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ABSTRACT 

Accurate detection of apple stems is crucial for robotic cutting. This study proposed an improved YOLOv8-

stem method for apple stem detection in overhead imagery under occlusion conditions. First, several improve-

ments were made to the YOLOv8 neural network: the conventional convolutional process within the interme-

diate neck layer was substituted with the AK Convolution mechanism, a small object detection head was added, 

and ResBlock+CBAM attention mechanism was incorporated. Second, stem occlusion was determined by 

analyzing the positional relationship between the detected bounding boxes of stems and apples. The experi-

mental results showed that compared to the original YOLOv8, this method improved apple stem detection 

accuracy by 6.0% (from 79.9% to 85.9%) and increased harvesting completeness from 84.2% to 93.2%. 

 

摘要 

准确检测苹果茎对于机器人切割至关重要。本研究提出了一种改进的 YOLOv8茎检测方法，用于遮挡条件下俯

视图像中的苹果茎检测。首先，对 YOLOv8 神经网络进行了几项改进：用 AK 卷积机制取代了中间颈层内的传

统卷积过程，增加了一个小目标检测头，并引入了 ResBlock+CBAM 注意力机制。其次，通过分析检测到的茎

和苹果边界框之间的位置关系来确定茎的遮挡。实验结果表明，与原始 YOLOv8相比，该方法将苹果茎检测准

确率提高了 6.0%（从 79.9%提高到 85.9%），收获完整性从 84.2%提高到 93.2%。 

 

INTRODUCTION 

Apples are the third largest fruit in terms of area planted and production globally (Vasylieva et al., 2021). 

Manual apple harvesting is a time-consuming and labor-intensive task, and improving the competitiveness of 

the apple market requires addressing this challenge. Leaving apple stem too long during harvesting can cause 

surface scratches on the apples during transportation and storage, which can affect their freshness and ap-

pearance. Fruits stored without their stems exhibited greater weight loss, higher decay rates, and increased 

vitamin C loss (Ozturk et al., 2020). Small apple stems and complex growing environments, overlapping fruits, 

branch and leaf shading, and light variations pose challenges to accurate target identification (Chen et al., 

2019).  

In recent years, a lot of related works had been done by scholars at home and abroad for small target 

recognition of fruit stems in complex orchard environments. The YOLO family of algorithms had become a 

leader in target detection due to its rapid development and excellent performance. However, YOLO algorithms 

were mainly designed to detect and recognize full-size objects, and their performance was not as good when 

facing special-size objects, especially small targets (Liu et al., 2023; Liu et al., 2022). To address this issue, 

Wu et al. introduced the YOLO-Banana model for precise identification of bananas and to determine the fruit 

axis and cutting point. They enhanced the Bottleneck module of YOLOv5 and employed an edge-detection 

algorithm to segment the fruit axis's contour, allowing them to pinpoint the cut-off location (Wu et al., 2022; Wu 

et al., 2021). In situations where the fruit stem was covered, Yu et al. enhanced Mask R-CNN to address the 

issues of limited robustness in traditional algorithms when operating in unstructured environments (Yu et al., 

2019).  
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To investigate the method for identifying picking points in cases of partial occlusion, Xiong et al. (2018) 

conducted a study on locating grapes in the presence of disturbances. Other researchers employed stereovi-

sion and image processing techniques to detect and determine the locations of grape clusters and picking 

points, subsequently performing size measurements and enclosure calculations for the grapes (Luo et al., 

2021; Lufeng et al., 2017). The analysis of these studies revealed that there were fewer network improvements 

for short targets such as apple fruit stems, and for the localization of picking points covering the stems, most 

of them directly segmented the image of the target to be picked, which could produce large errors in the local-

ization of the picking points. 

This study concentrated on the detection of apple stems and sought to enhance the conventional 

YOLOv8 algorithm (Jocher et al., 2023). It presented an enhanced YOLOv8-based method designed specifi-

cally for detecting apple stems in overhead imagery. To achieve this, high-quality datasets of apple fruits and 

stems were collected from a top-down perspective to provide positive samples for network training. In the 

annotation of training targets, both apples occluded by tree branches and apple stems were annotated as 

separate categories. When utilizing YOLOv8 for the detection of apples occluded by branches, the presence 

of an apple stem within the annotated apple bounding box was verified. If a stem was present, it was recog-

nized normally; if not, it was determined that the stem was occluded by branches, necessitating a modification 

of the camera's position and angle. The YOLOv8 architecture was enhanced by incorporating a detection head 

specifically designed for small objects, the conventional convolutional process within the intermediate neck 

layer was substituted with the AK Convolution (Zhang et al., 2023) mechanism introducing a 160×160 detection 

feature map. A ResBlock+CBAM attention mechanism (Woo et al., 2018) module was incorporated to enhance 

the model's feature extraction capabilities for small target objects, thereby adapting to the characteristics of 

the apple stem dataset. The mean average precision (mAP) value and the harvesting completeness were 

calculated to evaluate the effectiveness of the stem detection, where the harvesting completeness was deter-

mined by applying the detection algorithm to apple stem images and computing the ratio of successfully de-

tected stems to the total number of stems present in the dataset. This study provided a reference for designing 

a precise cutting vision system for harvesting robots. 

 
MATERIALS AND METHODS 

Collection and preprocessing of apple stem data 

This study investigated the real orchard environment and the growth of apple stems in Shandong, China, 

and collected an apple dataset.  

 

 
Fig. 1 - Apple images in different conditions 

 

The images of apple stems were collected from apple orchards in Yantai, Shandong, China on October 

15th and 16th, 2023. In order to minimize the risk of overfitting the network model, this study collected different 

distances, including close range (0.3 meters to 1 meter) and long range (1 meter to 3 meters). Images were 

taken at different times (morning, noon, and evening) to obtain rich and diverse data. Finally, the image dataset 

was cropped and organized. It was concluded that the apple stem's integrity was highest when viewed from 

an overhead (top-down) or horizontal perspective. A total of 1671 images of apple stems were collected.  
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As shown in Figure 1, this was a typical set of apple stem images in a complex environment, this study 

also collected images of fruit stems completely covered to cope with the special situation of complex orchard 

environments. All the experimental images were adjusted to a uniform size of 640×640, and then the image 

transformation module provided by the PyTorch framework was used to enhance the data. 

 

Improved YOLOv8-stem Network Architecture 

In order to accurately and quickly identify small objects such as apple stems, this study replaced the 

original convolutions with AKConv in the 3th and 5th layers of the network, based on the YOLOv8n model. 

Additionally, it incorporated a 160×160 small object detection head to increase sensitivity to smaller targets. 

Integrating the CBAM attention mechanism into the P4 and P5 feature maps improved feature representation, 

suppressed irrelevant information, improved object detection performance, and boosted the network's adapt-

ability to objects of varying scales. The following sections will detail the working principles and technical as-

pects of each module. The altered network architecture is shown in Figure 2. 

 

 
Fig. 2 - YOLOv8-stem Network 

 

Replace the convolution module with AKConv 

AKConv assigned initial sampling coordinates to convolutions of varying sizes and modifies the sample 

shape using learnable offset values. The third and fifth layers typically represent the deep feature extraction 

stage of the network, with higher resolution and channel numbers. Replacing AKConv in these layers can help 

the network focus more on extracting high-level and abstract features, thereby enhancing the network's capa-

bility to extract features from apple stems and manage occlusion scenarios. 
 

Adding Small Target Detection Head 

In the standard YOLOv8 object detection model, the output consists of three layers: P3, P4, and P5, 

each with three default detection heads. However, the standard model may perform poorly in detecting small 

objects. Therefore, a new 160x160 detection feature map was introduced for detecting objects larger than 4x4. 
 

ResBlock＋CBAM 

When using CBAM in ResNet improved the expressiveness of the feature maps in both the channel 

and spatial dimensions, thus enhancing the performance of the model. The high-level semantic information 

and multi-scale information of P4 and P5 made them particularly suitable for detecting small objects. By incor-

porating the CBAM attention mechanism into the P4 and P5 layers, the model's ability to represent features 

was enhanced, irrelevant information was suppressed, and target detection performance was improved, thus 

improving the model's detection and recognition capabilities for apple stems. This weighting mechanism allows 

the model to be more generalizable, adapting to apple stems of different sizes, shapes, and positions, thereby 

improving the model's robustness and accuracy. 
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Experimental Results and Analysis 

In experiments to improve various backbone networks, DSConv (Gennari et al., 2019) convolution pro-

vided better accuracy and continuity in the segmentation of medical tubular structures, but the accuracy of 

apple stem detection decreased by 31.3%. Replacing the backbone network with ODConv (Li et al., 2022) 

moderately improved accuracy by 0.3% without changing the number of parameters. The results indicated that 

neither DSConv nor ODConv could effectively extract fruit stem features in highly crowded and complex envi-

ronments. Bifpn was used to achieve bidirectional fusion of deep and shallow features, but the model param-

eters and accuracy of identifying fruit stems remained almost unchanged (Tan et al., 2020). The CARAFE 

(Wang et al., 2019) network, which incorporated a kernel prediction module and a content-aware recombina-

tion module to generate larger up-sampling kernels, showed a decrease in accuracy of 0.25%. Vanillanet 

(Chen et al., 2024) performed well in terms of parameter and model computation by scaling the neural network 

model, but its accuracy control was mediocre. On the other hand, the improvement by replacing the backbone 

network with AKConv showed excellent performance, with a slight decrease in parameters and model compu-

tation while increasing detection accuracy (mAP@0.5/% increased by 2.2). This method effectively balanced 

model parameters and performance. Experimental results are shown in Table 1.  

Table 1 

Detection accuracy of each model in dataset (%) 

Backbone mAP@0.5/% mAP@0.5-0.95/% Params/M FLOPs/G 

Yolov8n(base) 0.799 0.362 3011027 8.2 

Yolov8- DSConv 0.486 0.181 2996959 29.6 

Yolov8-ODConv 0.802 0.359 2999036 8.1 

Yolov8- Bifpn 0.804 0.342 3005852 8.1 

Yolov8- CARAFE 0.774 0.332 4053191 8.3 

Yolov8-Vanillanet 0.789 0.334 1731635 5.0 

Yolov8- AKConv 0.821 0.363 2965337 8.0 

 

Among the improvements in various attention mechanisms, LSKA (Lau et al., 2024) did not improve 

accuracy but reduced the model's parameter count. The EMA (Ouyang et al., 2023) module focused on retain-

ing feature information on each channel, resulting in a slight increase in accuracy by 2.1%, with no increase in 

model computation. The parameter-free attention module SE (Hu et al., 2018) showed a small improvement 

in accuracy, while the global attention mechanism GAM (Liu et al., 2021) demonstrated a modest rise in the 

number of parameters while achieving an accuracy improvement of 3.9%. CBAM widely applied in many im-

provement studies, effectively improved accuracy in this study by combining feature channel and spatial prin-

ciples to adapt to the complex and multi-feature environment in this scenario. Compared to the base accuracy, 

mAP@0.5/% improved by 4.6%, and the parameter count and the model's computations were roughly equiv-

alent to those of the original model. Experimental results are shown in Table 2. 

 

Table 2 

Various attention mechanisms 

Attention mechanism mAP@0.5/% mAP@0.5-0.95/% Params/M FLOPs/G 

Yolov8n(base) 0.799 0.362 3011027 8.2 

Yolov8-C2f-LSKA 0.794 0.338 2351555 6.6 

Yolov8n+EMA 0.825 0.355 3006515 8.1 

Yolov8n+SEAttention 0.808 0.368 3227923 8.4 

Yolov8n+GAM 0.838 0.337 3687123 9.5 

Yolov8n+CBAM 0.845 0.346 3014406 8.1 

 

After testing a variety of attentional mechanisms for detecting small objects, the parts with significant 

improvements were selected and incorporated. Comparative experiments revealed that the YOLO network 

algorithm demonstrated strengths with respect to the three improvement modules from current cutting-edge 

research. However, additional ablation experiments were required to confirm the efficacy of each enhancement 

module. The findings from these experiments could be found in Table 3.  
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Table 3 

Module ablation experiment 

AKConv CBAM Head mAP@0.5/% mAP@0.5-0.95/% Params/M FLOPs/G 

✓   0.821 0.362 2965337 8.0 

 ✓  0.845 0.342 3014406 8.1 

  ✓ 0.826 0.352 2977588 12.5 

 ✓ ✓ 0.835 0.347 3239726 8.9 

✓ ✓ ✓ 0.859 0.347 3998948 14.6 

 

These three improvements enabled the YOLO model to achieve higher recognition accuracy for small 

objects with specific apple stem shapes in orchard environments, where occlusion and scene complexity are 

common. Notably, this enhancement in performance was achieved with only a minimal increase in the number 

of parameters. Ultimately, compared with the baseline model, the improved YOLO achieved a 6.0% increase 

in mAP@0.5 on the dataset. The results of the ablation experiments are presented in Table 5. A comparison 

of detection outcomes before and after the network modifications, as shown in Figure 3, illustrates the effec-

tiveness of the architectural changes. The visual results highlight clear improvements in detection accuracy 

and robustness achieved through the proposed enhancements. 

 

Evaluation metrics 

This study comprehensively evaluates the model's performance using precision (P), recall (R), gigafloat-

ing-point operations per second (GFLOPs), and the mean Average Precision (mAP) across all target catego-

ries at an IoU threshold of 0.5. The formulas for calculating precision, recall, and average precision (AP) are 

as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                      (1) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                     (2) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑟                                                                              
1

0

(3) 

The mean Average Precision (mAP) is calculated as the total of the average precisions for all labels 

divided by the number of classes. 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑘
𝑖=1

𝑘(𝑐𝑙𝑎𝑠𝑠𝑒𝑠)
                                                                             (4) 

Where n denotes the total number of categories, k is the number of detections, and AP represents the 

average precision for each category. 

 

RESULTS 

Experimental Environment 

Experiment setup: The operating system of the experimental platform was Windows 10. The CPU was 

an Intel(R) Core (TM) i5-12490F, with 16GB of RAM. The GPU was an Nvidia GeForce RTX 4060 Ti with 8GB 

of VRAM. The CUDA version used by torch vision is 11.7, and the deep learning framework was PyTorch-

GPU 2.0.1+cu118. To ensure the fairness and rationality of the experiments, all ablation experiments were 

conducted in the same experimental environment. 

 

Dataset Preparation 

In apple stem images captured from various overhead angles, single-angle camera detection may fail 

to accurately identify the stem when the field of view is partially obstructed by overlapping branches or fruits. 

Such occlusions can prevent the camera from capturing the full shape and position of the apple stem, nega-

tively impacting subsequent harvesting or processing tasks. To address this challenge, a specialized labeling 

strategy was adopted for the dataset used in this study. Apple stems visible from a top-down perspective were 

labeled as Apple stem, while apples obscured by branches were labeled as Masked apple. Additionally, apple 

stems captured from the top-down view were annotated together with apple eyelets to enhance the feature 

representation of the stem. This custom-labeled dataset formed the basis for training and evaluating the pro-

posed detection algorithm designed to identify apple stems in occluded environments. 
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This study trained a model to recognize two types of objects: apple stems and apples obscured by tree 

branches. After detection, it was further determined whether the bounding box of the obscured apple contains 

the coordinates of the apple stem. If the coordinates of the stem are not within the bounding box of the ob-

scured apple, it could be concluded that the stem is obscured by a branch. Otherwise, it was considered 

exposed. When tree branches obstruct the apple and cover the stem, the detection angle and position could 

be adjusted to better observe the stem, thereby more accurately detecting the initially unrecognized stem and 

providing a technical solution for apple harvesting. 

There were a total of 2816 Apple stem labeled targets and 1321 Masked apple labeled targets in the 

original 1671 images before data augmentation. It should be noted that because the Masked apple was larger 

and more distinctive in the images, it was not involved in the statistics of the YOLOv8 network structure opti-

mization results. The performance evaluation was conducted only for the target recognition effect of the Apple 

stem. The training of the Masked apple category was performed to validate and provide statistics for the spe-

cific case when the apple was covered by branches and the fruit stem was also covered. The dataset catego-

rization is shown in Table 4. 

Table 4 

Classification of data sets 

Classification of data sets Number Use of data sets 

Apple stem 2816 Network Modification Performance Evaluation 

Masked apple 1321 Identify and count obscured apples 

 

This study employed K-Fold cross-validation as the evaluation method for the machine learning model. 

The original dataset was divided into 5 subsets (K=5). In each iteration, one subset was used as the validation 

set, while the remaining four subsets (K-1) were used as the training set. This process was repeated five times, 

ensuring that each subset served as the validation set exactly once. After each iteration, the model's perfor-

mance metrics were calculated on the validation set, and the average of these results was taken as the overall 

performance evaluation on the entire dataset. The training results presented in the subsequent experiments 

were obtained using this K-Fold cross-validation approach. 

 

Validate the network model 

In order to more intuitively test the apple stem detection performance of the modified network model, 

this study compared the apple stem detection performance of YOLOv8n and YOLOv8 stalk. The comparison 

of the detection results is shown in Figure 3. 
 

 

Fig. 3 - The comparison of detection results 
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There are a total of three sets of apple stem detection comparisons in the comparison chart. Overall, in 

terms of detection performance, the improved YOLOv8 stalk has increased the recall rate and overall confi-

dence of apple stem detection. 

After comparing the original YOLOv8 model, this study validated the superiority of the improved 

YOLOv8 stalk model by training and testing it on the same dataset as other detection models such as faster 

R-CNN, SSD, YOLOv5, YOLOv3, etc. From Table 5, it can be seen that the improved YOLOv8 stalk model 

has the highest average accuracy compared to other models, with an increase of 5.4 percentage points in 

average accuracy compared to the original YOLOv8n network. 

Table 5 

Comparison of the effectiveness of different network models 

model 
mAP 

@0.5/% 

mAP 

@0.5-0.95/% 
Params/M FLOPs/G 

YOLOv3-tiny 76.2 33.6 4.3 18.9 

YOLOv5n 80.1 35.7 1.9 4.5 

YOLOv8n 80.3 36.0 3.0 8.2 

Faster R-CNN 80.8 35.8 104 268.3 

SSD 82.2 35.4 93 195.3 

YOLOv8-stalk 85.7 36.7 4.0 14.6 

 

Detection Results and Analysis of Occluded Stems 

After modifying the network, the deep learning model achieved higher recognition accuracy for apple 

stems, but it could not address the issue of incomplete harvesting caused by branches obscuring the apple 

stems. Therefore, the modified network was used to detect cases where apple stems were obscured by 

branches to observe the recognition and improvement effects. This study categorized the cases of obscured 

apple stems into three types: stems inside the corresponding obscured apple box but not recognized, stems 

inside the corresponding obscured apple box and recognized, and stems inside a non-corresponding apple 

box. This last category included cases where the stem was recognized or not recognized within the non-cor-

responding apple box. The number of stems not recognized was the focus for angle adjustment and re-detec-

tion to improve the actual harvesting rate. The following images show the detection results for these three 

different scenarios. Different occlusion scenarios of the stems are shown in Figure 4. 

 

 
Fig. 4 - Different occlusion scenarios of the stems 

 

This experiment was conducted using the trained inference model on 428 new scene images of apple 

stems collected from an apple orchard, which were different from the training dataset. Among these new im-

ages, 576 apples were annotated as obscured apples (Actual number of occluded apples). After prediction by 

the model, there were 565 predicted obscured apples (Predicted number of occluded apples). The number of 

stems recognized within the corresponding obscured apple bounding boxes (Fruit stems not covered by 

branches) was 485, and the number of stems inside the corresponding obscured apple boxes but not recog-

nized (Fruit stems obstructed by branches) was 52. Other cases included 28 stems inside non-corresponding 

apple boxes (Other situations).  

The statistical results are presented in Table 6. 
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Table 6 

The statistical results 

Category number 

Images of apple orchard scenes 428 

Actual number of occluded apples 576 

Predicted number of occluded apples 565 

Fruit stems not covered by branches 485 

Fruit stems obstructed by branches 52 

Other situations 28 

 

After analyzing the data of predicted obscured apples in the apple orchard scene images, in the case 

of 576 actually obscured apples, if the stems are also obscured, the deep learning network will not detect the 

obscured apples from a single camera angle, resulting in 52 stems inside the corresponding obscured apple 

box but not recognized. When this situation is detected, it can be inferred that the stems are obscured. In this 

case, changing the position and angle of the single camera to re-recognize the obscured stems can improve 

the picking efficiency from 576/485=84.2% to 576/ (485+52) =93.2% according to the theoretical statistical 

data. Moreover, as the apples with recognized stems inside the corresponding obscured apple box are picked, 

the situation where the stems are recognized inside non-corresponding obscured apple boxes will decrease, 

further improving the picking efficiency. 

 

CONCLUSIONS 

This study presented an enhanced YOLOv8-stem approach for detecting apple stems in overhead im-

agery under occlusion conditions. First, two datasets comprising apples and apple stems obstructed by tree 

branches were collected. Second, the YOLOv8 neural network was improved by substituting the conventional 

convolutional process within the intermediate neck layer with the AK Convolution mechanism. A small object 

detection head was added, introducing a 160×160 detection feature map, and a ResBlock+CBAM attention 

mechanism was incorporated. Third, the likelihood of missed detections was decreased by utilizing the coor-

dinates of the apples and apple stems obstructed by tree branches identified by the enhanced YOLOv8-stem 

model. The experimental results showed that compared to the original YOLOv8 model, this method signifi-

cantly improved both the detection accuracy of apple stems and the completeness of harvesting. The en-

hanced stem detection model achieved an average precision of 85.9%, representing a 6.0% improvement over 

the baseline YOLOv8 model (from 79.9% to 85.9%), and the harvesting completeness increased from 84.2% 

to 93.2%. This approach demonstrated promising applications in precise apple harvesting and automated fruit 

picking systems. 
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