependable and efficient method for automated corn disease identification. 

 

MATERIALS AND METHODS 

 The present study adopts a deep learning-based methodology for the automated detection of corn leaf 

diseases using a lightweight Convolutional Neural Network (LCNet). The proposed framework involves several 

key stages, including data acquisition, preprocessing, dataset partitioning, model design, training, and 

performance evaluation (Fig. 1). A diverse set of corn leaf images representing diseases such as blight, 

common rust, and gray leaf spot was utilized to ensure accurate classification. The LCNet architecture was 

specifically designed to be computationally efficient, incorporating multiple convolutional and pooling layers to 

extract relevant features while maintaining low-latency predictions (Fig. 2). The model’s performance was 

benchmarked against well-known deep learning models such as MobileNetV2, DenseNet201, and ResNet50. 

Standard evaluation metrics accuracy, precision, recall, and F1-score were employed to assess the model’s 

effectiveness. Developed using deep learning frameworks, the experimental results demonstrated that LCNet 

achieved superior classification accuracy with reduced computational overhead, making it a suitable candidate 

for real-time deployment in agricultural environments. 

.   
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Fig. 1 - Proposed Methodology for CNN based Corn Leaf Disease Classification  

 

 
Fig. 2 - Proposed LCNet Model 

A. Datasets: 

The suggested LCNet model along with existing deep learning architectures, namely 

MobileNetV2, DenseNet201, and ResNet50, was trained and assessed using a dataset of corn 

leaf images. These models were employed to classify and identify diseases in previously unseen 

images. This work used a dataset of 4,188 corn leaf images obtained from Kaggle, classified into 

four categories: three disease types-common rust, gray leaf spot, and blight-and one healthy 

category. 

To standardize input dimensions, the pictures were scaled to 128×128 pixels for the proposed 

CNN model. Pixel values were normalized by dividing each by 255, facilitating network weight 

initialization and enhancing model convergence during training. To facilitate efficient model 

training and assessment, the dataset was partitioned into training, validation, and testing subsets 

with an 80:10:10 distribution, a strategy derived from Sahu et al., (2021). As a result, 3,348 photos 

were designated for training, 419 for validation, and 421 for testing. The distribution of the corn 

dataset is clearly illustrated in (Figs. 3-4). This organized data segmentation enabled effective 

model training, reducing overfitting and ensuring the model generalizes well to new data. This 

technique seeks to provide an efficient and precise corn disease detection system with enhanced 

computing performance. 

 

B. Transfer Learning via popular deep learning pre-trained models: 

Training a network from scratch requires a lot of time and resources. Transfer learning is one of 

the solutions to this problem. It is a set of techniques rather than a single strategy (Atila et al., 

2021), in which certain pre-trained network weights are employed during training, to handle 

different problems. According to the requirement of the new problem, the bottom layer of the 

trained model was replaced by a new layer. 

ResNet50: TheResNet50 is a deep convolutional neural network model developed to tackle the 

difficulties associated with training very deep networks, especially the vanishing gradient issue. It 

belongs to the Residual Network (ResNet) family, proposed by He et al., (2016), and has 50 layers, 

making it very efficient for picture classification and identification applications. The fundamental 

novelty of ResNet50 is its implementation of residual learning via skip connections, enabling 
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information to circumvent certain levels and directly reach deeper layers. This approach 

guarantees that deeper networks may be trained effectively without experiencing performance 

deterioration. The ResNet50 design comprises convolutional layers, batch normalization, ReLU 

activation, pooling layers, and fully connected layers, with residual blocks crucial for ensuring 

steady gradient propagation. Each residual block has three convolutional layers (1×1, 3×3, and 

1×1), which enhance feature extraction and facilitate dimensionality reduction. ResNet50 utilizes 

identity mappings to facilitate the learning of intricate patterns while ensuring computational 

efficiency. One significant feature of ResNet50 is its capacity to attain high accuracy in picture 

classification tasks while incurring comparatively lower computing expenses than deeper models. 

It has been extensively used in medical image analysis, object identification, autonomous driving, 

and transfer learning because of its proficiency in generalizing across diverse domains. ResNet50, 

pre-trained on extensive datasets such as ImageNet, may be fine-tuned for applications, making 

it a potent and versatile instrument for diverse computer vision tasks. 

 

 
Fig. 3 - Corn Leaf Dataset 

    
                      (a)                                         (b)                                            (c)                                             (d) 

Fig. 4 - Image from Corn Leaf Dataset  
(a) Common Rust Disease; (b) Blight Disease; (c) Gray Leaf Spot Disease; (d) Healthy images 

 

DenseNet: This deep learning architecture was designed to enhance feature propagation and 

address the challenge of vanishing gradients commonly encountered in convolutional neural 

networks (CNNs). Introduced by Huang et al., (2017), DenseNet improves network performance 

through the implementation of dense connections, where each layer is directly connected to all 

subsequent layers within a dense block. Unlike traditional CNNs that follow a sequential 

information flow, DenseNet promotes the reuse of feature maps across layers, thereby improving 

gradient transmission and supporting efficient feature learning. Its structure comprises densely 

connected blocks separated by transition layers that incorporate batch normalization, 1×1 

convolutions, and average pooling, which help regulate network complexity and reduce the 

number of parameters. This design leads to higher accuracy with fewer parameters compared to 

deeper architectures like ResNet. DenseNet is available in various configurations, such as 

DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264, which indicate the number of 

layers. A significant advantage of DenseNet is its ability to deliver strong performance with reduced 

computational and memory demands, making it highly suitable for tasks like image classification, 

medical image processing, and object detection. Additionally, DenseNet models pre-trained on 

large-scale datasets like ImageNet are widely applied in transfer learning, allowing them to be 

fine-tuned for domain-specific problems. The model’s efficient feature reuse mechanism reduces 

redundancy and enhances learning capabilities, positioning it as an optimal choice for high-

accuracy applications with limited computational resources. 
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MobileNetV2: MobileNetV2, is a streamlined and effective convolutional neural network 

architecture tailored for mobile and embedded applications, providing a compromise between 

precision and computing economy. It was introduced by (Sandler et al., 2018b), with the integration 

of inverted residuals and linear bottlenecks, therefore markedly enhancing performance and 

reducing computing complexity. The fundamental innovation of MobileNetV2 is the depth wise 

separable convolution, which reduces the number of parameters and computations. It preserves 

a streamlined architecture while attaining competitive accuracy, making it exceptionally 

appropriate for picture classification, object identification, facial recognition, and AI-driven mobile 

apps. Its efficacy facilitates implementation on low-power devices, including smartphones, IoT 

devices, and edge computing systems. MobileNetV2, pre-trained on extensive datasets such as 

ImageNet, may be fine-tuned for specific applications, enabling significant versatility across 

several domains. It is extensively used in deep learning applications that need rapid inference and 

low resource usage, owing to its optimal balance between accuracy and computational economy. 

 

Hyper-Parameters: 

Hyperparameters are crucial for enhancing the training process of deep learning models. In this 

study, all pre-trained models were trained with a learning rate of 0.001 and used the Adam 

optimizer with a momentum value of 0.999. The ReLU activation function was used in all layers to 

improve non-linearity, while the softmax function was employed in the output layer to enable multi-

class classification. The suggested LCNet model was trained using certain hyperparameters, 

guaranteeing effective learning and performance. The comprehensive setup of these parameters 

is shown in Table 1. 

Table 1  

Different hyper-parameters selected in the proposed CNN model 
 

Hyper-parameter  Description 

Learning rate 0.0001 

Batch size 32 

Number of epochs 250 

Dropout 0.3 

Optimizer Adam 

Momentum 0.999 

Activation function ReLu 

C. Performance Matrices: 

The suggested model's performance was assessed using several measures, including accuracy, 

precision, recall, and F1 score. Where, assessing accuracy and recall is an essential component 

of machine learning model evaluation, since it quantifies the balance between false positives and 

false negatives. Precision quantifies the ratio of accurately predicted positive samples to the total 

expected positives, reflecting the model's dependability in positive classifications. Conversely, 

recall measures the model's efficacy in identifying true positive samples inside the dataset. 

Furthermore, the F1 score, denoting the harmonic mean of accuracy and recall, was computed to 

provide a balanced assessment of model efficacy. An elevated F1 score indicates that the model 

achieves an effective equilibrium between accuracy and recall, making it a reliable instrument for 

classification endeavors.  

These assessment measures guarantee that the proposed model accurately and reliably 

differentiates across various classes. 

                                                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃+𝑇𝑁) 

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                              (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

(𝑇𝑃+𝐹𝑃)
                        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃 

(𝑇𝑃+𝐹𝑁)
                                 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑇𝑃×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)
                          (4) 

where: TP is True Positive, TN is True Negative, FP is False Positive, FN is False Negative 
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D. Hardware and Software Used: 

This section presents and examines the outcome of the suggested strategy. The Keras library was 

employed in this study to create the suggested approach's structure. The Python-based Keras 

library provides a high-level API for creating deep learning architectures that can be built on top 

of other numerical computing libraries like TensorFlow. The proposed CNN model was trained 

with NVIDIA DGX A100 machine. The specification of the system is shown in Table 2: 

Table 2  

NVIDIA DGX A100 machine specification 

Specification  Description 

GPU 8xNVIDIA A100 Tensor core GPUs 

GPU Memory 320 GB 

Performance 5 peta FLOPS AI 10petaOPS INT8 

CPU Dual AMD Rome 7742, 128 cores, 2.25 GHz(base), 3.4 GHz(max boost) 

 
RESULTS 

 This research assesses the efficacy of LCNet in identifying corn diseases, comparing its performance 

with three widely used pre-trained convolutional neural networks: MobileNetV2, ResNet50, and DenseNet201, 

as illustrated in Fig. 5-6 and Table 3, and compared with previous studies in Table 4. The assessment was 

grounded on critical performance criteria, including validation accuracy, validation loss, and computing 

efficiency, quantified by trainable and non-trainable parameters. All models were trained under identical 

parameter configurations, with a learning rate of 0.001, the Adam optimizer, and a momentum of 0.999, to 

provide an equitable comparison.  

 ResNet50 exhibited robust performance, with a validation accuracy of 91.27% and a validation loss of 

0.2448. It necessitated 23,542,788 trainable parameters and 229,056 non-trainable parameters, making it 

computationally demanding. MobileNetV2 attained a validation accuracy of 90.19%, although recorded the 

greatest validation loss of 0.5175. It surpassed ResNet50 in efficiency, requiring 2,228,996 trainable 

parameters and 34,112 non-trainable parameters. DenseNet201 had the lowest validation accuracy at 

87.88%, accompanied by a validation loss of 0.3413. Notwithstanding its reduced accuracy, it exhibited a 

markedly elevated computational burden, using 53,120 trainable parameters and 18,100,612 non-trainable 

parameters. The suggested LCNet model surpassed all pre-trained architectures, with the maximum validation 

accuracy of 94.65% and the lowest validation loss of 0.1559 as shown in Fig. 7. Moreover, LCNet exhibited 

exceptional computational efficiency, necessitating just 285,812 trainable parameters, making it an optimal 

selection for resource-limited settings.   

 The findings demonstrate that LCNet achieves an optimum equilibrium between precision and 

computing efficiency, making it suitable for real-time agricultural applications. The substantial decrease in 

trainable parameters indicates that LCNet can function efficiently on edge devices with constrained processing 

capabilities, hence guaranteeing its practical applicability for early disease detection in crops. The approach 

facilitates prompt disease detection, hence promoting proactive strategies to mitigate crop losses and enhance 

agricultural output. 

   
(a)                                                                         (b) 

Fig. 5 - Comparison of total number of: 
 (a) trainable and (b) non-trainable parameters for proposed CNN, MobileNetV2, DenseNet201 and ResNet50. 
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  Table 3  

Performance of different models used in the study along with the proposed model 
 

Model Trainable Parameters Non-trainable Parameters Validation Accuracy Validation Loss 

MobileNetV2 2,22,89,96 34,112 90.19 0.5175 

DenseNet201 1,81,00,612 53,120 87.88 0.3413 

ResNet50 2,35,42,788 2,29,056 91.27 0.2448 

Proposed Model 2,85,812 0 94.65 0.1559 

 

 

Fig. 6 - Performance of the proposed and pre-trained models in percentage (%)  

 

Table 4  

Performance comparison of the proposed model with past study based on corn 

Study Method Accurcy (%) 

Firmansyah et al., (2024) Proposed CNN training from scratch 84.50 

Hang et al., (2019) CNN with inception module 91.70 

Syarief et al., (2020) AlexNet, VGG16-19, GoogleNet, Inception-V3, ResNet50-101 93.50 

Proposed Model LCNet 94.65 

 

 

   
(a)                                                                                                 (b) 

Fig. 7 - (a) Accuracy and (b) Loss plot of the Proposed CNN Model 
 
 

Table 5 
  

Class-wise performance metrics—precision, recall and F1-score—achieved by the proposed model 
 

Class Name Class Precision Recall F1-Score 

Blight 0 0.9234 0.8391 0.8793 

Common Rust      1 0.9194 0.9580     0.9383 

Gray Leaf Spot      2 0.8000 0.8276     0.8136 

Healthy 3 0.9749     1.0000     0.9873 

  

84 86 88 90 92 94 96

DenseNet201

MobileNetV2

ResNet50

Proposed Model

Performance in (%)

Model Accuracy
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  (a)                                                            (b)                                                             (c) 

Fig. 8 - Performance evaluation metrics  
(a) Precision, (b) Recall and (c) F1-Score for the proposed model 

 
 

 

CONCLUSIONS 

 This research presents an effective deep learning-based approach for classifying corn leaf diseases 

using a dataset of 4,188 images categorized into four groups: Common Rust, Gray Leaf Spot, Blight, and 

Healthy. A novel model, LCNet, was introduced and its performance was evaluated against established pre-

trained architectures-MobileNetV2, DenseNet201, and ResNet50-as well as comparative studies from existing 

literature. LCNet demonstrated superior performance with a validation accuracy of 94.65% and a validation 

loss of 0.1559, outperforming MobileNetV2 (90.19%), DenseNet201 (87.88%), and ResNet50 (91.27%). These 

findings confirm LCNet’s effectiveness in achieving high classification accuracy and efficient computation for 

corn leaf disease recognition. Looking ahead, future work will focus on fine-tuning model parameters through 

the Optuna optimization framework to further improve predictive accuracy. Additionally, the development of a 

lightweight mobile application is planned to support real-time, on-field disease detection, offering a practical 

and cost-effective tool for farmers and agricultural professionals. 
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