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ABSTRACT  

To address the autonomous navigation and operation requirements of agricultural robots in complex terrain 

environments of vineyards, this report proposes a point cloud Ground segmentation algorithm based on 

surface fitting, aiming to solve the problems of reduced segmentation accuracy and insufficient adaptability of 

traditional planar assumption methods in unstructured terrains such as sloped fields and ridge furrows. The 

core of the algorithm lies in adopting a point cloud representation method based on a non-uniform polar grid, 

which dynamically allocates face element sizes according to point cloud density and the width between 

vineyard ridges, effectively addressing the issues of point cloud sparsity and representability. Subsequently, 

the moving least square method is used to fit surface models. During the fitting process, strategies such as 

Gaussian weight function, cosine and sine basis functions, and set of orthogonal functions are introduced to 

shorten the algorithm’s running time and reduce computational complexity. The algorithm’s performance is 

evaluated on the public dataset KITTI and in real-world environments, and compared with algorithms such as 

RANSAC, GPF, R-GPF, and Patchwork. Experimental results show that the proposed algorithm outperforms 

other algorithms in both Precision and Recall. In practical environments, the algorithm can accurately and 

effectively segment complex vineyard environments, meeting the operational requirements of agricultural 

robots and providing technical support for the advancement of smart agriculture. 

 

摘要 

针对葡萄园复杂地形环境下农业机器人自主导航与作业的需求，本文提出了一种基于曲面拟合的点云地面分割
算法，旨在解决传统平面假设方法在坡地、垄沟等非结构化地形中存在的分割精度下降与适应性不足的问题。
算法的核心在于采用一种基于非均匀极坐标网格的点云表示方法，该方法根据点云密度以及葡萄园垄间宽度动
态分配面元大小，有效解决了点云稀疏性和可表示性问题；随后用移动最小二乘法拟合曲面模型，在拟合过程
引入高斯型权函数、正余弦基函数，正交函数集的策略，缩短算法运行时间，降低计算复杂度。在公开数据集
KITTI、葡萄园环境中评估算法性能，并于 RANSAC、GPF、R-GPF、Patchwork等算法进行对比。实验结果
表明，本文算法在 Precision和 Recall均优于其他算法；葡萄园环境中，该算法能准确、有效的分割葡萄园复
杂环境，满足农业机器人的作业需求，为推进智慧农业提供了技术支撑。 

 

INTRODUCTION 

 Agriculture, as the foundational industry underpinning socio-economic development, holds paramount 

significance in China—a nation with a millennia-old agrarian civilization. The development of agriculture not 

only determines national food security and social stability, but also serves as a pivotal driver for economic 

growth and rural revitalization.  

 In recent years, autonomous driving technology has been developing rapidly, and its research and 

application have become a core topic in the field of intelligent transportation systems (Avcı et al., 2024). Driven 

by multiple factors such as algorithm optimization, hardware upgrading, and data-driven, self-driving vehicles 

have made significant progress in the key technical aspects of perception (Cong et al., 2024), decision-making 

(Wang et al., 2024) and control (Vidano et al., 2024). As the first step of an autonomous driving system, the 

accuracy of environment sensing is directly related to the performance and safety of the whole system. Among 

many sensors, LiDAR has become a key component for autonomous driving environment sensing with its 

advantages of high accuracy (Wu et al., 2024) and long-range measurement (Bayer et al., 2021). Light 

Detection and Ranging (LiDAR for short) is an active remote sensing technology that utilizes laser pulses to 

measure distances in order to obtain three-dimensional positional information about the target object and 
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generate high-precision three-dimensional point cloud data. On this basis, the ground segmentation algorithm 

employs multi-dimensional feature analysis and deep learning framework to achieve accurate recognition of 

ground and non-ground points in complex terrain. 

 In a vineyard environment, the ground can have slopes or weeds, etc., that are more rugged than 

urban transportation surfaces. Weeds, fallen leaves, and highly reflective objects (metal supports, plastic film) 

can cause noise in LIDAR scans, and fragmented vegetation makes the ground segmentation unclear, as well 

as surrounding objects, blocking the fit, conventional ground segmentation algorithms selectively exclude it, 

and this algorithm is optimized for these characteristics. The main contributions are as follows: 

1) Dynamic area optimization, improving the traditional fixed-area selection mode and adjusting the 

scanning focus according to the vineyard environment: the nearest area and the farthest area, it 

improves the plant recognition accuracy by 7.3%, reduces the leakage rate to 2%, and can detect 

obstacles as early as possible to provide safe time for the subsequent path planning. 

2) Dual noise reduction technology, incorporating multipath reflection suppression and sensor dynamic 

compensation, the noise false detection rate is reduced by 78.8% and the terrain detection error is 

optimized by 61.7% under dense foliage and high temperature environments. 

3) Design of fast surface fitting algorithms based on orthogonal basis functions: by replacing the 

traditional planar model with Legendre orthogonal polynomials and combining circular radial weight 

functions with matrix-free inverse least squares solving, the computational complexity is reduced from 

O(n3) to O(n2), which ensures the accuracy of complex terrain fitting while shortening the computation 

time of a single frame to 35ms to meet the real-time demand of 10 Hz for agricultural robots. 

 
MATERIALS AND METHODS 

 Most of the traditional algorithms are adapted to urban traffic surfaces, and the orchard environment 

is relatively more complex. The ground segmentation algorithm proposed in this paper is based on concentric 

zone model (CZM), and several key modules are set up to realize the extraction of ground information from 

radar point cloud. CZM utilizes a uniform polar grid representation to divide the point cloud into multiple fan-

ring regions with regularity and orientation, and the density of each region can be set by adjusting the 

parameters. Key modules include Reflected Noise Removal (S-RNR), Vertical Interference Removal (S-VIE), 

Sub-Regional Partitioning (SRP), Surface Model Fitting (S-SSF), Adaptive Thresholding (ATS), and Temporal 

Ground Recovery (TGR). 

 The overall framework is shown in Figure 1, and the following paragraphs highlight the definitions and 

rationale for the core modules. 

 
Fig. 1 - Module Flowchart 

 

Concentric Zone Model (CZM) 

 When dealing with point cloud data of complex terrain, especially vineyard pavements, most of the 

traditional algorithms designed for flat urban pavements rely on fixed strategies such as adaptive binning and 

quadratic distributions and assume locally flat ground to simplify the computation. However, the ground is 

usually not flat and the density of the point cloud data varies with distance, which leads to under- or over-

segmentation problems when conventional methods are ineffective in dealing with sparse and under-

represented point clouds. 
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 In response to these problems, a uniform polar grid model is proposed, which divides the point cloud 

collection into multiple sector-ring regions by radial distance and azimuth. However, there are two main 

problems with this method: the fan ring area near the center is small and has a sparse number of points, while 

the area away from the center is similarly underpopulated due to a sparse point cloud, both of which affect the 

accuracy of the ground plane fitting. 

 To overcome these limitations, the CZM was used. The model parametrically adjusts the density of 

the sector ring region in each ring band, taking into account the problem of LIDAR being dense in the near and 

sparse in the far, ensuring that the ring bands have a reasonable number of sector rings regardless of the 

distance from the center. The model is defined as follows:  

 
Fig. 2 - (a)Tradition modeling method; (b)concentric zone model 

  

 Compared with the traditional model definition Fig. 2(a), Fig. 2(b) is more applicable to the orchard 

environment by detailing the distant sparse point cloud and the point cloud in the vicinity of the LiDAR, the 

former confirms that obstacles can be detected in advance for subsequent path planning, while the latter 

detects obstacles at close range. 

 

Reflected Noise Removal (S-RNR) 

 The presence of highly reflective objects (metal brackets, plastic films), radius effects (e.g., multiple 

reflections from plant leaves), and sensor noise in the vineyard point cloud collection can generate noise, these 

noise points can significantly affect the reliability of the fitted ground plane. Noise points also occur below the 

ground plane, as shown in Figure 3. 

 
Fig. 3 - (a)Point Cloud Reflection Noise Schematic Diagram; (b)LiDAR Position Schematic Diagram 
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 As shown in the figure, the height of the LIDAR mounted on the wheeled robot is 0.7 m. Let the height 

threshold be h, with the point O as the origin and the positive direction of the z-axis. Let the height of the point 

x  in the vineyard LiDAR point cloud be 
xz , then the equation of the non-ground point will be: 

 
xz h  (1) 

 According to the actual measurement, the weed height of standardized planting vineyard is about 0.3 

m, then the threshold is -0.4, then the vineyard LiDAR point cloud can be left when the height is greater than 

-0.4, otherwise it is separated as a ground point. 

 In order to solve the noise point problem, the algorithm employs the Regional Reflected Noise Removal 

(R-RNR) module and introduces the introduction of multipath effect suppression and sensor noise 

compensation. R-RNR performs reflection noise removal for each sector-ring region separately, searching for 

all points in the point cloud below a specified height one by one, and identifying points with reflection intensity 

below a threshold as reflection noise points. Multipath effect suppression establishes a three-frame sliding 

window that rejects transient points (e.g., vignette points from blade jitter) that persist for <0.3 seconds: 

 
Pvalid = {pi ∣ ∑ I

3

t=1

(pi ∈ Ft) ≥ 2}  (2) 

 Where Ft denotes the t-th frame point cloud, the suspected multipath point is detected by reverse ray 

detection, and if there is an occluder (e.g., a leaf point cloud) on the path from the sensor to the point, it is 

determined as a fictitious point and rejected. Sensor noise compensation, on the other hand, is applied by 

applying a nonlinear compensation model through a temperature sensor that collects the ambient temperature 

T in real time: 

 Icorrected = Iraw − k1ek2T (3) 

where k1=0.03 and k2=0.12 are the calibration parameters. And the point cloud motion compensation model 

was constructed by combining the IMU data, and the extended Kalman filter (EKF) was used to estimate the 

real spatial coordinates of each point: 

 x
^

t = xmeas − ∫t−Δt

t
v(τ)dτ (4) 

where v(τ) is the instantaneous speed of the agricultural vehicle. 

 

Surface model fitting (S-SSF) 

 Moving least squares provides an effective polynomial approximation strategy for high-precision 

surface fitting of scattered point clouds, centered on minimizing the sum of squared node errors. When applied 

to LiDAR point cloud data, it generates smooth and close fitting surfaces. However, facing the huge amount 

of point cloud data, the traditional methods have high computational complexity. For this reason, the fast 

moving least squares method is used to simplify the coefficient matrix solution using weighted orthogonal 

functions (considering only diagonal elements and avoiding inverse), which significantly improves the 

computational efficiency and meets the real-time demand of automatic driving while ensuring the accuracy. 

 The fitting function is expressed as: 

 
𝒇(𝐱, 𝐲) = ∑ 𝛂𝐢

𝐦

𝐢=𝟏

(𝐱, 𝐲)𝐩𝐢(𝐱, 𝐲) = 𝐩𝐓(𝐱, 𝐲)𝛂(𝐱, 𝐲) (5) 

 It can be simplified as follows: 

 
𝑓(t) = ∑ αi

m

i=1

(t)pi(t) = pT(t)α(t)  (6) 

where t=(x,y) and the coordinates t as a function of: 

 𝛼(𝑡) = [α1(t), α2(t), … … , αm(t)]𝑇 (7) 

 The basis function is a complete polynomial of order k and m is the number of terms in the product 

function: 

 p(t) = [p1(t), p2(t), … … , pm(t)]T (8) 

 

 For surface fitting, a two-dimensional basis function is required, and the basis function p(t) takes the 

form: 

 Linear base: p(t) = [1, x, y]T 
 Secondary base: 𝑝(𝑡) = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2]𝑇 
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 In the moving least squares approximation, the coefficient is determined by minimizing the weighted 

sum of squares of the errors of the nodes of the approximation function in a neighborhood of point x: 

 
J = ∑ w

n

I=1

(x)[f(t) − ZI]2 =

∑ w

n

I=1

(x)[∑ p

m

i=1

(tI)α(tI) − ZI]
2

 (9) 

where n is the number of nodes affected in the neighborhood of x, ZI is the value of the node at t = tI, and x = 

t - tI is the difference between the two points, t-tI=√(𝑥 − 𝑥𝐼)2 + (𝑦 − 𝑦𝐼)2, w(x) = w(t-tI) is the weight function 

of node tI. 

 When the above equation equals zero, J reaches a minimum value and hence the following can be 

obtained: 

 
∑ w

n

I=1

(x)[∑ p

m

i=1

(tI)α(tI) − ZI]
2 = 0 (10) 

 
∑ w

n

I=1

(x) ∑ p

m

i=1

(tI)α(tI) = ∑ w

n

I=1

(x) ∗ ZI (11) 

 h(x) and g(x) are introduced to simplify the expression: 

 (h, g) = ∑ wn
i=1 (x − xi)h(xi)g(xi)  (12) 

 α1(t)(pi, p1) + α2(t)(pi, p2) + ⋯ . . +αn(t)(pi, pn)
= (pi, Z), i = 1,2 … ,  m

 (13) 

 Organized into a system of linear equations, also known as normal equations: 

 

[

(p1, p1) (p1, p2) … (p1, pm)
(p2, p1) (p2, p2) … (p2, pm)

⋯ ⋅
⋅

(pm, p1) (pm, p2) (pm, pm)

][

α1(t)
α2(t)

αm(t)

] = [

(p1, Z)

(p2, Z)
⋅

(pm, Z)

] (14) 

 Solving the above system of linear equations yields the reformation coefficient a(t) at node t. If the 

basis function pi(t)(i = 1,2,3, . . . , m) is taken to be the set of orthogonal functions of the point set{ }x  and the 

weight {wi(i = 1,2,3, . . . , m)}, we obtain: 

 
(pk, pj) = ∑ wi

n

i=1

p (ti)k (ti)

= {
0 , (k = j)

Ak , (k ≠ j)
(k, j = 1,2 … m)

 (15) 

 Then the matrix can be obtained: 

 

[

(p1, p1) 0 … 0

0 (p2, p2) … 0
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
0 0 ⋅ (pm, pm)

][

α1(t)

α2(t)
⋅
⋅
⋅

αm(t)

] = [

(p1, Z)

(p2, Z)
⋅
⋅

(pm, Z)

]  (16) 

 Then one can solve for αi(t)(i = 1,2,3. . . , m): 

 
𝛼𝑖(t) =

(pi, Z)

(pi, pi)
 (17) 

 Collation is available: 

 f(t) = ∑ pi
m
i=1 (t) ∙

∑ wn
I=1 (t−tI) p (tI)i

(pi,pi)
= ∑ OI

kn
I=1 (t)Z  (18) 

where the form function is: 

  OI
k(t) = w(t − ti) ∑

pi(t)p(tI)

(pi,pi)

m
i=1  (19) 

 

 By integrating the set of orthogonal functions, matrix inversion can be avoided, thereby resolving the 

problem of matrix irreversibility, reducing the computational time of the least squares method, and lowering 

overall algorithmic complexity. 

 In the moving least squares method, the choice of the weight function is crucial, and in a complex 

orchard environment, the appropriate weight function greatly affects the smoothness of the fitted ground. The 

weight function w(t-ti) in the moving least squares method should be tightly supported, that is, the weight 
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function is not equal to zero in a subdomain of x, and is zero outside of this subdomain, which is called the 

support domain of the weight function (i.e., the region of influence of x). 

 Therefore, a circular support domain with radius r was selected for the weight function, where d = t-ti, 

𝑟̅ =
𝑑

𝑟
.
 

 This choice ensures that the function values at each node are influenced only by data points within the 

circular support domain, while points outside this region have no impact. Due to the compact support of the 

weight function, only the data points within the region of influence affect the value at point x. The weight function 

w(t-ti) is required to be non-negative and monotonically decreasing as d2 increases. In this study, a two-part 

Gaussian-type weight function is used in place of the traditional three-part moving least squares (MLS) weight 

function. This modification results in a smoother fit, reduces fitting time, and lowers algorithmic complexity. 

 The Gaussian-type weight function is shown in equation (20): 

 
w(r

¯
) = {

e−β2r
¯ 2

−e−β2

1−e−β2 , r
¯

≤ 1

0 , r
¯

> 1

} 

 

(20) 

 

RESULTS 

Data set 

 In this paper, tests are performed using datasets collected by two different devices. 

 1) KITTI point cloud public dataset, the data acquisition equipment for the U.S. Velodyne company HDL-

64 type 3D mechanical rotation Lidar, with 64 lasers, acquisition frequency of 10 Hz, each frame produces 

about 130,000 scanning points, the effect of the dataset is shown in Figure. 

 2) The vineyard dataset was collected using the OSI-64 LiDAR, which has a measurement range of 120 

meters, a vertical viewing angle of 45o, a horizontal viewing angle of 360o, a rotation angle of 360o, a vertical 

angular resolution of 0.52o, a horizontal resolution of 1024, and 131072 sampling points per second, with data 

effects as shown in Fig.4. 

 

 
(a)                                                 (b)                                                (c) 

Fig. 4 - (a)Sample Images of the KITTI Dataset; (b)OSI-64 3D LiDAR; (c)Vineyard Dataset Rendering 

 

 

Algorithm testing 

1) Hardware platform 

 In this study, the KOMODO-03 general-purpose tracked robot mobile chassis developed by Extreme 

Robotics Technology Co. The chassis is fully electrically powered with a 48V 50Ah Li-ion battery power system 

with a maximum operating voltage of 54.6 V and a discharge cut-off voltage set at 43 V. The power section 

consists of two DC brushless motors and two 15:1 gearboxes. The computer is equipped with an AMD R7-

4800H processor, 16 GB RAM and a single NVIDIA GeForce GTX1650ti GPU. 

  

The mobile chassis structure is shown in Figure 5. 
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Fig. 5 - Tracked mobile platform for orchard operation robots 

1. External Monitor; 2. Jetson AGX Xavier; 3. Crawler-Type Mobile Chassis; 4. Dual-Antenna GNSS-RTK; 5. 64-Line 3D LiDAR. 

 

2) Measurement indicators 

 For the evaluation of segmentation accuracy, it is mainly evaluated from Precision, Recall and F1 Score, 

and the calculation method of each evaluation index is shown below: 

 
Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃

 (21) 

 
Re𝑐𝑎𝑙𝑙 =

𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁

 (22) 

 
𝐹1 = 2 ∗

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ Re𝑐𝑎𝑙𝑙

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Re𝑐𝑎𝑙𝑙
 (23) 

where: NTP is the number of ground points correctly labelled; NFN is the number of ground points incorrectly 

labelled as non-ground points; NFP is the number of non-ground points incorrectly labelled as ground points; 

and NTN is the number of non-ground points correctly labelled. 
 

 

KITTI dataset testing 

 The Semantic KITTI dataset is a large-scale dataset designed for autonomous driving scenarios, and in 

order to validate the accuracy of the algorithms in this paper for ground point cloud segmentation, this dataset 

was used to evaluate the performance of the proposed algorithms versus existing algorithms for ground 

segmentation. 

 In this experiment, the first 100 frames were selected (i.e., numbered 01 to 100) from the KITTI dataset 

as the test object, and each frame contains about 130,000 cloud data points. In order to make a clear 

comparison of the point cloud data, the non-ground point cloud was labelled as red and the ground point cloud 

as green, and the effect of the delineation of the road information was visualized by rviz.  

 The effect diagram of road information division is shown in Fig. 6, and the algorithm of this paper is 

compared with four ground segmentation algorithms of RANSAC (Martin et al., 1981), GPF (Dimitris et al., 

2017), R-GPF (Hyungtae et al., 2021) and Patchwork (Hyungtae et al., 2021). The comparison test is shown 

in Fig. 7, and the segmentation accuracy is shown in Table 1. 
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Table 1 
Ground segmentation accuracy 

Algorithm Precision Recall F1 Score 

RANSAC 0.8452 0.8389 0.8417 

GPF 0.9256 0.7962 0.8551 

R-GPF 0.7678 0.8862 0.8228 

Patchwork 0.9279 0.9245 0.9267 

Ours 0.9469 0.9458 0.9479 

 

 
Fig. 6 -  (a)Urban environment scene; (b), (c) Local vehicle scene 

 

 
Fig. 7 -  KITTI data set comparison test 

  

 In Fig. 7, the green point cloud represents the ground point cloud and the red point cloud represents the 

non-ground point cloud, and it can be seen by the global segmentation information as well as the local 

segmentation details that the algorithm in this paper is better than the other four algorithms. The ground 

segmentation accuracy in Table 1 shows that the algorithm in this paper is better than the above four algorithms 

in terms of segmentation accuracy, precision, recall, and accuracy in road tests in urban environments. 

 
Vineyard Data Testing 

 The initial design of the algorithm in this paper is applied to the vineyard, using the OSI-64 LiDAR in the 

actual vineyard scene to collect data, and the original data and the algorithm of this paper to segment the 

environment comparison, the comparison effect graph is shown in Figure 8. 

 Figure 8 shows the real environment algorithm test, the test scene is a vineyard road, and 8(a)(d) shows 

the actual scene, where there is a human-type obstacle in (a), which is used to test the segmentation effect of 

the algorithm. Figure 8(b)(e) shows the unsegmented point cloud scene of the vineyard. Figure 8(c)(f) shows 

the scene after segmentation by the algorithm, and it can be seen from the segmentation effect that the 

algorithm in this paper can segment accurately. 
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Fig. 8 - Real environment algorithm testing 

 

 

CONCLUSIONS 

 Aiming at the problem of insufficient performance of traditional methods for point cloud segmentation 

in complex scenes in vineyards, this paper proposes a surface-fitting ground segmentation method. By using 

orthogonal function basis to improve the moving least squares method, the computational complexity is 

reduced so as to improve the speed of surface fitting, Gaussian-type weight function is introduced to solve the 

problem of non-smoothness of the fitted surface, and the sine-cosine basis function is introduced, which is 

more able to restore the original shape of the vineyard ground. By improving the search area range of the 

radar so that the point cloud focuses on the farthest and nearest regions, obstacles can be detected as early 

as possible, providing sufficient time for path planning. Dual noise reduction technology is used to integrate 

multipath reflection suppression and sensor dynamic compensation to reduce the false detection rate of noise 

and enhance the robustness of ground segmentation in vineyard scenes. 

 The superiority of this approach is validated through experiments on the KITTI dataset and real 

vehicles. The results show that the method achieves accurate segmentation of ground point cloud, which is 

better than RANSAC, GPF, R-GPF and Patchwork algorithms. The segmentation precision can reach 0.9469 

and the recall can reach 0.9458. 

 In future work, multimodal data fusion of LiDAR with visual and inertial measurement unit (IMU) data 

will be explored to enhance the robustness of the algorithm in complex environments such as rain, fog, and 

nighttime conditions. Additionally, the algorithm will be extended to other agricultural scenarios, including 

terraces and orchards, to evaluate its generalization performance. 
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