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ABSTRACT

Individual pig identification is a key technology to realize fine farming management, which is of great value in
the fields of animal behavior tracking and health monitoring. Aiming at the limitations of traditional 2D vision
methods in stereo feature extraction, this study uses pig back point cloud to effectively capture deep 3D
features such as back contour and skin texture and proposes an improved PointNet++ model for pig individual
identification, which explicitly captures the local geometric and feature differences through two-stream
differential coding, refines the feature distribution by using low-rank bilinear decomposition and residual
sharpening strategies, and then establish the two-way dependency between channel and space to generate
the global perceptual map, and finally combine with Mish activation function to enhance the nonlinear feature
extraction. The experiment takes the hybrid long white pig as the research object and uses the Intel D435i
depth camera to collect data and construct the segmentation and identification model. The results show that
the improved model PointNet++LR3D achieves an overall accuracy of 97.11% in the individual identification
task, which is an improvement of 1.9% compared to the base PointNet++MSG model. In addition, extended
tests on the ModelNet40 dataset show an improvement in classification accuracy to 93.1%, validating the
generalization ability of the architectural improvements. This study provides an efficient solution for non-contact
pig identification based on point cloud, demonstrating the potential for application in fine-tuned farming.
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INTRODUCTION

In modern agriculture and animal management, individualized management and fine monitoring have
become the key factors in improving breeding efficiency and animal welfare (Neethirajan et al., 2024).
Individual identification is the key technology to realize individual tracking of health data (Vidal et al., 2021),
which provides the necessary support for various aspects of precision management, health monitoring, fine
feeding, behavioral monitoring and analysis, breeding selection, and automated management (Su et al., 2024,
Krampe et al., 2024).

The traditional animal individual identification technology mainly has two major categories: physical
tag identification and radio frequency identification (Ruiz et al., 2011); currently applied in the breeding industry
is still the most used in the physical tag using ear tags or collars to distinguish each body, however, the physical
tags are prone to wear and tear, loss and damage, but also requires manual operation close contact with the
animal, which increases the human cost as well as the risk of animal stress (Martinez et al., 2016).
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With the rapid development of computer vision and deep learning technologies (Wang et al., 2022),
vision-based individual identification methods have gradually become a research hotspot, which significantly
improves the flexibility and robustness of identification mainly by capturing the external features of pigs, such
as their faces, body sizes, or back contours (Saleem et al., 2021; Garcia et al., 2020). However, 2D images
are still unresolved due to factors such as light, angle and occlusion, which make it difficult to fully capture the
three-dimensional morphological features of pigs, especially in dynamic scenes, and the stability of the
identification effect still needs to be improved. In contrast, 3D point cloud technology (Guo et al., 2020) obtains
three-dimensional information about pigs through depth sensors (Yu et al., 2024), which can more
comprehensively describe the dorsal contour, curvature, and spatial structural features of pigs (Shuai et al.,
2020), and has become a hot spot of research by its advantage of being able to obtain three-dimensional depth
information of pigs.

In recent years, significant progress has been made in applying point cloud technology in livestock
individual identification. Zhou and others first proposed an individual identification method based on the pig
back point cloud, utilizing PointNet++ for back point cloud segmentation and constructing a pig individual
identification model based on the improved PointNet++LGG algorithm by increasing the adaptive global
sampling radius, deepening the network structure, and increasing the number of features, with accuracy
reaching 95% (Zhou et al., 2023). Similarly, Kyaw et al. used the PointNet++ algorithm to detect and segment
the dorsal surface region of a cow from a point cloud image, providing applications for individual cow
identification, lameness detection, and body condition scoring (Kyaw et al., 2024). These studies achieved
non-contact and high-precision individual identification through 3D point cloud technology, overcoming
traditional methods' limitations and providing technical support for fine farming.

Inspired by the above studies, this study notes that the application of point cloud technology in livestock
individual identification is still in its infancy and that most of the current improvements of PointNet++ focus on
the feature extraction stage, especially on enhancing the expression of local features by optimizing the
grouping of points such as multi-scale grouping or dynamic grouping (Luo et al., 2024; Nong et al., 2023).
However, fewer studies have systematically improved the characterization ability of point cloud features by
starting from the fusion mechanism of local and global features. Therefore, this study proposes a new
improvement strategy based on this, constructing an innovative module of local context fusion and global
bilinear regularization, integrating it into the network architecture of PointNet++, explicitly modeling geometric
and feature differences within the framework of PointNet++, and refining the feature distributions through global
sensing, and utilizing low-rank bilinear decomposition and residual sharpening strategies to refine the feature
distributions. Feature distributions to establish the bidirectional dependence between channel and space. This
approach not only enhances the model's sensitivity to the local details of the pig back point cloud, such as
curvature and edges, but also improves the feature differentiation through global regularization, thus achieving
higher accuracy and robustness in the task of livestock individual identification in dynamic scenes.

MATERIALS AND METHODS
Introduction of experimental pig data

The data on the pigs used in this experiment were collected from Huifeng Breeding Professional
Cooperative in Guangling County, Datong City, Shanxi Province, and the experimental pigs were labeled and
approved by the pig farm. The pig farm features a semi-enclosed structure, and the experimental data were
collected under two natural conditions: with sunlight and without sunlight. In order to increase the robustness
of the experiment, no external lights were used throughout the collection, and point cloud data were collected
from the backs of ten pigs, all of which were crossbred long white pigs and pigs with similar age, weight, and
body hair color were selected as the collection objects.

Data Acquisition

In this study, the following acquisition plan was developed during the acquisition process, as shown in
Fig.1. The depth camera Intel D435i was used to collect the depth information of the pig's back, the D435i
adopts a dual-camera design and calculates the depth information based on binocular stereo vision (Servi et
al.,, 2024; Zhang et al., 2022), which generates high-resolution depth data by capturing the parallax images
from both cameras. In order to capture individual pigs in multiple postures, the recorded video was used to
capture depth information and RGB color images simultaneously from the upper part of the pig's back.
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To verify whether different camera heights and angles affect identification accuracy, the camera
positions were intentionally varied. The cameras were mounted on the top of a telescopic pole, which was
handheld to capture approximately one minute of video from each angle of the pig's back. The videos were
recorded at a resolution of 468 x 828 pixels and a frame rate of 30 Hz. In total, 10 video recordings in the BAG
format were collected.

Data pre-processing

(1) Depth image to point cloud image conversion

Each BAG file stores the depth and RGB color information of the ten pigs. Additionally, the camera’s
intrinsic parameters (focal lengths fy, f,, and principal point coordinates Cy, C,) are recorded within each file.
These parameters are extracted by parsing the BAG files.

First, the BAG files are parsed frame by frame using Intel RealSense to extract depth and color frames.
Depth images are manually filtered with the assistance of corresponding color images; only those with poor-
guality back data are removed to ensure the reliability of the experimental dataset. Since the objective of this
experiment is to assess whether individual pigs can be accurately identified based on body features - such as
the contours and curvature of the back - rather than color features, only the depth images are retained after
filtering. These retained depth images are subsequently converted into point cloud representations.

The depth value of each pixel in the depth image is converted to the actual 3D coordinates by
combining the camera's internal reference, assuming that the pixel coordinates are U and V, and the actual
depth is Z. The 3D coordinates (X, Y, Z) of the point can be expressed as:

X = —(U_Cx)'z, Y = —(V_Cy)'z, Z = depth_image(U,V) (1)

fx fy

where: (U - C,) and (V - Cy) denote the horizontal and vertical distances of the pixel point relative to the

center of light, and the X Y coordinates of the pixel point in the actual 3D space can be obtained by multiplying
the distance by the depth value of the point, Z, and dividing by the focal length, f, or f,,.

(@) ' )

Fig. 2 - Depth images converted to point cloud images
(@) Pig depth image (b) Pig point cloud image
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(2) Pig back point cloud labeling

The generated dorsal point cloud data not only has the pig body point cloud but also includes a large
number of background point clouds, using CloudCompare software to label the point clouds as pig dorsal point
clouds and background point clouds because the pig is in a low head posture most of the time and the head
bobbing is more obvious, most of the captured head point cloud images are incomplete and badly adhered to
the ground and walls, in order to avoid the interference of the head point cloud, the head is labeled as the
background point when labeling the point clouds, only the dorsal point cloud is retained as the segmentation
target. As shown in Fig. 3, the pig has two main postures, standard standing and twisted body, and the two
points with the most considerable curvature changes between the neck and the back of the pig are segregated
for labeling.

@ (b)
Fig. 3 - Pig back point cloud labelling in two poses
(a) Splitting of a pig in standard standing position(b) Segmentation of a pig with twisted body

Segmentation and identification Modelling

The process of pig individual identification based on pig back point cloud is mainly composed of two
parts: segmentation model construction and identification model construction. First, the collected raw data are
converted into point cloud images, then the background and head are removed by the segmentation model.
Finally, the segmented pig back point cloud is input into the individual identification model, and the specific
number of the pig is output.

Back - background point cloud segmentation

(1) Segmentation method

The PointNet family of networks are neural networks specialized in point cloud data processing that
directly manipulate irregular point cloud data without the need to convert the point cloud data into regular grids
or voxels (Qi et al., 2017). The segmentation problem in this study is relatively simple, with only two parts, the
back and the background, but the data used in this study is a dynamic moving image of a pig, and the posture
of the pig at the neck is severely deformed when it is moving. Compared with PointNet, PointNet++ extracts
local features layer by layer through the process of ‘sampling-grouping-feature extraction-feature propagation,’
which is more delicate processing of local features, so the PointNet++ network is chosen to build the
segmentation model in this study.

(2) Segmentation model based on PointNet++MSG

As shown in Fig. 4, the segmentation network chooses the PointNet++ Multiscale Grouping Feature
Learning (PointNet++MSG) framework, which includes four parts: two-layer sampling, multiscale grouping,
feature extraction downsampling and feature propagation upsampling (Qi et al., 2017).

Due to the vast number of points in the original point cloud, random sampling of the original point cloud
is required, and the network receives the randomly sampled globally uniformly sampled points containing xyz
coordinates and normal vectors. Feature extraction is performed by three Set Abstraction (SA) layers
downsampling step by step: SA1 receives the 6-dimensional point cloud input, extracts 64-, 128-, and 128-
dimensional features and splices them in [0.1,0.2,0.4] triple radius on 512 sampling points; SA2 generates
256-dimensional features in [0.4,0.8] double radius on 128 sampling points; SA3 generates 256-dimensional
features by global pooling to generate 1024-dimensional global features. Feature propagation is performed by
Feature Propagation (FP) with layer-by-layer upsampling: FP3 fuses global and SA2 features, FP2
reconstructs the mid-level geometry, and FP1 splices the original point coordinates with labels to recover fine-
grained features. The classification head uses a two-layer convolutional network to output semantic category
probability distributions for pig back and background.
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Fig. 4 - Segmentation model for pig back based on PointNet++MSG

Individual identification of pigs

(1) Individual identification method

Compared with segmentation, the identification task needs to focus on local and global feature
extraction. In this study, individual identification models for pigs are developed based on the single-scale (SSG)
and multi-scale (MSG) grouping strategy algorithms of PointNet and PointNet++, respectively, as the baseline
model for individual identification. An improved model PointNet++LR3D with local context fusion as well as
global bilinear regularization is proposed, which significantly improves the characterization of high-dimensional
features of pig dorsal point clouds by means of dual-stream differential coding of geometries and features, low-
rank bilinear decomposition and residual sharpening strategies.

(2) Individual pig identification model based on PointNet++MSG

As shown in Figure 5, the individual pig identification model and segmentation model are similar in
principle, except that compared to the segmentation task, the individual identification only has ‘sampling-
grouping-feature extraction’ without the process of feature propagation, and the 1024-dimensional global
features obtained after three-layer SA feature extraction are directly input into the classification layer, and the
classification layer outputs the category of each pig through a three-layer full connection. The classification
layer outputs the class distribution probability of each pig.
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Fig. 5 - Individual identification model for pigs based on PointNet++MSG

Local Context Fusion with Bilinear Regularization Strategies for LR3D Modules

In traditional point cloud data processing networks, PointNet++ only aggregates MLP-encoded
features in local coordinates, ignoring differences in features between neighboring points, and PointNet++'s
Set Abstraction aggregates local features through farthest-point sampling and grouping and extracts features
only through MLP stacking, does not explicitly model point-neighborhood relationships, and lacks the sensitive
capture of geometric differences such as curvature and regular vector changes. EdgeConv, on the other hand,
mainly performs dynamic graph convolution based on neighborhood point feature differences without directly
modeling 3D geometric coordinate relationships. As shown in Figure. 6, this study uses a CNN-based model
to learn feature maps, proposes dual-stream differential coding to model both geometric and feature
differences to capture local structural changes explicitly, and enables geometric and feature contexts to be
encoded separately through shared MLP and asymmetric pooling using split aggregation to avoid confusion
between coordinate and feature information and enhance interpretability.
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(1) Local context fusion strateqy for two-stream feature splicing

To construct the local context for each point, the k-nearest neighbor (KNN) algorithm is employed to
identify its neighborhood, which is a widely used neighborhood finding method in point cloud processing. The
KNN algorithm calculates the 3D Euclidean distances from all points in the point cloud to a target point p; and
selects the K closest points as its neighbors: N (p;) = {pi1, Pz, ---» Pi} € N(p;), by combining the edge Vp;, €
N(p;) between p; itself and its k neighbors, the local geometric map in 3D space is: § = [p;; pi — p;] € R¥*¢,
where p; is the current point, and p;, — p; is the coordinate difference reflecting the local geometric structure.
Thus, the local geometric map of all points P is denoted as P = [py, Py, ..., Pis -, P> | € RV¥EX6 Finally, the
local geometric map is encoded by shared MLP, and the local geometric context encoding is aggregated by
applying the Max Pooling function to k neighbors:

P = max (MLPo(P)), P € RV'S 2)

Meanwhile, the local feature map of f; in C-dimensional space can be formed: f = [f;; fi — fi] €
R¥*2¢ where f;, is the corresponding feature of p;, € N(p;), and f;, — f; is the feature difference, which
reflects the semantic difference. Therefore, the local feature map of a feature map F is represented as F =
(i for s fir er fv] € RVXKX2C The local feature context encoding is obtained by following a similar operation
in Equation (2):

F = max (MLP2o(F)),F € RV (3)

Where MLP2q is another shared MLP encoding the local feature map, finally the local geometric

context and the local feature context() are concatenated as the output of the final local context fusion block:
F, = concat(P,F),F, € RVx¢ (4)

Compared with EdgeConv operations, the method proposed in this study defines and constrains both
local geometric context and feature context and has inherent 3D geometric relationships that can directly reflect
local surface geometric changes and semantic differences. In addition, local context fusion blocks can be
flexibly deployed at different point cloud resolutions and CNN layers, which benefits most existing point cloud
networks.

(2) Global bilinear regularization

In addition to collecting more local details for the feature representation of each point, the global
bilinear regularized blocks proposed in this study aim to refine the feature maps by considering the global
perception of the entire point cloud. In conventional self-attention mechanisms, global perception is estimated
as long-range dependencies between point features, i.e., cosine similarity, which consumes significant
memory. In contrast, the global perception in this study is computed as element-wise dependencies between
feature maps based on global channels and point descriptors, and through a low-rank decomposition strategy,
the memory consumption is significantly reduced.

In order to encode the global channel descriptor, firstly, the input features are linearly transformed by

applying the weight matrix W, € ]chg, where r is the reduction factor to reduce the dimension of the fused
output F, € RV*¢; then, the ReLU function is utilized to not only provide the nonlinearity after linearly mapping
with W, but also to satisfy the requirement of non-negativity in Equation (7); lastly, through the average pooling
operation on the N elements along the spatial axis, the spatial information can be compressed into the global
channel descriptor g.. The above operation is as follows:

[
g = axg(ReLU(TLWc)),gc € R+ (5)
Where ‘F W, is the matrix product between F, and W,, and ‘avg’ denotes the average pooling along
the spatial dimension N with a reduction factor satisfying r22. Furthermore, g. = |u, 1z, ..., 1}, ..., pc, |, Where

u; represents the global response of the j-th channel in the whole point cloud feature map.
The global point-by-point descriptor g, can also be generated using a similar approach in the context of

C
another weight matrix W, € R“*7, the ReLU function, and an average pooling operation on the g elements
along the channel axis:
9p = avg(ReLU(F,,)), g, € RY (6)
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In addition, g, = [44,45, ..., 4;, ..., Ay],where J; is the global response of the i-th point in the whole point
cloud feature map.

Unlike the use of Hadamard product between vectors, the geometric mean \/Wcaptures the higher-
order interactions of the channel with the space, providing a more robust global response than arithmetic
averaging, and captures the low-rank global bilinear response by taking the square root of the outer product
of g, and g.:

C
G = sqrt(g, ® g.),G € RVF (7)
where the element 7;; located in the ith row and jth column of G is mathematically computed as:
Ny = JAikj,mij € R (8)

The synthesis of the global bilinear response of all elements according to the corresponding point-by-
point and channel descriptions in Equation 6 can be interpreted as an effective and efficient method in the
following way. For each element, 4; and u; are the arithmetic mean of the ith point and jth channel,
respectively, and n;; is the geometric mean of 4; and ;. Firstly, taking the square root enhances the numerical
stability, and secondly, it captures the bi-directional dependence of the channel on the space and provides a
higher-order averaged response based on the spatial and channel-related information.

(3) Residual Sharpening Feature Recovery

After restoring the channel dimensions using a shared MLP, a residual connection is employed to
preserve local features. Finally, the channel dimensions are fully recovered, and a full-size global perceptual
map is generated:

Fe = MLP(G + F W, + F W), F; € RVXC (9)

The average pooling operations in Equations 4 and 5 are used to compress global information from
the point cloud and channel space, respectively; however, average pooling, as a conventional method for
feature map compression, tends to generate smooth global representations that may weaken the uniqueness
and representativeness of the features. To this end, this study proposes a more effective global-aware feature
exploitation strategy to enhance feature differentiation in point cloud analysis. Specifically, to sharpen the
learned features, the uniqueness of local features is emphasized by subtracting the global perceptual feature
F. from the local context fusion output F; . This subtraction effectively filters out redundant patterns originating
from the global average vectors g,, and g, thereby reinforcing the distinctiveness of local features. The use

of the Mish activation function further enriches the final output feature map by introducing additional nonlinear
transformations.
Four = Mish(F, — Fg), Four € RVXC (10)
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Fig. 6 - LR3D module introducing local context fusion and bilinear regularization

Integration of LR3D module in PointNet++MSG network

The LR3D (Local-Regional 3D) module proposed in this study is a novel point cloud feature extraction
mechanism that enhances point cloud feature representation through two key components: local context fusion
and global bilinear regularization. The LR3D module is integrated into the PointNet++(MSG) network
architecture, and feature enhancement is mainly performed at two key layers, as shown in Figure 7, in the Set
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Abstraction (SA) layer of PointNet++(MSG), by inserting the LR3D module after the SA1 and SA2 layers,
respectively, with the following improvement strategies:

The LR3D module is introduced after the SA1 layer to explicitly capture local geometric and feature
differences through a two-stream differential coding strategy for local context fusion. Local context encoding
F, is generated using a shared MLP with asymmetric pooling, while the global perceptual map F; is produced
via a global bilinear regularization block applied to the dual feature streams. This process refines the feature
distribution using low-rank bilinear decomposition and a residual sharpening strategy, establishing a
bidirectional dependency between channel and spatial dimensions. As a result, the network gains a stronger
understanding of the relationship between global structures and local details in the pig back point cloud. The
final output feature map F,,r undergoes nonlinear transformation through the Mish activation function, further
enhancing the model's robustness and generalization capability in complex point cloud scenarios, such as
distortions caused by pig movement and variations in height. This approach strengthens the SA1 layer's ability
to capture low-level local structures (e.g., back edges and body contours), addressing the limitation of
traditional PointNet++ architectures that rely solely on stacked MLPs, and improves both global consistency
and individual differentiation. The LR3D module is subsequently applied after the SA2 layer to further integrate
the high-dimensional features extracted by SAL. Finally, the feature stream enhanced by the two LR3D
modules is passed through a third Set Abstraction (SA3) layer for global feature aggregation, followed by
classification via a multilayer perceptron (MLP).

This staged integration approach makes full use of the multi-scale grouping properties of the SA1 and
SA2 layers, enabling the LR3D module to optimize the local and global representation capabilities in the feature
extraction stages at different resolutions, respectively. The experimental results show that after adding the
LR3D module after the SA1 and SA2 layers, the model's accuracy in the individual pig identification task is
significantly improved while maintaining the balance of computational efficiency, which fully verifies the
effectiveness of this improvement strategy.
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Fig. 7 - PointNet++ MSG classification model incorporating LR3D module

Experimental Sample Setting

This experiment collected 8,300 point cloud images from 10 bags and processed them to obtain the
experimental dataset for 10 pigs. The dataset was divided into training, validation, and test sets in a ratio of
7:1.5:1.5. The training set was used for model learning, the validation set was used for parameter adjustment
and performance evaluation, and the test set was used to verify the model's generalization ability.

Experimental parameter settings

The operating system used in this experiment is Ubuntu 20.04, the CPU is Intel Xeon Platinum 8270
2.70GHz, the memory is 64GB, the GPU is NVIDIA GeForce RTX 4090 D, the video memory is 24GB, and
the deep learning frameworks are PyTorch 2.4.1 and Python 3.8.

Considering the impact of segmentation and identification speed, the initial sampling and target point
numbers for the segmentation model are set to 1024 and 5000, respectively, while the sampling point number
for the identification model is set to 2048. The batch size (Batch Size) is set to 8 for both models. The total
number of training iterations (Epochs) for the segmentation and identification models is set to 100 and 200
cycles, respectively. The initial learning rate is set to 0.001, using the Adam optimizer with a weight decay rate
of 1le-4. The learning rate is adjusted via a StepLR scheduler, decreasing to 0.7 of the original value every 20
cycles. The loss function employs negative log-likelihood loss (NLL Loss). The experiment is run on a single
GPU, with data loading using 10 worker threads to enhance efficiency.
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RESULTS
Experimental evaluation indexes

In the segmentation test, six metrics, namely, overall accuracy (OA), mean intersection and merger
ratio (mloU), precision, recall, F1 score, and average segmentation time (AvgTime) for pig back categories,
were used to evaluate the segmentation performance of the model for pig back and background. In the
identification (classification) test, the six metrics of OA, Precision, Recall, F1, Top-3 Accuracy, and Average
identification Time (AvgTime) were used to evaluate the model's identification performance for individual pigs.

In the segmentation test calculation process, four key metrics are primarily used: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). True positive (TP) represents the number of
points predicted as pig back that are actually pig back. False positive (FP) represents the humber of points
predicted as pig back that are actually background. True negative (TN) represents the number of points
predicted as background that are actually pig back. False Negative (FN) represents the number of points
predicted as background but actually being pig back. In the identification test, TP represents the number of
pigs correctly identified as belonging to a specific pig category, FP represents the number of pigs incorrectly
identified as belonging to that category, TN represents the number of pigs correctly identified as belonging to
the category but not actually belonging to it, and FN represents the number of completely incorrect
identifications.

Over A B TP + TN
Ver ACCUraY = TP FP + TN + FN
10U P
" TP+FP+FN
Precisi TP
recision = TP + FP
Recall = e
et = TP Y EN
2(Precision * Recall)
F1 — score = (11)

Precision + Recall

Pig back-Background Segmentation Model training results

In the pig back-background segmentation experiment, this study trained three models on the training
and validation sets. Each model's validation accuracy and loss changed during training, as shown in Figure 8.
All models' accuracy and loss values steadily increased and decreased with the increase in training iterations
and gradually stabilized and converged after approximately 40 iterations. Among them, the PointNet++ MSG
and PointNet++ SSG models performed well, with validation accuracy reaching approximately 99.8% and loss
values tending towards 0, while the PointNet model performed slightly worse. Therefore, no significant
overfitting was observed during training in the models. Overall, PointNet++ MSG achieves the best
segmentation performance under the multi-scale grouping strategy, effectively capturing the local geometric
features of pig back point clouds, thereby demonstrating stronger robustness and stability in segmentation
tasks.

Validation Accuracy vs. Epoch for Ditferent Models Validation Loss vs. Epoch for Different Modcls
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Fig. 8 - Segmentation model validation results
(a) Validation accuracy curves(b) Validation loss curve

Pig back-Background Segmentation model test results

To further explore the segmentation performance of the models on unfamiliar datasets, the
segmentation performance of the three models was evaluated using a test set, and the results are shown in
Table 1.
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PointNet++ MSG achieved 99.83% in Overall Accuracy (OA), which is an improvement of 0.03% to
0.30% compared to the other models. In terms of mean intersection and merger ratio (mloU), PointNet++ MSG
achieved 99.35%, which is 0.10% to 1.05% higher than other models, showing stronger segmentation
consistency. In terms of Precision, Recall, and F1 scores, PointNet++ MSG achieved 99.38%, 99.53%, and
99.46%, respectively, which were 0.15% to 1.25%, 0.03% to 0.55% and 0.10% to 0.90% higher than the other
models, indicating that it has a significant advantage in reducing misclassification and missed classification
with significant advantages. Considering the real-time task requirements of individual identification, in terms of
segmentation time (AvgTime), PointNet has the fastest inference speed of 0.004 s/sample but performs
relatively poorly regarding segmentation accuracy. Although the inference time of PointNet++ MSG is slightly
higher than the other two models at 0.071 s/sample, it still meets the real-time requirements.

In summary, PointNet++ MSG shows excellent performance in the pig back-background segmentation
task. This task effectively deals with the complex geometric changes in the dynamic point cloud data and
provides a high-quality segmentation basis for the subsequent individual identification task.

Table 1
Segmentation model test results
Model OA mloU Precision Recall F1 AvgTime
[%] [%] [%] [%] [%] [s/pig]
PointNet 99.53 98.30 98.13 98.98 98.56 0.004
PointNet++SSG 99.80 99.25 99.23 99.50 99.36 0.064
PointNet++MSG 99.83 99.35 99.38 99.53 99.46 0.071

Individual Pig Identification Model training results

In order to evaluate the performance of different models in the pig back point cloud individual
identification task, the validation loss and accuracy of the base models (PointNet, PointNet++SSG,
PointNet++MSG) and the improved PointNet++LR3D model were compared during the training process. The
trend of the validation accuracy and loss of each model is shown in Figure 9. The experimental results show
that the loss of all models decreases rapidly at the beginning of training and then levels off. At the same time,
the accuracy increases rapidly and stabilizes at the end of training. The base PointNet model has the worst
performance with higher test loss and lower accuracy; PointNet++SSG and PointNet++MSG have reduced
loss and improved accuracy through hierarchical feature extraction. The improved PointNet++LR3D model
performs best with the lowest test loss and highest accuracy. This excellent performance is attributed to the
LR3D module's significant improvement in feature extraction through bilinear regularization of geometry and
features, which better captures the complex geometric properties of pig dorsal point cloud data and provides
a more efficient solution for individual identification tasks.

Validation Over Accuracy vs. Epoch [or Diflerent Models Validation Loss vs. Epoch for Different Models
1.0 — —

B — PointNet
g 2.0 :
3 0.8 @ PointNet++58G
2 %
< 315 —— PointNet++MSG
506 g Do
3 PointNet % PointNet++LR3D
o4 PointNet+—ssG | 2 107
g — PoinNet—MSG | F |
202 PoiniNet—LR3D '
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Epach Epoch
() (b)

Fig. 9 - Individual Identification model validation results
(a) Vvalidation accuracy curve (b) Validation loss curve

Individual Pig Identification model testing results
In order to further verify the performance of different models in the pig dorsal point cloud individual

identification task, the optimal training models were selected to test the PointNet, PointNet++SSG,
PointNet++MSG, and the improved PointNet++LR3D models.

The overall performance indexes of each model in the individual identification task and the accuracy
of individual identification for 10 pigs are shown in Tables 2 and 3.
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The experimental results show that the basic PointNet model has an overall accuracy of 88.92% and
an average identification time of 0.0015 s, which exhibits very high computational efficiency. However, its
accuracy ranges from 75.89% to 95.24% from Pig1l to Pig10, with large fluctuations, and some individuals are
poorly identified, especially Pig7 (75.89%), reflecting PointNet's limited ability to extract pig dorsal point cloud
features. PointNet++SSG and PointNet++MSG through hierarchical feature extraction significantly improved
the performance, where the overall accuracy of PointNet++SSG was 92.93% and that of PointNet++MSG was
further improved to 95.42%, and the individual identification accuracies of the two were more balanced, ranging
from 88.46% to 96.67% and 92.73% to 99.17%, respectively, and the individual identification accuracies of
both were more balanced, ranging from 88.46% to 96.67% and 92.73% to 99.17%, respectively, due to the
hierarchical feature extraction layer is introduced, the identification time grows to 0.0529 s and 0.0540 s. The
improved PointNet++LR3D model proposed in this study performs the best, with the highest overall accuracy
of 97.11%, a precision rate of 97.04%, a recall rate of 97.09%, an F1 score of 97.06%, and a Top-3 accuracy
rate of 99.44%, the best performance in all indicators, and its accuracy on 10 pigs ranges from 95.38% to
99.21%, with the slightest fluctuation and the most stable identification effect. Due to the inclusion of the two-
layer LR3D module, although the average inference time is slightly elevated to 0.0576 seconds, it still meets
the real-time time requirement of the individual identification task. The LR3D module proposed in this study
significantly enhances the model's ability to fine-grain feature extraction from point cloud data through
geometric and feature bilinear regularization. Although the inference time of PointNet++LR3D is slightly higher
than that of the other models, it strikes a good balance between performance enhancement and computational
efficiency. It provides a better solution for the individual identification task in pigs.

Table 2
Overall test results of the different models under the individual identification task
Model OA Precision Recall F1 Top-3 AvgTime
[%] [%] [%] [%] [%] [s/pig]
Pointnet 88.92 89.04 88.82 88.74 97.51 0.0015
PointNet++SSG 92.93 92.97 92.96 92.88 98.31 0.0529
PointNet++MSG 95.42 95.49 95.42 95.42 98.47 0.0540
PointNet++LR3D 97.11 97.04 97.09 97.06 99.44 0.0576
Table 3
Individual identification accuracy of each pig under different models
Model Accuracy
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
pig Pigl Pig2 Pig3 Pig4 Pig5 Pig6 Pig7 Pig8 Pig9 Pig10
Pointnet 95.24 86.81 87.69 90.15 94.12 93.20 75.89 87.30 83.64 94.17
PointNet++SSG | 93.33 93.06 88.46 91.67 92.44 94.56 90.18 92.86 96.36 96.67
PointNet++MSG | 95.24 94.44 94.62 94.70 95.80 95.92 95.54 96.03 92.73 99.17
PointNet++LR3D| 97.14 95.83 95.38 97.73 98.32 97.96 95.54 99.21 95.45 98.33

Confusion Matrix

In order to more intuitively assess the performance of the different models in the pig dorsal point cloud
individual identification task, a classification confusion matrix was constructed for the four models, as shown
in Figure 10. The horizontal axis of the confusion matrix represents the predicted labels, the vertical axis
represents the actual labels, and the values on the diagonal indicate the number of correctly predicted
samples. In contrast, the off-diagonal values indicate the number of misclassified samples. The results show
that all models have high identification performance on most individuals, with correctly predicted samples
mainly concentrated on the diagonal and fewer misclassified samples, verifying the effectiveness of the pig
dorsal point cloud in the individual identification task.

By comparing the confusion matrices of the four models, it can be found that the base model has
significant confusion in some categories. Among them, PointNet performed relatively poorly, with multiple
misclassifications to other classes for pig2, 8, 9, and 6 misclassifications to pig4 for the predictions of pig3,
pig7, and pig8, and bidirectional confusion between pig5 and pig9, with the error numbers of 7 and 4,
respectively.
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PointNet++SSG was significantly optimized by a single-scale grouping of the categorical purity of pig3,
pig7, and pig8 and eliminated the one-way confusion of misclassification of pig9 to pig5. However, there were
still four misclassifications of pig5 to pig9. PointNet++MSG further reduced the confusion of some categories
by introducing multiscale grouping, significantly reduced the occurrence of misclassification of pig2, and further
eliminated the two-way confusion between pig5 and pig9 bi-directional confusions.

In contrast, the improved model PointNet++LR3D shows significant advantages, with an average
improvement of 10.7% in the number of correct diagonal predictions and a reduction in the maximum single-
class error from 9 to 3 in PointNet. In particular, the bi-directional confusion between the confusing pig5 and
pig9 is almost eliminated. Experiments show that the introduced local context and bilinear regularization
strategy effectively enhances the ability to distinguish fine-grained feature differences and significantly reduces
the misclassification rate between similar individuals.
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pig1 pig1
pig2 120 pig2 120
pig3 100 pig3 100
pig4 pig4
° - 80 T =
S pigd o pig5 g0
- -
5] . Q .
> pigé n > pigd
= 60 2 g — 60
pig? pig7
- 40 - 40
pig8 pig8
pig9 -20 pigd 2 Q -20
pig10 piglo o | o |of|1]a|0o]|o|3
-0 -0
o0 g g oot g g gl g gP Gg® ¢o gt gt got gob gob gl g ga? a®
Predicted Label Predicted Label
(@) (b)
Confusion Matrix(PointNet++MSG) Confusion Matrix(PointNet++LR3D)
140
pig1 pig1 140
pig2 120 pig2 120
pig3 pig3
100 100
pigd pigd
% pigs - &0 § pigs - 80
— —
@ - [} .
3 pigé g6
= - 80 g e - 60
pig7 pig?
- 40 -
pig8 pig8d 40
pige| o | 1 -20 pig9 -20
pig10| 0O 0 0 1 o 0 0 0 pig10
-q -0
pob g 5o gt g geb gdl b g G g9 gt go? got gP g odl o ga? ge®
Predicted Label Predicted Label
(©) (d)

Fig. 10 - Classification confusion matrix for the ten pigs
(a) PointNet classification confusion matrix(b) PointNet++SSG classification confusion matrix(c) PointNet++MSG classification
confusion matrix(d) PointNet ++LR3D classification confusion matrix

Discussion

Since the classification performed in this experiment and that performed in the ModelNet40 dataset
are fundamentally different, the classification task in ModelNet40 is to classify different objects with significant
differences in shape features, while the pig individual identification task performed in this experiment is to
classify similar individuals within the same species, which inherently increases the classification difficulty.

To further validate the feasibility of the innovative LR3D bilinear regularization module introduced in
this study for individual pig back point cloud identification, extended tests were conducted on the ModelNet40
public point cloud dataset, a classic benchmark for point cloud multi-classification tasks. Testing on this public
dataset aims to evaluate the generality and robustness of the proposed method and verify its performance
across different point cloud data scenarios.
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The test results show that the improved PointNet++ model proposed in this study, by incorporating two
LR3D modules, achieves an overall accuracy (OA) and average accuracy (macc) of 93.1% and 91.0% on the
ModelNet40 dataset, representing improvements of 2.4% over the original PointNet++ model's 90.7% and
87.6%, respectively. This demonstrates that the proposed improved model enhances classification
performance across diverse point cloud data scenarios.

CONCLUSIONS

This study proposes an individual identification method for pig back point cloud data based on the
improved PointNet++ model. By introducing local context fusion and a global bilinear regularized LR3D
module, the model's ability to extract and classify dynamic pig point cloud features is significantly enhanced.
Experimental results demonstrate that the improved model achieves an identification accuracy of 97.11% in
the individual identification task, performing the best among all methods. Furthermore, extended testing on the
ModelNet40 public dataset further demonstrates the generality and effectiveness of the proposed method.

The LR3D module proposed in this paper significantly enhances the geometric sensitivity and semantic
expressiveness of point cloud feature extraction through the local context fusion strategy of dual-stream
differential coding and the global bilinear regularization mechanism, providing an efficient solution for analyzing
complex 3D scenes. Its modular design gives LR3D excellent flexibility, enabling it to adapt easily to various
point cloud processing network architectures, including PointNet++, DGCNN, and other mainstream models.
It is seamlessly deployed at different feature extraction stages and CNN layer resolutions. LR3D effectively
captures rough geometric structures in the low-resolution layer, such as edges and curvature changes; in the
high-resolution layer, its ability to refine local features further enhances semantic differentiation. Experiments
show that LR3D significantly improves the model accuracy in the classification task of similar individual
identification while maintaining the balance of computational efficiency, demonstrating strong robustness and
versatility. Looking ahead, the LR3D module can be widely applied to tasks such as point cloud segmentation
and detection, providing a solid feature enhancement framework for 3D vision research.

Compared with traditional physical tags and RFID identification, this study achieves non-contact and
high-precision pig individual identification using 3D point cloud technology, which overcomes the problems of
fragile tags, the high cost of manual operation, and environmental interference. It provides an efficient solution
for individual tracking, health monitoring, and behavioral analysis in fine-tuned farming. However, there are
still some limitations in this study: the experimental sample size is small, with only 10 pigs and a single pig
breed, and the model can be extended to a larger and multi-breed pig population to verify the generalization
ability in the future. In addition, the dynamic point cloud data acquisition is limited by the camera view and the
moving speed of the pigs, and the data acquisition process needs to be further optimized. This study provides
innovative ideas and technical support for animal individual identification based on point cloud, which has high
theoretical value and application prospects.
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