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ABSTRACT  

Individual pig identification is a key technology to realize fine farming management, which is of great value in 

the fields of animal behavior tracking and health monitoring. Aiming at the limitations of traditional 2D vision 

methods in stereo feature extraction, this study uses pig back point cloud to effectively capture deep 3D 

features such as back contour and skin texture and proposes an improved PointNet++ model for pig individual 

identification, which explicitly captures the local geometric and feature differences through two-stream 

differential coding, refines the feature distribution by using low-rank bilinear decomposition and residual 

sharpening strategies, and then establish the two-way dependency between channel and space to generate 

the global perceptual map, and finally combine with Mish activation function to enhance the nonlinear feature 

extraction. The experiment takes the hybrid long white pig as the research object and uses the Intel D435i 

depth camera to collect data and construct the segmentation and identification model. The results show that 

the improved model PointNet++LR3D achieves an overall accuracy of 97.11% in the individual identification 

task, which is an improvement of 1.9% compared to the base PointNet++MSG model. In addition, extended 

tests on the ModelNet40 dataset show an improvement in classification accuracy to 93.1%, validating the 

generalization ability of the architectural improvements. This study provides an efficient solution for non-contact 

pig identification based on point cloud, demonstrating the potential for application in fine-tuned farming. 

 

摘要 

猪只个体识别是实现精细化养殖管理的关键技术，在动物行为追踪、健康监测等领域具有重要价值。针对传统

二维视觉方法在立体特征提取上的局限性，本研究使用猪背点云有效捕捉背部轮廓和皮肤纹理等深度三维特征，

提出了一种改进的PointNet++模型用于猪只个体识别，通过双流差分编码显式捕捉局部几何与特征差异，利用

低秩双线性分解和残差锐化策略细化特征分布，进而建立通道与空间的双向依赖关系生成全局感知图，最后结

合 Mish激活函数增强非线性特征提取。实验以杂交长白猪为研究对象，使用 Intel D435i深度相机采集数据，

构建分割与识别模型。结果表明，改进模型 PointNet++LR3D 在个体识别任务中整体准确率达 97.11%，相比

基础 PointNet++MSG 模型提升 1.9%。此外，在 ModelNet40 数据集上的扩展测试显示分类准确率提升至

93.1%，验证了架构改进的泛化能力。本研究为基于点云的非接触式猪只识别提供了高效解决方案，展现了在

精细化养殖中的应用潜力。 

 

INTRODUCTION 

 In modern agriculture and animal management, individualized management and fine monitoring have 

become the key factors in improving breeding efficiency and animal welfare (Neethirajan et al., 2024). 

Individual identification is the key technology to realize individual tracking of health data (Vidal et al., 2021), 

which provides the necessary support for various aspects of precision management, health monitoring, fine 

feeding, behavioral monitoring and analysis, breeding selection, and automated management (Su et al., 2024; 

Krampe et al., 2024).  

 The traditional animal individual identification technology mainly has two major categories: physical 

tag identification and radio frequency identification (Ruiz et al., 2011); currently applied in the breeding industry 

is still the most used in the physical tag using ear tags or collars to distinguish each body, however, the physical 

tags are prone to wear and tear, loss and damage, but also requires manual operation close contact with the 

animal, which increases the human cost as well as the risk of animal stress (Martínez et al., 2016). 
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 With the rapid development of computer vision and deep learning technologies (Wang et al., 2022), 

vision-based individual identification methods have gradually become a research hotspot, which significantly 

improves the flexibility and robustness of identification mainly by capturing the external features of pigs, such 

as their faces, body sizes, or back contours (Saleem et al., 2021; García et al., 2020). However, 2D images 

are still unresolved due to factors such as light, angle and occlusion, which make it difficult to fully capture the 

three-dimensional morphological features of pigs, especially in dynamic scenes, and the stability of the 

identification effect still needs to be improved. In contrast, 3D point cloud technology (Guo et al., 2020) obtains 

three-dimensional information about pigs through depth sensors (Yu et al., 2024), which can more 

comprehensively describe the dorsal contour, curvature, and spatial structural features of pigs (Shuai et al., 

2020), and has become a hot spot of research by its advantage of being able to obtain three-dimensional depth 

information of pigs. 

 In recent years, significant progress has been made in applying point cloud technology in livestock 

individual identification. Zhou and others first proposed an individual identification method based on the pig 

back point cloud, utilizing PointNet++ for back point cloud segmentation and constructing a pig individual 

identification model based on the improved PointNet++LGG algorithm by increasing the adaptive global 

sampling radius, deepening the network structure, and increasing the number of features, with accuracy 

reaching 95% (Zhou et al., 2023). Similarly, Kyaw et al. used the PointNet++ algorithm to detect and segment 

the dorsal surface region of a cow from a point cloud image, providing applications for individual cow 

identification, lameness detection, and body condition scoring (Kyaw et al., 2024). These studies achieved 

non-contact and high-precision individual identification through 3D point cloud technology, overcoming 

traditional methods' limitations and providing technical support for fine farming. 

 Inspired by the above studies, this study notes that the application of point cloud technology in livestock 

individual identification is still in its infancy and that most of the current improvements of PointNet++ focus on 

the feature extraction stage, especially on enhancing the expression of local features by optimizing the 

grouping of points such as multi-scale grouping or dynamic grouping (Luo et al., 2024; Nong et al., 2023). 

However, fewer studies have systematically improved the characterization ability of point cloud features by 

starting from the fusion mechanism of local and global features. Therefore, this study proposes a new 

improvement strategy based on this, constructing an innovative module of local context fusion and global 

bilinear regularization, integrating it into the network architecture of PointNet++, explicitly modeling geometric 

and feature differences within the framework of PointNet++, and refining the feature distributions through global 

sensing, and utilizing low-rank bilinear decomposition and residual sharpening strategies to refine the feature 

distributions. Feature distributions to establish the bidirectional dependence between channel and space. This 

approach not only enhances the model's sensitivity to the local details of the pig back point cloud, such as 

curvature and edges, but also improves the feature differentiation through global regularization, thus achieving 

higher accuracy and robustness in the task of livestock individual identification in dynamic scenes. 

 
MATERIALS AND METHODS 

Introduction of experimental pig data 

 The data on the pigs used in this experiment were collected from Huifeng Breeding Professional 

Cooperative in Guangling County, Datong City, Shanxi Province, and the experimental pigs were labeled and 

approved by the pig farm. The pig farm features a semi-enclosed structure, and the experimental data were 

collected under two natural conditions: with sunlight and without sunlight. In order to increase the robustness 

of the experiment, no external lights were used throughout the collection, and point cloud data were collected 

from the backs of ten pigs, all of which were crossbred long white pigs and pigs with similar age, weight, and 

body hair color were selected as the collection objects. 

 

Data Acquisition 

 In this study, the following acquisition plan was developed during the acquisition process, as shown in 

Fig.1. The depth camera Intel D435i was used to collect the depth information of the pig's back, the D435i 

adopts a dual-camera design and calculates the depth information based on binocular stereo vision (Servi et 

al., 2024; Zhang et al., 2022), which generates high-resolution depth data by capturing the parallax images 

from both cameras. In order to capture individual pigs in multiple postures, the recorded video was used to 

capture depth information and RGB color images simultaneously from the upper part of the pig's back.  
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 To verify whether different camera heights and angles affect identification accuracy, the camera 

positions were intentionally varied. The cameras were mounted on the top of a telescopic pole, which was 

handheld to capture approximately one minute of video from each angle of the pig's back. The videos were 

recorded at a resolution of 468 × 828 pixels and a frame rate of 30 Hz. In total, 10 video recordings in the BAG 

format were collected. 
 

 

Fig. 1 - (a) Environment of the pig house and Acquisition of pig back point cloud data 

 

Data pre-processing 

(1) Depth image to point cloud image conversion 

  Each BAG file stores the depth and RGB color information of the ten pigs. Additionally, the camera’s 

intrinsic parameters (focal lengths 𝑓𝑥, 𝑓𝑦 and principal point coordinates 𝐶𝑥, 𝐶𝑦) are recorded within each file. 

These parameters are extracted by parsing the BAG files. 

  First, the BAG files are parsed frame by frame using Intel RealSense to extract depth and color frames. 

Depth images are manually filtered with the assistance of corresponding color images; only those with poor-

quality back data are removed to ensure the reliability of the experimental dataset. Since the objective of this 

experiment is to assess whether individual pigs can be accurately identified based on body features - such as 

the contours and curvature of the back - rather than color features, only the depth images are retained after 

filtering. These retained depth images are subsequently converted into point cloud representations. 

 The depth value of each pixel in the depth image is converted to the actual 3D coordinates by 

combining the camera's internal reference, assuming that the pixel coordinates are U and V, and the actual 

depth is Z. The 3D coordinates (X, Y, Z) of the point can be expressed as: 

𝑋 =
(𝑈−𝐶𝑥)∙𝑍

𝑓𝑥
,    𝑌 =

(𝑉−𝐶𝑦)∙𝑍

𝑓𝑦
,   𝑍 = 𝑑𝑒𝑝𝑡ℎ_𝑖𝑚𝑎𝑔𝑒(𝑈, 𝑉)                                   (1) 

where: (𝑈 − 𝐶𝑥) and (𝑉 − 𝐶𝑦) denote the horizontal and vertical distances of the pixel point relative to the 

center of light, and the X Y coordinates of the pixel point in the actual 3D space can be obtained by multiplying 

the distance by the depth value of the point, Z, and dividing by the focal length, 𝑓𝑥 or 𝑓𝑦. 

 

 

(a) (b) 

Fig. 2 - Depth images converted to point cloud images 

(a) Pig depth image (b) Pig point cloud image 
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(2) Pig back point cloud labeling  

 The generated dorsal point cloud data not only has the pig body point cloud but also includes a large 

number of background point clouds, using CloudCompare software to label the point clouds as pig dorsal point 

clouds and background point clouds because the pig is in a low head posture most of the time and the head 

bobbing is more obvious, most of the captured head point cloud images are incomplete and badly adhered to 

the ground and walls, in order to avoid the interference of the head point cloud, the head is labeled as the 

background point when labeling the point clouds, only the dorsal point cloud is retained as the segmentation 

target. As shown in Fig. 3, the pig has two main postures, standard standing and twisted body, and the two 

points with the most considerable curvature changes between the neck and the back of the pig are segregated 

for labeling. 

 

 

(a) (b) 

Fig. 3 - Pig back point cloud labelling in two poses 

(a) Splitting of a pig in standard standing position(b) Segmentation of a pig with twisted body 

 

Segmentation and identification Modelling 

 The process of pig individual identification based on pig back point cloud is mainly composed of two 

parts: segmentation model construction and identification model construction. First, the collected raw data are 

converted into point cloud images, then the background and head are removed by the segmentation model. 

Finally, the segmented pig back point cloud is input into the individual identification model, and the specific 

number of the pig is output. 

 

Back - background point cloud segmentation 

(1) Segmentation method 

 The PointNet family of networks are neural networks specialized in point cloud data processing that 

directly manipulate irregular point cloud data without the need to convert the point cloud data into regular grids 

or voxels (Qi et al., 2017). The segmentation problem in this study is relatively simple, with only two parts, the 

back and the background, but the data used in this study is a dynamic moving image of a pig, and the posture 

of the pig at the neck is severely deformed when it is moving. Compared with PointNet, PointNet++ extracts 

local features layer by layer through the process of ‘sampling-grouping-feature extraction-feature propagation,’ 

which is more delicate processing of local features, so the PointNet++ network is chosen to build the 

segmentation model in this study. 

(2) Segmentation model based on PointNet++MSG  

 As shown in Fig. 4, the segmentation network chooses the PointNet++ Multiscale Grouping Feature 

Learning (PointNet++MSG) framework, which includes four parts: two-layer sampling, multiscale grouping, 

feature extraction downsampling and feature propagation upsampling (Qi et al., 2017). 

 Due to the vast number of points in the original point cloud, random sampling of the original point cloud 

is required, and the network receives the randomly sampled globally uniformly sampled points containing xyz 

coordinates and normal vectors. Feature extraction is performed by three Set Abstraction (SA) layers 

downsampling step by step: SA1 receives the 6-dimensional point cloud input, extracts 64-, 128-, and 128-

dimensional features and splices them in [0.1,0.2,0.4] triple radius on 512 sampling points; SA2 generates 

256-dimensional features in [0.4,0.8] double radius on 128 sampling points; SA3 generates 256-dimensional 

features by global pooling to generate 1024-dimensional global features. Feature propagation is performed by 

Feature Propagation (FP) with layer-by-layer upsampling: FP3 fuses global and SA2 features, FP2 

reconstructs the mid-level geometry, and FP1 splices the original point coordinates with labels to recover fine-

grained features. The classification head uses a two-layer convolutional network to output semantic category 

probability distributions for pig back and background. 
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Fig. 4 - Segmentation model for pig back based on PointNet++MSG 

 

Individual identification of pigs 

(1) Individual identification method 

 Compared with segmentation, the identification task needs to focus on local and global feature 

extraction. In this study, individual identification models for pigs are developed based on the single-scale (SSG) 

and multi-scale (MSG) grouping strategy algorithms of PointNet and PointNet++, respectively, as the baseline 

model for individual identification. An improved model PointNet++LR3D with local context fusion as well as 

global bilinear regularization is proposed, which significantly improves the characterization of high-dimensional 

features of pig dorsal point clouds by means of dual-stream differential coding of geometries and features, low-

rank bilinear decomposition and residual sharpening strategies. 

(2) Individual pig identification model based on PointNet++MSG 

 As shown in Figure 5, the individual pig identification model and segmentation model are similar in 

principle, except that compared to the segmentation task, the individual identification only has ‘sampling-

grouping-feature extraction’ without the process of feature propagation, and the 1024-dimensional global 

features obtained after three-layer SA feature extraction are directly input into the classification layer, and the 

classification layer outputs the category of each pig through a three-layer full connection. The classification 

layer outputs the class distribution probability of each pig. 

 

Fig. 5 - Individual identification model for pigs based on PointNet++MSG 

 

Local Context Fusion with Bilinear Regularization Strategies for LR3D Modules 

 In traditional point cloud data processing networks, PointNet++ only aggregates MLP-encoded 

features in local coordinates, ignoring differences in features between neighboring points, and PointNet++'s 

Set Abstraction aggregates local features through farthest-point sampling and grouping and extracts features 

only through MLP stacking, does not explicitly model point-neighborhood relationships, and lacks the sensitive 

capture of geometric differences such as curvature and regular vector changes. EdgeConv, on the other hand, 

mainly performs dynamic graph convolution based on neighborhood point feature differences without directly 

modeling 3D geometric coordinate relationships. As shown in Figure. 6, this study uses a CNN-based model 

to learn feature maps, proposes dual-stream differential coding to model both geometric and feature 

differences to capture local structural changes explicitly, and enables geometric and feature contexts to be 

encoded separately through shared MLP and asymmetric pooling using split aggregation to avoid confusion 

between coordinate and feature information and enhance interpretability. 
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(1) Local context fusion strategy for two-stream feature splicing 

 To construct the local context for each point, the k-nearest neighbor (KNN) algorithm is employed to 

identify its neighborhood, which is a widely used neighborhood finding method in point cloud processing. The 

KNN algorithm calculates the 3D Euclidean distances from all points in the point cloud to a target point 𝑝𝑖 and 

selects the k closest points as its neighbors: 𝒩(𝑝𝑖) = {𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑘} ∈ 𝑁(𝑝𝑖), by combining the edge ∀𝑝𝑖𝑘 ∈

𝑁(𝑝𝑖) between 𝑝𝑖 itself and its k neighbors, the local geometric map in 3D space is: 𝑝 =  [𝑝𝑖; 𝑝𝑖𝑘 − 𝑝𝑖] ∈ ℝ𝑘×6 , 

where 𝑝𝑖 is the current point, and 𝑝𝑖𝑘 − 𝑝𝑖 is the coordinate difference reflecting the local geometric structure. 

Thus, the local geometric map of all points P is denoted as 𝑃̃ =  [𝑝1, 𝑝2, … , 𝑝𝑖 , … , 𝑝𝑁 , ] ∈ ℝ𝑁×𝑘×6. Finally, the 

local geometric map is encoded by shared MLP, and the local geometric context encoding is aggregated by 

applying the Max Pooling function to k neighbors: 

𝑃 =  max
𝑘

(𝑀𝐿𝑃Θ(𝑃̃)) , 𝑃 ∈ ℝ𝑁×
𝐶

2                                                  （2） 

 Meanwhile, the local feature map of 𝑓𝑖  in C-dimensional space can be formed: 𝑓 =  [𝑓𝑖; 𝑓𝑖𝑘 − 𝑓𝑖] ∈

ℝ𝑘×2𝐶 , where 𝑓𝑖𝑘  is the corresponding feature of 𝑝𝑖𝑘 ∈ 𝑁(𝑝𝑖) , and 𝑓𝑖𝑘 − 𝑓𝑖  is the feature difference, which 

reflects the semantic difference. Therefore, the local feature map of a feature map F is represented as ℱ̃ =

 [𝑓1, 𝑓2, … , 𝑓𝑖 , … , 𝑓𝑁] ∈ ℝ𝑁×𝑘×2𝐶. The local feature context encoding is obtained by following a similar operation 

in Equation (2): 

ℱ =  max
𝑘

(𝑀𝐿𝑃2Θ(ℱ̃)) , ℱ ∈ ℝ𝑁×
𝐶

2                                                  （3） 

 Where 𝑀𝐿𝑃2Θ  is another shared MLP encoding the local feature map, finally the local geometric 

context and the local feature context() are concatenated as the output of the final local context fusion block: 

ℱ𝐿 =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑃, ℱ), ℱ𝐿 ∈ ℝ𝑁×𝐶                                                  （4） 

 Compared with EdgeConv operations, the method proposed in this study defines and constrains both 

local geometric context and feature context and has inherent 3D geometric relationships that can directly reflect 

local surface geometric changes and semantic differences. In addition, local context fusion blocks can be 

flexibly deployed at different point cloud resolutions and CNN layers, which benefits most existing point cloud 

networks. 

(2) Global bilinear regularization 

 In addition to collecting more local details for the feature representation of each point, the global 

bilinear regularized blocks proposed in this study aim to refine the feature maps by considering the global 

perception of the entire point cloud. In conventional self-attention mechanisms, global perception is estimated 

as long-range dependencies between point features, i.e., cosine similarity, which consumes significant 

memory. In contrast, the global perception in this study is computed as element-wise dependencies between 

feature maps based on global channels and point descriptors, and through a low-rank decomposition strategy, 

the memory consumption is significantly reduced. 

 In order to encode the global channel descriptor, firstly, the input features are linearly transformed by 

applying the weight matrix 𝑊𝐶 ∈ ℝ𝐶×
𝐶

𝑟, where r is the reduction factor to reduce the dimension of the fused 

output ℱ𝐿 ∈ ℝ𝑁×𝐶; then, the ReLU function is utilized to not only provide the nonlinearity after linearly mapping 

with 𝑊𝐶 but also to satisfy the requirement of non-negativity in Equation (7); lastly, through the average pooling 

operation on the N elements along the spatial axis, the spatial information can be compressed into the global 

channel descriptor 𝑔𝑐. The above operation is as follows: 

𝑔𝑐 =  avg
𝑁

(𝑅𝑒𝐿𝑈(ℱ𝐿𝑊𝐶)), 𝑔𝑐 ∈ ℝ 
𝐶

𝑟                                                  （5） 

 Where ‘ℱ𝐿𝑊𝐶 ’ is the matrix product between ℱ𝐿 and 𝑊𝐶, and ‘avg’ denotes the average pooling along 

the spatial dimension N with a reduction factor satisfying r≥2. Furthermore, 𝑔𝑐 =  [𝜇1, 𝜇2, … , 𝜇𝑗 , … , 𝜇𝐶

𝑟

, ], where 

𝜇𝑗 represents the global response of the j-th channel in the whole point cloud feature map. 

The global point-by-point descriptor 𝑔𝑝  can also be generated using a similar approach in the context of 

another weight matrix 𝑊𝑝 ∈ ℝ𝐶×
𝐶

𝑟, the ReLU function, and an average pooling operation on the 
𝐶

𝑟
 elements 

along the channel axis: 

𝑔𝑝 =  avg
𝐶

𝑟

(𝑅𝑒𝐿𝑈(ℱ𝐿𝑊𝑝)) , 𝑔𝑝 ∈ ℝ𝑁                                                  （6） 
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 In addition, 𝑔𝑝 =  [𝜆1, 𝜆2, … , 𝜆𝑖 , … , 𝜆𝑁],where 𝜆𝑗 is the global response of the i-th point in the whole point 

cloud feature map. 

 Unlike the use of Hadamard product between vectors, the geometric mean √𝜆𝑖𝜇𝑗  captures the higher-

order interactions of the channel with the space, providing a more robust global response than arithmetic 

averaging, and captures the low-rank global bilinear response by taking the square root of the outer product 

of 𝑔𝑝 and 𝑔𝑐: 

𝐺 =  𝑠𝑞𝑟𝑡(𝑔𝑝 ⊗ 𝑔𝑐), 𝐺 ∈ ℝ𝑁× 
𝐶

𝑟                                                  （7） 

where the element 𝜂𝑖𝑗  located in the ith row and jth column of G is mathematically computed as: 

𝜂𝑖𝑗 =  √𝜆𝑖𝜇𝑗 , 𝜂𝑖𝑗  ∈  ℝ                                                        （8） 

 The synthesis of the global bilinear response of all elements according to the corresponding point-by-

point and channel descriptions in Equation 6 can be interpreted as an effective and efficient method in the 

following way. For each element, 𝜆𝑖  and 𝜇𝑗  are the arithmetic mean of the ith point and jth channel, 

respectively, and 𝜂𝑖𝑗 is the geometric mean of 𝜆𝑖 and 𝜇𝑗. Firstly, taking the square root enhances the numerical 

stability, and secondly, it captures the bi-directional dependence of the channel on the space and provides a 

higher-order averaged response based on the spatial and channel-related information. 

(3) Residual Sharpening Feature Recovery 

 After restoring the channel dimensions using a shared MLP, a residual connection is employed to 

preserve local features. Finally, the channel dimensions are fully recovered, and a full-size global perceptual 

map is generated: 

ℱ𝐺 = 𝑀𝐿𝑃(𝐺 + ℱ𝐿𝑊𝐶 + ℱ𝐿𝑊𝑝) , ℱ𝐺 ∈ ℝ𝑁×𝐶                                              （9） 

 The average pooling operations in Equations 4 and 5 are used to compress global information from 

the point cloud and channel space, respectively; however, average pooling, as a conventional method for 

feature map compression, tends to generate smooth global representations that may weaken the uniqueness 

and representativeness of the features. To this end, this study proposes a more effective global-aware feature 

exploitation strategy to enhance feature differentiation in point cloud analysis. Specifically, to sharpen the 

learned features, the uniqueness of local features is emphasized by subtracting the global perceptual feature 

ℱ𝐺 from the local context fusion output ℱ𝐿. This subtraction effectively filters out redundant patterns originating 

from the global average vectors 𝑔𝑝 and 𝑔𝑐, thereby reinforcing the distinctiveness of local features. The use 

of the Mish activation function further enriches the final output feature map by introducing additional nonlinear 

transformations. 

ℱ𝑜𝑢𝑡 = 𝑀𝑖𝑠ℎ(ℱ𝐿 − ℱ𝐺) , ℱ𝑜𝑢𝑡 ∈ ℝ𝑁×𝐶                                            （10） 

 

 

Fig. 6 - LR3D module introducing local context fusion and bilinear regularization 

 

Integration of LR3D module in PointNet++MSG network 

 The LR3D (Local-Regional 3D) module proposed in this study is a novel point cloud feature extraction 

mechanism that enhances point cloud feature representation through two key components: local context fusion 

and global bilinear regularization. The LR3D module is integrated into the PointNet++(MSG) network 

architecture, and feature enhancement is mainly performed at two key layers, as shown in Figure 7, in the Set 
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Abstraction (SA) layer of PointNet++(MSG), by inserting the LR3D module after the SA1 and SA2 layers, 

respectively, with the following improvement strategies: 

 The LR3D module is introduced after the SA1 layer to explicitly capture local geometric and feature 

differences through a two-stream differential coding strategy for local context fusion. Local context encoding 

ℱ𝐿 is generated using a shared MLP with asymmetric pooling, while the global perceptual map ℱ𝐺 is produced 

via a global bilinear regularization block applied to the dual feature streams. This process refines the feature 

distribution using low-rank bilinear decomposition and a residual sharpening strategy, establishing a 

bidirectional dependency between channel and spatial dimensions. As a result, the network gains a stronger 

understanding of the relationship between global structures and local details in the pig back point cloud. The 

final output feature map ℱ𝑂𝑈𝑇 undergoes nonlinear transformation through the Mish activation function, further 

enhancing the model's robustness and generalization capability in complex point cloud scenarios, such as 

distortions caused by pig movement and variations in height. This approach strengthens the SA1 layer's ability 

to capture low-level local structures (e.g., back edges and body contours), addressing the limitation of 

traditional PointNet++ architectures that rely solely on stacked MLPs, and improves both global consistency 

and individual differentiation. The LR3D module is subsequently applied after the SA2 layer to further integrate 

the high-dimensional features extracted by SA1. Finally, the feature stream enhanced by the two LR3D 

modules is passed through a third Set Abstraction (SA3) layer for global feature aggregation, followed by 

classification via a multilayer perceptron (MLP). 

 This staged integration approach makes full use of the multi-scale grouping properties of the SA1 and 

SA2 layers, enabling the LR3D module to optimize the local and global representation capabilities in the feature 

extraction stages at different resolutions, respectively. The experimental results show that after adding the 

LR3D module after the SA1 and SA2 layers, the model's accuracy in the individual pig identification task is 

significantly improved while maintaining the balance of computational efficiency, which fully verifies the 

effectiveness of this improvement strategy. 
 

 

Fig. 7 - PointNet++ MSG classification model incorporating LR3D module 

 

Experimental Sample Setting 

 This experiment collected 8,300 point cloud images from 10 bags and processed them to obtain the 

experimental dataset for 10 pigs. The dataset was divided into training, validation, and test sets in a ratio of 

7:1.5:1.5. The training set was used for model learning, the validation set was used for parameter adjustment 

and performance evaluation, and the test set was used to verify the model's generalization ability. 

 

Experimental parameter settings 

 The operating system used in this experiment is Ubuntu 20.04, the CPU is Intel Xeon Platinum 8270 

2.70GHz, the memory is 64GB, the GPU is NVIDIA GeForce RTX 4090 D, the video memory is 24GB, and 

the deep learning frameworks are PyTorch 2.4.1 and Python 3.8.  

 Considering the impact of segmentation and identification speed, the initial sampling and target point 

numbers for the segmentation model are set to 1024 and 5000, respectively, while the sampling point number 

for the identification model is set to 2048. The batch size (Batch Size) is set to 8 for both models. The total 

number of training iterations (Epochs) for the segmentation and identification models is set to 100 and 200 

cycles, respectively. The initial learning rate is set to 0.001, using the Adam optimizer with a weight decay rate 

of 1e-4. The learning rate is adjusted via a StepLR scheduler, decreasing to 0.7 of the original value every 20 

cycles. The loss function employs negative log-likelihood loss (NLL Loss). The experiment is run on a single 

GPU, with data loading using 10 worker threads to enhance efficiency. 
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RESULTS 

Experimental evaluation indexes 

 In the segmentation test, six metrics, namely, overall accuracy (OA), mean intersection and merger 

ratio (mIoU), precision, recall, F1 score, and average segmentation time (AvgTime) for pig back categories, 

were used to evaluate the segmentation performance of the model for pig back and background. In the 

identification (classification) test, the six metrics of OA, Precision, Recall, F1, Top-3 Accuracy, and Average 

identification Time (AvgTime) were used to evaluate the model's identification performance for individual pigs. 

 In the segmentation test calculation process, four key metrics are primarily used: true positive (TP), 

false positive (FP), true negative (TN), and false negative (FN). True positive (TP) represents the number of 

points predicted as pig back that are actually pig back. False positive (FP) represents the number of points 

predicted as pig back that are actually background. True negative (TN) represents the number of points 

predicted as background that are actually pig back. False Negative (FN) represents the number of points 

predicted as background but actually being pig back. In the identification test, TP represents the number of 

pigs correctly identified as belonging to a specific pig category, FP represents the number of pigs incorrectly 

identified as belonging to that category, TN represents the number of pigs correctly identified as belonging to 

the category but not actually belonging to it, and FN represents the number of completely incorrect 

identifications. 

𝑂𝑣𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝐼𝑂𝑈 =  
TP

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                             (11) 

 

Pig back-Background Segmentation Model training results 

 In the pig back-background segmentation experiment, this study trained three models on the training 

and validation sets. Each model's validation accuracy and loss changed during training, as shown in Figure 8. 

All models' accuracy and loss values steadily increased and decreased with the increase in training iterations 

and gradually stabilized and converged after approximately 40 iterations. Among them, the PointNet++ MSG 

and PointNet++ SSG models performed well, with validation accuracy reaching approximately 99.8% and loss 

values tending towards 0, while the PointNet model performed slightly worse. Therefore, no significant 

overfitting was observed during training in the models. Overall, PointNet++ MSG achieves the best 

segmentation performance under the multi-scale grouping strategy, effectively capturing the local geometric 

features of pig back point clouds, thereby demonstrating stronger robustness and stability in segmentation 

tasks. 

  

            (a) (b) 

Fig. 8 - Segmentation model validation results  

(a) Validation accuracy curves(b) Validation loss curve 

 
Pig back-Background Segmentation model test results 

 To further explore the segmentation performance of the models on unfamiliar datasets, the 

segmentation performance of the three models was evaluated using a test set, and the results are shown in 

Table 1.  
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 PointNet++ MSG achieved 99.83% in Overall Accuracy (OA), which is an improvement of 0.03% to 

0.30% compared to the other models. In terms of mean intersection and merger ratio (mIoU), PointNet++ MSG 

achieved 99.35%, which is 0.10% to 1.05% higher than other models, showing stronger segmentation 

consistency. In terms of Precision, Recall, and F1 scores, PointNet++ MSG achieved 99.38%, 99.53%, and 

99.46%, respectively, which were 0.15% to 1.25%, 0.03% to 0.55% and 0.10% to 0.90% higher than the other 

models, indicating that it has a significant advantage in reducing misclassification and missed classification 

with significant advantages. Considering the real-time task requirements of individual identification, in terms of 

segmentation time (AvgTime), PointNet has the fastest inference speed of 0.004 s/sample but performs 

relatively poorly regarding segmentation accuracy. Although the inference time of PointNet++ MSG is slightly 

higher than the other two models at 0.071 s/sample, it still meets the real-time requirements.  

 In summary, PointNet++ MSG shows excellent performance in the pig back-background segmentation 

task. This task effectively deals with the complex geometric changes in the dynamic point cloud data and 

provides a high-quality segmentation basis for the subsequent individual identification task. 

Table 1 

Segmentation model test results 

Model 
OA mIoU Precision Recall F1 AvgTime 

[%] [%] [%] [%] [%] [s/pig] 

PointNet 99.53 98.30 98.13 98.98 98.56 0.004 

PointNet++SSG 99.80 99.25 99.23 99.50 99.36 0.064 

PointNet++MSG 99.83 99.35 99.38 99.53 99.46 0.071 

 

Individual Pig Identification Model training results 

 In order to evaluate the performance of different models in the pig back point cloud individual 

identification task, the validation loss and accuracy of the base models (PointNet, PointNet++SSG, 

PointNet++MSG) and the improved PointNet++LR3D model were compared during the training process. The 

trend of the validation accuracy and loss of each model is shown in Figure 9. The experimental results show 

that the loss of all models decreases rapidly at the beginning of training and then levels off. At the same time, 

the accuracy increases rapidly and stabilizes at the end of training. The base PointNet model has the worst 

performance with higher test loss and lower accuracy; PointNet++SSG and PointNet++MSG have reduced 

loss and improved accuracy through hierarchical feature extraction. The improved PointNet++LR3D model 

performs best with the lowest test loss and highest accuracy. This excellent performance is attributed to the 

LR3D module's significant improvement in feature extraction through bilinear regularization of geometry and 

features, which better captures the complex geometric properties of pig dorsal point cloud data and provides 

a more efficient solution for individual identification tasks. 

 

  

           (a) (b) 

Fig. 9 - Individual Identification model validation results 

(a) Validation accuracy curve (b) Validation loss curve 

 
Individual Pig Identification model testing results 
 In order to further verify the performance of different models in the pig dorsal point cloud individual 

identification task, the optimal training models were selected to test the PointNet, PointNet++SSG, 

PointNet++MSG, and the improved PointNet++LR3D models.  

 The overall performance indexes of each model in the individual identification task and the accuracy 

of individual identification for 10 pigs are shown in Tables 2 and 3.  
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 The experimental results show that the basic PointNet model has an overall accuracy of 88.92% and 

an average identification time of 0.0015 s, which exhibits very high computational efficiency. However, its 

accuracy ranges from 75.89% to 95.24% from Pig1 to Pig10, with large fluctuations, and some individuals are 

poorly identified, especially Pig7 (75.89%), reflecting PointNet's limited ability to extract pig dorsal point cloud 

features. PointNet++SSG and PointNet++MSG through hierarchical feature extraction significantly improved 

the performance, where the overall accuracy of PointNet++SSG was 92.93% and that of PointNet++MSG was 

further improved to 95.42%, and the individual identification accuracies of the two were more balanced, ranging 

from 88.46% to 96.67% and 92.73% to 99.17%, respectively, and the individual identification accuracies of 

both were more balanced, ranging from 88.46% to 96.67% and 92.73% to 99.17%, respectively, due to the 

hierarchical feature extraction layer is introduced, the identification time grows to 0.0529 s and 0.0540 s. The 

improved PointNet++LR3D model proposed in this study performs the best, with the highest overall accuracy 

of 97.11%, a precision rate of 97.04%, a recall rate of 97.09%, an F1 score of 97.06%, and a Top-3 accuracy 

rate of 99.44%, the best performance in all indicators, and its accuracy on 10 pigs ranges from 95.38% to 

99.21%, with the slightest fluctuation and the most stable identification effect. Due to the inclusion of the two-

layer LR3D module, although the average inference time is slightly elevated to 0.0576 seconds, it still meets 

the real-time time requirement of the individual identification task. The LR3D module proposed in this study 

significantly enhances the model's ability to fine-grain feature extraction from point cloud data through 

geometric and feature bilinear regularization. Although the inference time of PointNet++LR3D is slightly higher 

than that of the other models, it strikes a good balance between performance enhancement and computational 

efficiency. It provides a better solution for the individual identification task in pigs. 

Table 2 

Overall test results of the different models under the individual identification task 

Model 
OA Precision Recall F1 Top-3 AvgTime 

[%] [%] [%] [%] [%] [s/pig] 

Pointnet 88.92 89.04 88.82 88.74 97.51 0.0015 

PointNet++SSG 92.93 92.97 92.96 92.88 98.31 0.0529 

PointNet++MSG 95.42 95.49 95.42 95.42 98.47 0.0540 

PointNet++LR3D 97.11 97.04 97.09 97.06 99.44 0.0576 

 
Table 3 

Individual identification accuracy of each pig under different models 

Model 
Accuracy 

[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

pig Pig1 Pig2 Pig3 Pig4 Pig5 Pig6 Pig7 Pig8 Pig9 Pig10 

Pointnet 95.24 86.81 87.69 90.15 94.12 93.20 75.89 87.30 83.64 94.17 

PointNet++SSG 93.33 93.06 88.46 91.67 92.44 94.56 90.18 92.86 96.36 96.67 

PointNet++MSG 95.24 94.44 94.62 94.70 95.80 95.92 95.54 96.03 92.73 99.17 

PointNet++LR3D 97.14 95.83 95.38 97.73 98.32 97.96 95.54 99.21 95.45 98.33 

 

Confusion Matrix 

 In order to more intuitively assess the performance of the different models in the pig dorsal point cloud 

individual identification task, a classification confusion matrix was constructed for the four models, as shown 

in Figure 10. The horizontal axis of the confusion matrix represents the predicted labels, the vertical axis 

represents the actual labels, and the values on the diagonal indicate the number of correctly predicted 

samples. In contrast, the off-diagonal values indicate the number of misclassified samples. The results show 

that all models have high identification performance on most individuals, with correctly predicted samples 

mainly concentrated on the diagonal and fewer misclassified samples, verifying the effectiveness of the pig 

dorsal point cloud in the individual identification task. 

 By comparing the confusion matrices of the four models, it can be found that the base model has 

significant confusion in some categories. Among them, PointNet performed relatively poorly, with multiple 

misclassifications to other classes for pig2, 8, 9, and 6 misclassifications to pig4 for the predictions of pig3, 

pig7, and pig8, and bidirectional confusion between pig5 and pig9, with the error numbers of 7 and 4, 

respectively.  
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 PointNet++SSG was significantly optimized by a single-scale grouping of the categorical purity of pig3, 

pig7, and pig8 and eliminated the one-way confusion of misclassification of pig9 to pig5. However, there were 

still four misclassifications of pig5 to pig9. PointNet++MSG further reduced the confusion of some categories 

by introducing multiscale grouping, significantly reduced the occurrence of misclassification of pig2, and further 

eliminated the two-way confusion between pig5 and pig9 bi-directional confusions. 

 In contrast, the improved model PointNet++LR3D shows significant advantages, with an average 

improvement of 10.7% in the number of correct diagonal predictions and a reduction in the maximum single-

class error from 9 to 3 in PointNet. In particular, the bi-directional confusion between the confusing pig5 and 

pig9 is almost eliminated. Experiments show that the introduced local context and bilinear regularization 

strategy effectively enhances the ability to distinguish fine-grained feature differences and significantly reduces 

the misclassification rate between similar individuals. 

 

 

            (a) (b) 

 

            (c) (d) 

Fig. 10 - Classification confusion matrix for the ten pigs 

(a) PointNet classification confusion matrix(b) PointNet++SSG classification confusion matrix(c) PointNet++MSG classification 

confusion matrix(d) PointNet ++LR3D classification confusion matrix 

 

Discussion 

 Since the classification performed in this experiment and that performed in the ModelNet40 dataset 

are fundamentally different, the classification task in ModelNet40 is to classify different objects with significant 

differences in shape features, while the pig individual identification task performed in this experiment is to 

classify similar individuals within the same species, which inherently increases the classification difficulty. 

 To further validate the feasibility of the innovative LR3D bilinear regularization module introduced in 

this study for individual pig back point cloud identification, extended tests were conducted on the ModelNet40 

public point cloud dataset, a classic benchmark for point cloud multi-classification tasks. Testing on this public 

dataset aims to evaluate the generality and robustness of the proposed method and verify its performance 

across different point cloud data scenarios.  
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 The test results show that the improved PointNet++ model proposed in this study, by incorporating two 

LR3D modules, achieves an overall accuracy (OA) and average accuracy (macc) of 93.1% and 91.0% on the 

ModelNet40 dataset, representing improvements of 2.4% over the original PointNet++ model's 90.7% and 

87.6%, respectively. This demonstrates that the proposed improved model enhances classification 

performance across diverse point cloud data scenarios. 

 

CONCLUSIONS 

 This study proposes an individual identification method for pig back point cloud data based on the 

improved PointNet++ model. By introducing local context fusion and a global bilinear regularized LR3D 

module, the model's ability to extract and classify dynamic pig point cloud features is significantly enhanced. 

Experimental results demonstrate that the improved model achieves an identification accuracy of 97.11% in 

the individual identification task, performing the best among all methods. Furthermore, extended testing on the 

ModelNet40 public dataset further demonstrates the generality and effectiveness of the proposed method. 

 The LR3D module proposed in this paper significantly enhances the geometric sensitivity and semantic 

expressiveness of point cloud feature extraction through the local context fusion strategy of dual-stream 

differential coding and the global bilinear regularization mechanism, providing an efficient solution for analyzing 

complex 3D scenes. Its modular design gives LR3D excellent flexibility, enabling it to adapt easily to various 

point cloud processing network architectures, including PointNet++, DGCNN, and other mainstream models. 

It is seamlessly deployed at different feature extraction stages and CNN layer resolutions. LR3D effectively 

captures rough geometric structures in the low-resolution layer, such as edges and curvature changes; in the 

high-resolution layer, its ability to refine local features further enhances semantic differentiation. Experiments 

show that LR3D significantly improves the model accuracy in the classification task of similar individual 

identification while maintaining the balance of computational efficiency, demonstrating strong robustness and 

versatility. Looking ahead, the LR3D module can be widely applied to tasks such as point cloud segmentation 

and detection, providing a solid feature enhancement framework for 3D vision research. 

 Compared with traditional physical tags and RFID identification, this study achieves non-contact and 

high-precision pig individual identification using 3D point cloud technology, which overcomes the problems of 

fragile tags, the high cost of manual operation, and environmental interference. It provides an efficient solution 

for individual tracking, health monitoring, and behavioral analysis in fine-tuned farming. However, there are 

still some limitations in this study: the experimental sample size is small, with only 10 pigs and a single pig 

breed, and the model can be extended to a larger and multi-breed pig population to verify the generalization 

ability in the future. In addition, the dynamic point cloud data acquisition is limited by the camera view and the 

moving speed of the pigs, and the data acquisition process needs to be further optimized. This study provides 

innovative ideas and technical support for animal individual identification based on point cloud, which has high 

theoretical value and application prospects. 
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