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ABSTRACT 

Ensuring the reliability and efficiency of agricultural machinery is critical for modern farming operations. 

Traditional maintenance strategies, including corrective and preventive approaches, often lead to unexpected 

downtime or excessive servicing costs. This study explores the application of machine learning-based 

predictive maintenance for agricultural equipment, focusing on the hydraulic system of a Massey Ferguson 

7700 S tractor. Real-time sensor data was collected, with hydraulic pressure selected as the primary diagnostic 

metric for detecting early signs of mechanical degradation. A predictive maintenance framework was 

developed using seven machine learning models: Isolation Forest, One-Class SVM, KMeans, DBSCAN, 

Autoencoders, Convolutional Neural Networks (CNNs), and XGBoost. These models were individually applied 

to identify pressure anomalies indicative of potential failures. To enhance detection accuracy, a "Council of the 

Wise" ensemble approach was introduced, where an anomaly was validated only if at least four of the seven 

models agreed on its presence. This consensus-based method reduced false positives and improved fault 

identification reliability. Results demonstrated that integrating multiple models effectively distinguished 

significant anomalies from noise, capturing both transient mechanical instabilities and gradual wear-related 

failures. The findings highlight the potential of machine learning-driven predictive maintenance in optimizing 

maintenance schedules, reducing unplanned downtime, and extending equipment lifespan. This study 

establishes a scalable, data-driven maintenance approach that enhances the operational resilience of 

agricultural machinery, ensuring greater efficiency and sustainability in farming operations. 

 

REZUMAT 

Asigurarea fiabilității și eficienței utilajelor agricole este esențială pentru agricultura modernă. Strategiile 

tradiționale de mentenanță, inclusiv abordările corective și preventive, conduc adesea la perioade neprevăzute 

de indisponibilitate sau la costuri excesive de întreținere. Acest studiu investighează posibilitatea aplicării unui 

sistem  de mentenanță predictivă pentru echipamentele agricole bazat pe învățarea automată, analizînd date 

achiziționate din sistemul hidraulic al tractorului Massey Ferguson 7700 S. Datele au fost colectate în timp 

real, presiunea din instalația hidraulică fiind selectată ca parametru principal pentru detectarea timpurie a 

eventualelor defecțiuni. A fost dezvoltat un sistem de mentenanță predictivă bazat pe șapte modele de învățare 

automată: Isolation Forest, One-Class SVM, KMeans, DBSCAN, Autoencoders, Convolutional Neural 

Networks (CNNs) și XGBoost. Aceste modele au fost aplicate individual pentru a identifica anomalii ale 

presiunii, fapt care ar putea scoate în evidență posibile defecțiuni. Pentru a îmbunătăți acuratețea detecției, a 

fost introdusă o abordare de tip „sfatul înțelepților”, în care o anomalie a fost validată doar dacă cel puțin patru 

dintre cele șapte modele au confirmat prezența acesteia. Această metodă bazată pe consens a redus numărul 

de alarme false și a îmbunătățit fiabilitatea identificării defecțiunilor. Rezultatele au demonstrat că integrarea 

mai multor modele a permis diferențierea eficientă a anomaliilor semnificative de zgomot, evidențiind atât 

instabilitățile mecanice tranzitorii, cât și degradările progresive. Concluziile evidențiază potențialul mentenanței 

predictive bazată pe învățarea automată în optimizarea programelor de întreținere, reducerea timpilor 

neplanificați de oprire și prelungirea duratei de viață a echipamentelor. Metoda propusă pentru mentenanța 

utilajelor agricole este scalabilă și poate îmbunătăți semnificativ reziliența operațională, eficiența și 

sustenabilitatea în sectorul agricol. 
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INTRODUCTION 

Maintenance strategies in industrial and agricultural machinery have evolved to address operational 

reliability and cost efficiency. Traditional approaches include corrective maintenance, which involves repairing 

equipment only after a failure has occurred, often leading to unexpected downtime and high repair costs. 

Preventive maintenance seeks to mitigate these risks by scheduling routine inspections and servicing at fixed 

intervals, regardless of the actual condition of the equipment. While this approach reduces the likelihood of 

failures, it may result in unnecessary maintenance and higher operational costs. 

Predictive maintenance, powered by machine learning and real-time data, proactively detects early 

signs of wear or malfunction, replacing fixed schedules and reactive repairs. By identifying subtle anomalies 

and degradation patterns, it optimizes maintenance scheduling, reducing unnecessary interventions while 

preventing costly breakdowns. Advanced algorithms enhance precision in fault detection, ensuring efficient 

resource allocation and extending equipment lifespan. Increasingly adopted in the agriculture and food 

industries, predictive maintenance improves equipment reliability, minimizes downtime, and lowers 

maintenance costs. Conventional methods, such as corrective maintenance, addressing failures after they 

occur, and preventive maintenance, based on predefined schedules, can lead to inefficiencies and unexpected 

failures. Machine learning models provide a more intelligent, data-driven approach, enhancing fault prediction 

accuracy and overall system performance. 

This paper explores the application of machine learning (ML) models in predictive maintenance for 

biotechnical systems, evaluating their effectiveness in improving system reliability and efficiency. By examining 

the capabilities of various machine learning techniques in failure prediction and early fault detection, the study 

highlights the advantages of a data-driven approach in minimizing downtime and reducing maintenance costs. 

The potential of predictive maintenance extends beyond cost savings, it enhances operational resilience, 

ensuring that agricultural and food production systems remain sustainable and efficient in the face of growing 

industry demands (Lima et al., 2021). 

Agricultural machinery, such as the Massey Ferguson 7700 S tractor, operates under demanding 

conditions that require continuous performance monitoring to ensure efficiency and longevity. During various 

soil operations, including plowing, tillage, and planting, as well as harvesting corn or other crops, the 

hydromechanical systems of agricultural machinery, including the hydraulic system, engine, and drivetrain, 

experience dynamic mechanical stresses. Modern real-time condition monitoring systems integrated into such 

equipment collect high-frequency operational data, capturing parameters such as engine temperature, 

hydraulic pressure, vibration levels, fuel consumption, and mechanical load fluctuations. These data streams, 

when processed using machine learning models, allow for the early identification of potential failures, 

preventing costly breakdowns and minimizing downtime. 

Ouadah et al. (2022) evaluates various supervised machine learning algorithms for predictive 

maintenance, focusing on their classification and regression capabilities. Key algorithms analyzed include 

Random Forest, Decision Trees, and k-Nearest Neighbors (KNN), tested on both real-world and simulation 

datasets. The findings indicate that: 

- Random Forest and Decision Trees perform similarly in small datasets and excel in regression-based 

reliability prediction; 

- KNN proves to be more effective for classification tasks, particularly in handling large volumes of data; 

- the use of vibration analysis and reliability evaluation enhances failure detection accuracy, supporting early 

fault diagnosis in industrial equipment. 

Furthermore, the study highlights vibration analysis as one of the most reliable PdM techniques, 

particularly for detecting faults in rotating machinery such as misalignment, imbalance, and bearing 

degradation. Additional monitoring methods include infrared thermography, acoustic analysis, lubricant 

analysis, and ultrasonic testing, all of which contribute to data collection for ML models. The results emphasize 

that PdM strategies, when combined with ML techniques, can reduce system downtime, optimize maintenance 

scheduling, and minimize costs. However, challenges such as data quality, model interpretability, and real-time 

deployment constraints remain critical factors in PdM implementation. The study concludes that while ML-

based predictive maintenance provides a more dynamic and cost-effective approach than traditional methods, 

continued research is needed to refine models, improve scalability, and enhance real-time decision-making. 

Predictive maintenance (PdM) is an essential component of modern industrial operations, aiming to 

optimize maintenance actions by predicting failures before they occur. Traditional PdM strategies rely on 

statistical models and machine learning (ML) techniques, but reinforcement learning (RL) has emerged as a 

promising approach for designing autonomous and adaptive maintenance strategies. 
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Siraskar et al. (2023) explores how reinforcement learning is applied to predictive maintenance across 

various industrial contexts, from early fault detection to health index modeling and maintenance scheduling. 

Unlike conventional ML techniques, which often require large amounts of labeled historical data, RL-based 

approaches learn optimal maintenance policies dynamically through interaction with the system. 

A contribution of this work is the development of a taxonomy of RL-based predictive maintenance 

strategies, distinguishing between model-based RL, model-free RL, Markov Decision Processes (MDP), 

Partially Observable MDPs (POMDPs), and Semi-Markov Decision Processes (SMDPs). The paper highlights 

the advantages of RL over traditional PdM methods, including its ability to handle dynamic, non-stationary 

environments, optimize maintenance decisions in real time, and reduce overall maintenance costs. The review 

also outlines practical challenges in applying RL to PdM, including data quality issues, real-time deployment 

constraints, and the need for robust edge computing solutions. Additionally, the study emphasizes the 

importance of reward function design, exploration-exploitation trade-offs, and agent training efficiency in 

ensuring successful RL-based maintenance systems. 

Meddaoui et al. (2024) focuses on remaining useful life (RUL) estimation, a key metric in predictive 

maintenance that determines the expected time before a component or system fails. Various ML models, 

including support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN), and artificial neural 

networks (ANN), are evaluated to determine their effectiveness in predicting RUL. The findings indicate that: 

- KNN and ANN models achieve the highest classification accuracy, with KNN reaching 95.92% 

accuracy in failure prediction; 

- Random forests (RF) and principal component analysis (PCA) provide the best results for regression-

based RUL estimation, demonstrating lower prediction error rates; 

- feature engineering and data preprocessing techniques, including normalization, principal 

component analysis (PCA), and attribute selection methods, significantly impact model performance 

by reducing data dimensionality and improving predictive accuracy. 

Recent advancements in artificial intelligence have revolutionized predictive maintenance strategies, 

enabling more efficient fault detection, failure prediction, and maintenance optimization (O’Neil et al., 2022). A 

study on deep learning-driven architectures for predictive maintenance highlights how machine learning 

techniques, particularly convolutional neural networks (CNNs), deep recurrent neural networks (DRNNs), 

stacked autoencoders (SAEs), and deep belief networks (DBNs), have evolved to address the complex 

challenges of reliability engineering in industrial systems. Li et al. (2024) systematically reviews deep learning-

driven architectures applied to PdM, examining their advantages, limitations, and adaptability across various 

industrial scenarios. 

The authors highlight how Industry 4.0 advancements and IIoT (Industrial Internet of Things) have 

enabled PdM models to process vast industrial datasets in real time. CNNs and autoencoders outperform 

traditional ML techniques by automatically extracting critical degradation patterns from raw sensor signals. 

LSTMs and DRNNs are particularly effective in failure prediction and RUL estimation, capturing long-term 

dependencies in machinery operations. Long Short-Term Memory (LSTM) networks, trained on historical 

operational data, provided fault predictions with an accuracy exceeding 95 percent. As a result, repair response 

time was reduced by 40 percent, and maintenance costs were lowered by 20 percent. 

Serradilla et al. (2021) provide a comprehensive review of deep learning (DL) applications in predictive 

maintenance (PdM), addressing challenges in selecting suitable architectures for industrial use cases. Given 

the increasing volume of industrial data in the Industry 4.0 era, the study highlights how advanced DL 

techniques can optimize maintenance strategies by predicting failures before they occur, thus minimizing 

downtime and reducing costs. The authors categorize and analyze various state-of-the-art (SotA) deep 

learning architectures, including Self-Organizing Maps (SOM), One-Class Neural Networks (OCNN), and 

Generative Models, examining their adaptability to real-world industrial maintenance scenarios. The paper also 

systematically evaluates PdM data characteristics, reviews statistical and traditional ML techniques as 

baselines, and compares DL approaches against benchmark datasets. A key contribution of this work is the 

comparison of DL models on a turbofan engine degradation dataset, providing insights into performance, 

adaptability, and reproducibility in PdM applications. 

Zhang et al. (2023) explores an optimized approach to configuring maintenance service vehicles for 

agricultural machinery operations. It presents a method for resource allocation that minimizes costs while 

enhancing the efficiency of maintenance services. Using a service coverage model, the research optimizes 

vehicle positioning and dispatch to ensure timely repairs while reducing overall operational expenses. An 
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improved genetic algorithm is implemented to address the challenge of optimizing service vehicle deployment, 

incorporating enhanced selection, crossover, and mutation techniques to refine resource distribution. 

Wang et al. (2023) show that autoencoders, a type of neural network designed for unsupervised 

learning, can effectively extract meaningful fault-related features from large datasets. This approach enables 

the mapping of failure causes to observed fault phenomena, such as cutter winding, roller clogging, bridge 

blockage, chain wear, and excessive tool clearance. The results show that autoencoders outperform traditional 

rule-based and statistical models by dynamically learning complex patterns from sensor data, rather than 

relying on fixed analytical equations. A key advantage of ML-based predictive maintenance is its ability to 

identify anomalies before they lead to critical failures. For instance, when analyzing historical harvester failure 

data, an ML model trained on normalized and preprocessed sensor inputs achieved a prediction accuracy of 

over 93%, significantly outperforming support vector machines (SVMs), Bayesian classifiers, and sparse self-

coding networks. The confusion matrix analysis confirmed that autoencoder-based models exhibited the lowest 

false-positive and false-negative rates, making them highly reliable for real-time predictive applications. In 

predictive modeling for refrigeration systems, sensor fusion techniques have been used to combine vibration, 

temperature, and pressure sensor data. ML algorithms process these multi-source inputs, allowing for early 

fault detection by recognizing subtle deviations from normal operating conditions. Experimental results indicate 

that deep learning models reduce false alarm rates by 27% compared to traditional threshold-based monitoring 

methods, providing a significant improvement in predictive accuracy. 

To assess the effectiveness of ML models in predictive maintenance, Wang et al. (2023) have 

conducted comparative analyses of different approaches: self-coding neural networks (autoencoders), sparse 

self-coding networks, a variant of traditional autoencoders, and RotGBM, a hybrid gradient-boosting model. 

Reliability is a fundamental concern in agricultural machinery, as failures in critical components can 

lead to significant productivity losses, increased maintenance costs, and operational inefficiencies. Traditional 

failure analysis methods rely on Failure Mode, Effects, and Criticality Analysis (FMECA) to identify high-risk 

components. However, these approaches often suffer from subjectivity and difficulty in data acquisition. By 

utilizing data mining techniques, researchers have been able to systematically analyze large datasets of 

operational faults, extract meaningful failure patterns, and enhance predictive maintenance strategies (Yang 

at al., 2022). The study of failure data collected from grain harvesters has identified the cutter component as 

the most failure-prone, with blade degradation being a dominant failure mode. Excessive clearance, 

misalignment, and improper installation contribute to high failure rates, requiring frequent inspections and 

maintenance interventions. Data-driven failure analysis has enabled the classification of failure causes into 

four primary categories: failures due to mechanical wear, accidental failures, operational errors, and failures 

caused by insufficient maintenance. 

Risk assessment methodologies have been refined using machine learning models, allowing for a 

more precise evaluation of failure probabilities and severity. The use of risk matrix analysis, analytic hierarchy 

process (AHP), and FMECA data visualization has improved the accuracy of risk categorization. Machine 

learning models trained on failure history have successfully identified patterns in risk distribution, revealing that 

blockages in the header, speed mismatches between working parts, and cutter malfunctions pose the highest 

operational risks. The application of these models in predictive maintenance enables real-time fault detection, 

reducing downtime and optimizing repair schedules (Kammerer et al., 2021).  

Challenges remain in implementing machine learning-based predictive maintenance at scale. The 

accuracy of predictions relies heavily on the quality and availability of sensor data, which can be affected by 

environmental conditions and sensor noise. Additionally, real-time decision-making requires low-latency 

processing, particularly in remote agricultural locations with limited connectivity. Advances in edge computing 

and federated learning are expected to address these limitations by enabling decentralized data processing, 

reducing dependence on cloud-based infrastructure. 

Table 1 summarizes the key machine learning methods discussed in the recent studies, highlighting 

their specific applications in predictive maintenance and the advantages they offer in improving reliability, 

reducing downtime, and optimizing maintenance schedules. 

Table 1 

AI Methods for Predictive Maintenance 

Method Application in Predictive Maintenance Advantages 

Convolutional Neural 

Networks (CNNs) 

Analyzes vibration and temperature data to 

detect faults like bearing degradation, 

misalignment, and lubrication failures. 

Extracts both time-domain and 

frequency-domain features, 

improving predictive accuracy. 
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Method Application in Predictive Maintenance Advantages 

Deep Recurrent Neural 

Networks (DRNNs) 

Tracks component degradation over time, 

improving failure prediction in conveyor belts, 

gearboxes, and hydraulic systems. 

Captures complex degradation 

trends that traditional methods miss. 

Long Short-Term Memory 

(LSTM) & Gated 

Recurrent Units (GRUs) 

Handles long-term dependency modeling, 

predicting remaining useful life (RUL) in time-

series maintenance data. 

Enables robust prediction of 

maintenance needs for systems 

requiring long-term analysis. 

Stacked Autoencoders 

(SAEs) 

Enhances feature extraction from high-

dimensional sensor data, reducing reliance on 

manual feature selection. 

Automates feature learning, 

enhancing predictive model 

efficiency. 

Deep Belief Networks 

(DBNs) 

Offers a probabilistic framework for modeling 

uncertainty in sensor-based failure prediction 

models. 

Handles noisy sensor data 

effectively, increasing reliability of 

predictions. 

Transfer Learning 
Adapts models trained in one environment to 

new industrial conditions with minimal retraining. 

Reduces the need for extensive 

labeled datasets, improving model 

adaptability. 

Reinforcement Learning 

Optimizes maintenance scheduling by 

dynamically learning from equipment 

performance data. 

Continuously refines maintenance 

strategies based on real-time 

feedback. 

Digital Twin Technology 

Creates virtual representations of physical 

assets to simulate operational conditions and 

improve failure prediction accuracy. 

Enhances predictive modeling by 

reducing reliance on physical testing, 

optimizing resource use. 

 

Liu et al. (2024) provide a comprehensive overview of predictive maintenance, integrating Industry 4.0 

concepts such as IoT, big data, and AI. The book highlights predictive maintenance as a key advancement 

over traditional methods, emphasizing real-time condition monitoring, fault diagnosis, and predictive analytics 

to enhance equipment performance and reliability. A major focus is the shift from conventional maintenance to 

AI-driven models using sensor data, digital twins, and machine learning for early fault detection. Digital twin 

technology enables real-time simulations and failure forecasting, while predictive algorithms optimize 

maintenance schedules, reducing unplanned downtime and improving spare parts management. 

A case study on Vestas illustrates how SCADA systems and predictive maintenance enhance wind 

turbine performance through real-time data analysis. The book also explores applications in agriculture and 

food processing, where IoT-enabled sensors anticipate failures in farm machinery, irrigation systems, and food 

processing equipment. AI-driven monitoring of refrigeration units and conveyor belts ensures food safety and 

reduces spoilage risks. 

Additionally, the book examines AI-based automation techniques, including genetic algorithms, particle 

swarm optimization, and neural networks, for optimizing repair schedules. Challenges such as multi-source 

data fusion and sensor integration are addressed, emphasizing the need for robust predictive models. The 

work underscores the role of Industry 4.0 in advancing predictive maintenance, making industrial systems 

smarter, more reliable, and cost-efficient. The Table 2 provides a summarized overview of key insights from 

Liu et al. (2024). This summary captures the essential aspects of predictive maintenance methodologies, 

including its integration with Industry 4.0, applications of AI and machine learning, the role of digital twins, 

sensor technologies, and industry-specific implementations in agriculture and food processing. Additionally, 

the table highlights the primary challenges and future directions of AI-driven predictive maintenance. 

Table 2 

Extended Summary of Intelligent Predictive Maintenance 

Topic Key Insights 

Predictive Maintenance 

Concept 
Transition from reactive and preventive maintenance to AI-driven predictive strategies. 

Integration with 

Industry 4.0 

Use of Cyber-Physical Systems (CPS), Industrial IoT (IIoT), and big data for real-time 

monitoring. 

AI and Machine 

Learning Models 

Implementation of deep learning, Bayesian networks, fault tree analysis, and neural 

networks for failure prediction. 

Digital Twin 

Applications 

Creation of virtual replicas for failure forecasting, operational simulations, and process 

optimization. 

Sensor Technologies 
Integration of vibration sensors, acoustic emission monitors, and temperature sensors for 

real-time anomaly detection. 
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Topic Key Insights 

Applications in 

Agriculture (Extended 

Insight) 

Additional insights on predictive maintenance applications in farm equipment, including IoT-

enabled sensors on combine harvesters, irrigation systems, and agricultural processing 

equipment, reducing failures and optimizing performance. 

Applications in Food 

Industry (Extended 

Insight) 

Beyond the book’s scope: AI-driven predictive maintenance for monitoring refrigeration 

units, conveyor belts, and packaging automation, ensuring food safety, reducing spoilage, 

and minimizing production disruptions. 

Challenges and Future 

Directions 

Challenges in data integration, sensor reliability, and computational resource requirements; 

advancements in edge computing and federated learning proposed as solutions. 

 

Bala et al. (2024) explore the integration of artificial intelligence (AI) with edge computing for predictive 

maintenance in industrial machines, addressing key challenges in data processing and model deployment. 

The study categorizes existing approaches into three main architectures: cloud-based training with edge 

deployment, edge-based training for enhanced data privacy, and hybrid cloud-edge training. The review 

highlights the advantages of edge computing, such as reduced latency and improved availability, while also 

acknowledging challenges like limited computational power and the need for lightweight AI models. 

Additionally, the paper discusses emerging research directions, including synthetic data generation, transfer 

learning applications, and secure communication protocols for edge AI. This work contributes to the evolving 

landscape of AI-driven predictive maintenance by assessing the trade-offs between centralized and distributed 

learning architectures. 

Glock et al. (2024) introduce a novel unsupervised CPD framework, Predict and Compare (P&C), 

which integrates predictive machine learning models with statistical validation methods to improve anomaly 

detection reliability. Their approach aligns closely with ensemble-based strategies, such as the “Council of the 

Wise” framework employed in this study, which aggregates multiple model outputs to enhance detection 

accuracy. Using both deep learning models (LSTM) and statistical models (ARIMA), the Predict and Compare 

method successfully identifies structural shifts while mitigating false positives caused by long-term trend 

variations. The insights from Glock et al. (2024) reinforce the importance of combining predictive modeling with 

statistical validation in predictive maintenance applications. Their findings serve as a valuable reference point 

for enhancing multi-model anomaly detection frameworks, further supporting the scalability and adaptability of 

predictive maintenance strategies across diverse industrial settings. 

 

MATERIALS AND METHODS 

The predictive maintenance analysis was conducted using data collected from a Massey Ferguson 

7700 S tractor, a widely used model in modern precision agriculture. Data acquisition took place in May 2023, 

focusing on the tractor’s hydraulic system, which plays a crucial role in various agricultural operations, including 

plowing, lifting, and operating auxiliary implements. Given that hydraulic systems in agricultural machinery are 

subject to high operational loads and varying environmental conditions, they are critical components for 

predictive maintenance assessment. 

The Massey Ferguson 7700 S series is known for its high-performance engine, advanced transmission 

options, and robust hydraulic capabilities, making it an ideal candidate for predictive maintenance analysis. 

This model is typically equipped with a 6.6L AGCO Power engine, delivering 140 to 280 horsepower, depending 

on the variant. Its Dyna-VT continuously variable transmission (CVT) allows for smooth and efficient power 

delivery, enhancing fuel efficiency and reducing mechanical stress. However, the hydraulic system is one of 

the most stressed components in the tractor, as it directly influences the performance of attached implements 

and overall machine efficiency (https://www.masseyferguson.com/en/product/tractors/mf-7700-s.html). 

The hydraulic system of the 7700 S series operates within a pressure range of 140 to 200 bar, 

providing the necessary force for lifting and operating various implements. This system consists of variable 

displacement pumps, pressure relief valves, hydraulic cylinders, and control units that regulate fluid flow and 

pressure. Given that hydraulic failures are often attributed to fluid contamination, wear in seals and valves, 

pressure fluctuations, and overheating, predictive maintenance techniques are crucial in detecting early signs 

of degradation before failures occur. 

This study evaluates predictive maintenance strategies in agriculture using AI-driven failure prediction 

and sensor-based diagnostics. By integrating these methodologies, the objective was to reduce unplanned 

downtime, optimize maintenance schedules, and enhance the operational lifespan of the tractor’s hydraulic 

system, ultimately contributing to increased agricultural productivity. 

https://www.masseyferguson.com/en/product/tractors/mf-7700-s.html
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The predictive maintenance framework for agricultural and food industry machinery, specifically for the 

Massey Ferguson 7700 S tractor’s hydraulic system, operates through an integrated process of data 

acquisition, processing, analysis, and decision-making.  

 
Fig. 1 - Data flow from sensor data collection through data preprocessing, ML model analysis (e.g., anomaly 

detection, failure prediction), maintenance decision-making, and action execution 

 

The diagram in figure 1 follows a structured workflow that ensures early failure detection, optimizes 

maintenance scheduling, and improves equipment longevity. 

1. Sensor Data Collection. The system begins with real-time data acquisition from multiple IoT-enabled 

sensors embedded in the hydraulic system of the tractor. These sensors continuously monitor key 

performance indicators (KPIs) such as: 

- hydraulic pressure fluctuations detect inefficiencies or valve blockages; 

- fluid temperature variations identify overheating risks or cooling inefficiencies; 

- vibration levels in hydraulic actuators and pumps indicates mechanical wear or imbalance; 

- operational workload and duty cycle variations determines stress levels on the system. 

2. Data Transmission and Preprocessing. The collected sensor data is transmitted via wireless 

communication to an edge computing unit or cloud-based storage system. Here, the raw data undergoes 

preprocessing, including: 

- noise filtering – removes irrelevant fluctuations caused by environmental interference; 

- feature extraction – selects the most relevant sensor parameters for analysis; 

- data normalization – ensures consistency in input values across different operating conditions. 

3. Machine Learning Models for Anomaly Detection. The processed data is then analyzed using machine 

learning (ML) models trained to recognize normal vs. abnormal operating patterns. Additionally, moving 

average and moving median filters were used as comparative statistical methods to smooth noisy sensor 

readings and identify abrupt fluctuations. While these are not machine learning techniques, they serve as 

baseline references to validate the anomaly detection models. Key AI techniques used include: 

- Time-Series Forecasting (LSTM, ARIMA – not applied in this study) to detect deviations from expected 

trends; 

- Isolation Forest and One-Class SVM for detecting anomalies by isolating rare and abnormal sensor 

readings; 

- K-Means and DBSCAN clustering to categorize different failure modes and identify outliers indicative 

of early-stage mechanical degradation; 

- Autoencoders for feature extraction and unsupervised anomaly detection, reconstructing normal 

operational states and identifying anomalies when deviations exceed a predefined threshold; 

- Convolutional Neural Networks (CNNs) to analyze spatial-temporal correlations in sensor data, 

particularly useful for identifying nonlinear relationships in hydraulic system degradation; 

- XGBoost for failure prediction, leveraging gradient-boosted decision trees to analyze feature 

importance and classify high-risk operational states. 

4. Predictive Maintenance Decision Making. Based on the analysis, the system provides predictive alerts 

regarding potential failures before they occur. The maintenance strategy includes: 

- immediate alerts for critical failures when a component is on the verge of breakdown; 

- scheduled maintenance recommendations to address wear before it escalates; 

- spare parts inventory management ensuring the availability of necessary components based on 

predicted failure rates. 
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5. Action Execution and Maintenance Action Optimization. The system integrates with farm management 

software (FMS) or maintenance dashboards, allowing technicians to access real-time condition reports 

and historical performance logs. This enables: 

- proactive intervention rather than reactive maintenance; 

- minimized downtime by repairing components before catastrophic failure; 

- cost reduction by avoiding unnecessary replacements and optimizing resource allocation. 

 

To evaluate the performance of the hydraulic system, real-time sensor data was collected, 

encompassing pressure measurements, flow rates, temperature variations, and vibration levels. These 

parameters were continuously tracked to detect potential anomalies associated with seal wear, pump 

inefficiencies, valve obstructions, or hose degradation. 

For this study, output pressure was selected as the primary diagnostic metric due to its critical role in 

assessing the health and efficiency of hydraulic pumps. Variations in pressure readings can reveal early signs 

of degradation, helping maintenance teams anticipate failures before they lead to system breakdowns. Several 

aspects of hydraulic pump performance can be inferred by closely monitoring pressure fluctuations, making it 

a valuable tool for predictive maintenance. One of the most critical insights that output pressure provides is an 

indication of internal component wear. A gradual drop in pressure over time may signal wear in essential 

components such as pistons, vanes, or gears, reducing overall efficiency and leading to performance losses. 

Additionally, monitoring pressure allows for the early detection of cavitation, a damaging condition where vapor 

bubbles form due to pressure inconsistencies and collapse violently, causing internal damage to the pump. 

While output pressure is an effective parameter for diagnosing hydraulic pump health, relying solely on it may 

not provide a complete picture of the system’s condition. It is best used in combination with other parameters, 

such as flow rate, temperature, and vibration analysis, to create a more comprehensive predictive maintenance 

strategy. A multi-sensor approach helps improve diagnostic accuracy, allowing for a deeper understanding of 

the system's overall health and facilitating early anomaly detection (Herrera‑Granados et al., 2024). 

In this stage of the research, output pressure was selected as the primary health indicator of the 

hydraulic pump, with data recorded under constant torque conditions. The decision to maintain a constant 

torque setting provided a controlled operational environment, ensuring that any fluctuations in pressure 

readings could be attributed to internal factors within the pump or hydraulic system, rather than variations in 

external load or torque. By isolating pressure as the key variable, this study aimed to enhance the reliability of 

pressure-based diagnostics. Any deviations detected in the output pressure were more easily linked to specific 

mechanical issues such as component wear, cavitation, sealing degradation, or hydraulic resistance variations. 

These pressure anomalies act as early warning signals, allowing maintenance teams to take preventive action 

before critical failures occur. 

The moving average is a widely used technique that smooths data by calculating the mean value over 

a predefined window of time. By averaging out short-term fluctuations, it provides a clearer representation of 

gradual changes in system behavior. For instance, if hydraulic pressure readings are recorded every second, 

applying a moving average over one minute interval can reveal long-term trends while minimizing the impact 

of transient noise. Large deviations from the moving average, such as sudden spikes or drops, can serve as 

early indicators of abnormal conditions. A sustained upward drift in temperature, for example, may suggest the 

gradual failure of a cooling system, while a sharp pressure drop could point to a hydraulic leak or valve 

malfunction. The moving median, in contrast, calculates the median value within a chosen time window, making 

it particularly effective at handling data sets with sudden, irregular spikes or short-lived anomalies. Unlike the 

moving average, which smooths all fluctuations evenly, the moving median focuses on the central tendency of 

the data, filtering out outliers that could distort the analysis. This property makes it highly valuable in predictive 

maintenance scenarios where sensor noise, electrical interference, or momentary load changes can create 

misleading spikes in the data. By emphasizing typical values rather than being influenced by extreme 

variations, the moving median helps in identifying genuine trends without overreacting to temporary fluctuations. 

Combining the moving average and moving median offers a more comprehensive approach to 

anomaly detection. While the moving average is useful for identifying long-term trends and gradual deviations, 

the moving median ensures that brief, isolated spikes do not lead to false alarms. When applied together, these 

techniques provide a balanced perspective, helping maintenance teams distinguish between short-term 

disturbances and sustained changes that require intervention. This dual approach enhances predictive 

maintenance by allowing for early detection of subtle shifts in equipment behavior, ensuring that emerging 

faults can be addressed proactively before they lead to failures.  



Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 

938 

By incorporating both techniques into predictive maintenance strategies, organizations can optimize 

their ability to monitor system performance, improve failure prediction accuracy, and reduce the risk of 

unexpected breakdowns. These statistical smoothing methods serve as valuable tools in data preprocessing, 

supporting more advanced machine learning models by ensuring that input data remains stable, interpretable, 

and free from misleading noise. When integrated with real-time monitoring systems, moving averages and 

moving medians contribute to a more robust and reliable maintenance framework, ultimately improving 

operational efficiency and reducing downtime across industrial and agricultural applications. 

One of the most valuable findings was that the most significant anomaly patterns were not necessarily 

extreme values, but rather subtle deviations that did not conform to typical operational trends. These nuanced 

anomalies, often overlooked by traditional threshold-based methods, reinforce the importance of leveraging 

multiple machine learning techniques to gain a more comprehensive perspective on system health. Given that 

no single model can be expected to detect every relevant anomaly with absolute accuracy, a more effective 

approach involves a form of ensemble learning inspired by the "wisdom of the crowd" principle. 

This study proposes a method for estimating anomaly detection points, referred to as the "Council of 

the Wise." This approach relies on an ensemble decision-making system, where an odd number of models 

independently analyze incoming sensor data and "vote" on whether a given point should be classified as an 

anomaly requiring maintenance intervention. This method ensures a more balanced and reliable assessment, 

reducing the likelihood of false positives and false negatives. By aggregating the decisions of multiple diverse 

models, this ensemble approach enhances predictive accuracy and increases confidence in maintenance 

recommendations. For instance, if five out of the seven models flag a particular data point as anomalous, the 

system classifies it as an anomaly and triggers an alert for maintenance action. If only a minority of models 

detect an issue, the system may either discard the anomaly or mark it as a lower-priority concern for further 

observation. This voting mechanism mitigates the risk associated with the limitations of any single model, 

creating a more resilient and adaptive predictive maintenance framework. 

By combining different models, each with distinct strengths in identifying various types of anomalies – 

whether based on density, clustering, reconstruction errors, or decision trees – the "Council of the Wise" 

approach maximizes the effectiveness of predictive maintenance. It reduces dependency on any single 

algorithm, ensuring a more robust and interpretable decision-making process. Ultimately, this proposed 

method enhances anomaly detection accuracy, optimizes maintenance scheduling, reduces downtime, and 

extends equipment lifespan, making it a valuable contribution to predictive maintenance strategies. 

The “Council of the Wise” framework, where seven machine learning models independently analyze 

sensor data and “vote” to determine anomalies, shares conceptual similarities with the Digital Twin paradigm 

while serving a distinct function within predictive maintenance (Pulcini and Modoni, 2024). Both approaches 

leverage real-time data-driven decision-making and advanced computational models to enhance predictive 

accuracy and optimize system performance. A Digital Twin is a virtual replica of a physical system, continuously 

updated with sensor data to enable real-time monitoring, fault prediction, and operational optimization. In 

contrast, the “Council of the Wise” operates as an ensemble anomaly detection mechanism, where multiple 

machine learning models process the data independently and reach a consensus on potential failures. This 

ensemble approach enhances reliability by reducing false positives and ensuring that only significant 

deviations from normal operational patterns are flagged for maintenance interventions. Integrating the “Council 

of the Wise” within a Digital Twin framework could enhance predictive maintenance strategies by providing an 

additional decision-making layer. While the Digital Twin maintains a real-time simulation of system behavior, 

the ensemble-based “voting” mechanism would refine anomaly detection, improving failure prediction accuracy 

and ensuring more confident maintenance recommendations. This hybrid methodology would combine the 

benefits of continuous situational awareness and high-confidence anomaly detection, leading to proactive and 

precise intervention strategies, minimizing downtime, and optimizing resource allocation in industrial and 

agricultural applications. 

In the field of predictive maintenance, accurately identifying early signs of mechanical degradation is 

essential to minimizing unplanned downtime and optimizing maintenance schedules. One of the key 

challenges in this domain is distinguishing genuine system anomalies from natural operational variations, 

particularly in complex industrial environments where data trends are influenced by multiple factors. Change 

point detection (CPD) techniques play a crucial role in this process, enabling systems to identify transitions 

between different operational states without being misled by normal fluctuations. 

To develop a robust predictive maintenance framework, this study employed eight machine learning 

models: Isolation Forest, One-Class SVM, KMeans, DBSCAN, Autoencoders, Convolutional Neural Networks 
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(CNNs), XGBoost, and Gaussian Naïve Bayes. Each model was selected based on its ability to detect 

anomalies in hydraulic system pressure data, leveraging different approaches such as unsupervised learning, 

clustering, deep learning, and probabilistic classification. The following sections provide a detailed examination 

of how each model was applied and its effectiveness in identifying potential failures. 

 Isolation Forest is a powerful and efficient tool in predictive maintenance, particularly suited for 

detecting anomalies in systems where deviations in sensor data can indicate early signs of equipment wear, 

malfunction, or inefficiencies. It is an unsupervised machine learning algorithm designed to differentiate normal 

operating conditions from rare, abnormal events, making it highly effective in identifying potential failures 

before they escalate. Unlike One-Class SVM, which constructs a boundary around normal data points, 

Isolation Forest isolates anomalies by assessing how quickly a given data point can be separated from the 

majority of the dataset. This method works on the principle that anomalies are typically sparse and differ 

significantly from normal data, making them easier to isolate (Murphy, 2002; Xiao, 2022). 

Isolation Forest is based on Isolation Trees (iTrees), which recursively divide data points by selecting 

random features and split values. For a given dataset X with n samples, an Isolation Tree is built using the 

following recursive function: 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑋) = {
𝑋, 𝑖𝑓 |𝑋| = 1 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑙𝑒𝑓𝑡)

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑋𝐿) ∪ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑋𝑅), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (1) 

where XL and XR are the left and right subsets after a random split on a randomly chosen feature. The height 

h(x) of a data point x in an Isolation Tree represents the number of splits required to isolate x. 

The key idea behind Isolation Forest is that anomalies are easier to isolate than normal points, so they 

tend to have shorter average path lengths in the Isolation Trees. 

𝐸(ℎ(𝑥)) = 2𝐻(𝑛 − 1) −
2(𝑛−1)

𝑛
                                                          (2) 

where H(n) is the harmonic number, approximated as: 

𝐻(𝑛) ≈ 𝑙𝑛(𝑛) + 0.5772156649 (𝐸𝑢𝑙𝑒𝑟 − 𝑀𝑎𝑠𝑐ℎ𝑒𝑟𝑜𝑛𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)                                (3) 

Since anomalies tend to be isolated faster, their expected path length E(h(x)) is smaller than that of 

normal points. 

To quantify how anomalous a point is, Isolation Forest computes an anomaly score s(x) based on the 

path length: 

𝑠(𝑥) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑛)                                                                        (4) 

where c(n) is an adjustment factor for normalizing path lengths: 

𝑐(𝑛) = 2𝐻(𝑛 − 1) −
2(𝑛−1)

𝑛
                                                              (5) 

The anomaly score s(x) falls within the range [0,1]. If we have a high s(x) (s(x)~1) is likely an anomaly 

(isolated quickly). If we have a low s(x) (s(x)~0) is likely normal data (requires many splits to isolate). A typical 

threshold for anomaly classification is s(x)>0.6 or s(x)>0.7 based on empirical tuning. 

One-Class Support Vector Machine (One-Class SVM) is a kernel-based anomaly detection model that 

learns a boundary around normal data and identifies points outside this boundary as anomalies. Unlike 

traditional SVMs used for classification, One-Class SVM is an unsupervised algorithm that operates on a single 

class of data (Murphy, 2002; Xiao, 2022). 

One-Class SVM finds a hyperplane or hypersphere that best encloses normal data, separating it from 

potential outliers. The optimization problem is formulated as: 

𝑚𝑖𝑛
1

2
||𝑤2|| +

1

𝜈𝑛
∑ 𝜉𝑖 − 𝜌𝑛

𝑖=1                                                               (6) 

where w is the normal vector defining the hyperplane, ξi≥0 are slack variables allowing some flexibility for soft 

margins, ρ is the decision boundary threshold, ν is the hyperparameter controlling the fraction of outliers 

allowed in the dataset (typically between 0 and 1), n is the number of training samples. The goal is to maximize 

the margin while allowing a small fraction of the training points to be considered anomalies. 

 Once trained, One-Class SVM uses the following decision function to classify new data points: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝜙(𝑥) − 𝜌)                                                               (7) 

where ϕ(x) is a feature transformation function (applied via a kernel), ρ is the threshold learned from the training 

data. A new point x is classified as normal if f(x)≥0 or anomalous if f(x)<0.  

One-Class SVM is a widely used tool in predictive maintenance, particularly effective for detecting 

anomalies in systems where normal operating behavior dominates, but occasional deviations may indicate 

potential faults, wear, or system degradation. Its ability to model normal conditions and identify unexpected 

variations makes it a valuable method for early fault detection, allowing maintenance teams to intervene before 
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minor issues develop into costly failures. In predictive maintenance applications, data is continuously collected 

from sensors monitoring critical parameters and other performance indicators. One-Class SVM is trained 

exclusively on this normal operating data, constructing a mathematical boundary that encapsulates expected 

values. Once trained, the model evaluates new sensor readings by determining whether they fall within or 

outside this learned boundary. Any data point that significantly deviates from the norm is flagged as an 

anomaly, signaling potential irregularities in the system. 

KMeans is a widely used clustering technique that partitions data into a predefined number of clusters 

based on similarity. In predictive maintenance, this method is particularly effective for analyzing historical 

sensor data to identify typical operating states. By defining clusters that represent normal working conditions, 

KMeans can evaluate new data points in real-time. If a new observation falls significantly outside the 

boundaries of these predefined clusters, it is flagged as an outlier or anomaly. This approach is well-suited for 

relatively stable systems where operational patterns remain consistent (Murphy, 2002; Xiao, 2022). 

The goal of K-Means is to minimize the total variance within clusters, defined as: 

𝐽 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘
𝑖=1                                                                (8) 

where J is the total sum of squared distances (cost function), k is the number of clusters, Ci is the set of points 

assigned to cluster i, x is a data point in cluster Ci, μi is the centroid of cluster i, ||x-μi||2 represents the squared 

Euclidean distance between a point and its cluster center. The algorithm seeks to find the optimal centroids μi 

that minimize this cost function. 

Each data point is assigned to the closest centroid using the Euclidean distance: 

𝑐(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖‖𝑥 − 𝜇𝑖‖                                                              (9) 

where c(x) is the cluster index assigned to x. The function finds the centroid μi that minimizes the distance to 

x. 

The algorithm iterates until centroids no longer change significantly or the decrease in cost function is 

below a threshold: 

𝜇𝑖
(𝑡+1)

− 𝜇𝑖
(𝑡)

< 𝜖                                                                 (10) 

where t is the iteration index, ϵ is a small predefined tolerance level. 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) offers a more flexible approach 

to anomaly detection by clustering data points based on density rather than predefining a fixed number of 

clusters. Unlike KMeans, which assumes that all data points should belong to a cluster, DBSCAN labels low-

density points as noise or anomalies. This makes it particularly effective in handling complex sensor data 

where operating conditions may fluctuate, and anomalies do not necessarily conform to a fixed pattern (Xiao, 

2022). 

DBSCAN uses two important hyperparameter: ε (neighborhood radius) that defines the maximum 

distance within which points are considered neighbors and min_pts – minimum points – that defines the 

minimum number of points required within a neighborhood of radius ε for a point to be considered a core point. 

To measure similarity between points, DBSCAN typically uses the Euclidean distance: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑑
𝑘=1                                                            (11) 

where d(xi, xj) is the Euclidean distance between two points xi and xj, d is the number of dimensions, xik and 

xjk are the k-th features of points i and j. Other distance metrics like Manhattan distance or Cosine similarity 

can be used depending on the application. 

A point x in the dataset is classified into one of three categories: 

- core point, if it has at least min_pts neighbors within distance 

|{xj∈D∣d(xi,xj)≤ε}|≥min_pts                                                              (12) 

- border point, if point lies within ε-distance of a core point but has fewer than min_pts neighbors; 

- noise (outlier), if it is not a core point and does not lie within the ε-radius of any core point. 

In predictive maintenance, DBSCAN is useful for identifying irregular or infrequent operating states 

that might not fit within predefined categories. For example, in rotating machinery, vibration readings often 

exhibit natural fluctuations due to varying loads and speeds (Laaradj et al., 2023; Popescu et al., 2022). 

DBSCAN can distinguish between expected variations and truly anomalous behavior, such as imbalance, 

misalignment, or excessive friction, by detecting low-density, outlier points in the data. Since DBSCAN does 

not require prior knowledge of the number of clusters, it is particularly advantageous for monitoring systems 

with variable operating conditions, where unexpected failures may arise in non-uniform patterns. 
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Both KMeans and DBSCAN contribute to a proactive maintenance strategy by enabling early detection 

of anomalies and potential faults. KMeans is best suited for systems with predictable and well-structured 

operational states, where deviations from established clusters can reliably indicate anomalies. In contrast, 

DBSCAN excels in complex and noisy environments where system behavior is more variable, allowing for 

greater adaptability in detecting rare but significant failures. By combining these clustering techniques with 

other anomaly detection methods, maintenance teams can improve predictive maintenance accuracy, optimize 

intervention timing, and extend the lifespan of critical machinery. 

Convolutional Neural Networks (CNNs) are becoming increasingly valuable in predictive maintenance, 

particularly for detecting anomalies in sensor data that exhibit spatial or temporal patterns. While CNNs are 

traditionally known for their success in image processing, they have also proven to be highly effective in 

analyzing sequential data, making them a powerful tool for identifying irregularities in time-series sensor 

readings. Their ability to capture local dependencies within complex datasets allows them to recognize subtle 

variations that may indicate early signs of equipment degradation (Abo-Habaga et al., 2024; Subburaj et al., 

2025; Yun et al., 2024; Zhang et al., 2024; Taner et al., 2024). 

The fundamental operation in CNNs is convolution, which is applied between an input feature map 

and a set of learnable filters (kernels). Mathematically, the convolution operation for a 2D input (e.g., sensor 

data) is: 

𝑍(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚                                                     (13) 

Where: 

X(i,j) is input feature map (e.g., sensor data), K(m,n) convolution kernel (filter), Z(i,j) output feature 

map after convolution, (m,n) is kernel size (height and width). This convolution operation slides the kernel over 

the input and computes weighted sums, capturing local patterns like edges, trends, or changes in sensor data 

(Murphy, 2002; Xiao, 2022). 

In predictive maintenance applications, CNNs are trained on historical sequences of normal operating 

data collected from sensors monitoring key parameters. By applying convolutional layers, CNNs extract patterns 

from these sequences, learning what constitutes normal fluctuations under different operating conditions. 

Unlike traditional anomaly detection methods that rely on manually defined thresholds, CNNs autonomously 

learn meaningful features from raw sensor data, enhancing their ability to detect deviations that signal 

emerging faults. Once trained, a CNN continuously processes new sensor data, comparing it to previously 

learned patterns. When it identifies abnormal trends – such as unexpected pressure spikes, sudden drops, or 

irregular variations in vibration frequency – it flags them as potential anomalies. These deviations may indicate 

developing issues such as wear in mechanical components, internal leaks in hydraulic systems, or imbalances 

in rotating machinery. By detecting these early-stage anomalies, CNNs enable maintenance teams to 

investigate and address potential failures before they escalate into severe damage or system downtime. 

One of the primary advantages of CNNs in predictive maintenance is their ability to handle 

multidimensional data, making them particularly useful in systems where multiple sensor inputs need to be 

analyzed simultaneously. For example, in industrial machinery equipped with an array of sensors measuring 

different parameters, CNNs can correlate fluctuations across these variables, identifying complex patterns that 

may not be apparent through single-variable analysis. This capability allows for a more comprehensive 

assessment of equipment health, improving failure prediction accuracy. 

Autoencoders, a specialized type of neural network, are highly effective in predictive maintenance for 

detecting anomalies in complex and nonlinear data patterns. Their primary function is to learn a compressed 

representation of normal operating data and then attempt to reconstruct it as accurately as possible. Any 

significant differences between the reconstructed output and the original data indicate deviations from 

expected patterns, which may signal the onset of equipment faults or mechanical degradation (Xiao, 2022). 

An autoencoder aims to encode input data into a lower-dimensional representation and then 

reconstruct it as accurately as possible. It consists of two main parts: encoder that compresses input data into 

a latent space representation and decoder that reconstructs the original input from the latent space (Hajgató 

et al., 2022). Given an input x, an autoencoder learns two functions:  

1. encoding function z = fθ(x), where z is the latent representation (compressed encoding) and fθ is 

the encoder function (usually a neural network with parameters θ);  

2. decoding function 𝑥̂ = 𝑔𝜙(𝑧) where x̂ is the reconstructed input, gϕ is the decoder function (another 

neural network with parameters ϕ). 

The goal of an autoencoder is to minimize the reconstruction error between x and 𝑥̂. 
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Using XGBoost in combination with Isolation Forest creates a highly effective approach to anomaly 

detection in predictive maintenance, leveraging the strengths of both algorithms to enhance the accuracy and 

reliability of fault identification. This hybrid strategy takes advantage of Isolation Forest’s ability to quickly 

isolate outliers while utilizing XGBoost’s advanced pattern recognition to refine anomaly detection, reducing 

false positives and ensuring maintenance teams focus on critical system issues. Isolation Forest serves as the 

initial anomaly detection mechanism, analyzing historical sensor data – in this study, but could be also 

pressure, temperature, and vibration readings – to establish a model of normal operating behavior. By isolating 

outliers, it effectively flags deviations that may indicate potential failures. However, because Isolation Forest 

does not differentiate between minor fluctuations and critical anomalies, it can sometimes generate false 

positives, triggering unnecessary alerts. To refine these results, XGBoost is introduced as a second layer of 

analysis. 

XGBoost optimizes a regularized loss function: 

𝐿 = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)
𝑁
𝑖=1 + ∑ 𝛺(𝑓𝑘)𝐾

𝑘=1                                                           (14) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is loss function (e.g., Log Loss for classification, MSE for regression), 𝛺(𝑓𝑘) is regularization 

term to prevent overfitting, K number of trees, fk prediction function for tree k. 

Each XGBoost tree predicts the anomaly probability by using gradient boosting, where each new tree 

corrects the previous errors (Murphy, 2002): 

𝑔𝑖 =
𝜕𝐿

𝜕𝑦̂𝑖
, ℎ𝑖 =

𝜕2𝑦

𝜕𝑦̂𝑖
2                                                                    (15) 

where gi is gradient (first derivative of loss function), hi is hessian (second derivative of loss function). These 

terms adjust tree weights for better classification of anomalies. 

For each tree leaf, the new score is updated as: 

𝑤𝑗 = −
∑ 𝑔𝑖

∑ ℎ𝑖+𝜆
                                                                       (16) 

where wj is weight assigned to leaf j, λ is a regularization parameter. 

The final anomaly score is a combination of Isolation Forest’s anomaly score and XGBoost’s refined 

classification probability: 

Sfinal(x) = α⋅sIF(x)+(1−α)⋅PXGB(x)                                                     (17) 

where sIF(x) is Isolation Forest anomaly score, PXGB is XGBoost probability of being an anomaly and α a weight 

parameter (controls importance of each method). A higher Sfinal(x) means a higher likelihood of an anomaly. 

Gaussian Naïve Bayes is a probabilistic classification model widely applied in predictive maintenance, 

particularly for anomaly detection and failure prediction in industrial systems. It operates based on Bayes' 

theorem, modeling each feature as following a Gaussian distribution (Murphy, 2002; Xiao, 2022).  

The fundamental formula is: 

𝑃(𝐶𝑘|𝑋) =
𝑃(𝑋|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑋)
                                                                  (18) 

where 𝑃(𝑋|𝐶𝑘) is the posterior probability of class Ck given the feature vector X, 𝑃(𝑋|𝐶𝑘) is the likelihood, the 

probability of observing X given class Ck, 𝑃(𝐶𝑘) is the prior probability of class Ck, P(X) is the marginal 

probability of the feature vector X, serving as a normalizing constant. 

The assumption of Gaussian distribution allows the model to estimate the likelihood of different 

operating conditions based on historical sensor data, making it well-suited for systems where key parameters 

such as temperature, pressure, and vibration fluctuate within predictable ranges. Naïve Bayes assumes 

conditional independence of features, meaning: 

𝑃(𝑋|𝐶𝑘) = ∏ 𝑃(𝑋𝑖|𝐶𝑘)𝑛
𝑖=1                                                               (19) 

The predicted class is the one that maximizes the posterior probability: 

𝐶∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝐶𝑘
𝑃(𝐶𝑘|𝑋)                                                              (20) 

Despite its strengths, Gaussian Naïve Bayes has limitations that must be considered when applying it 

to predictive maintenance. The model assumes independence between features, which may not always hold 

true in complex industrial systems where multiple variables interact. This simplification can lead to misclassifications, 

particularly when the underlying data distribution deviates significantly from a normal Gaussian pattern. 

Additionally, the model does not capture intricate dependencies between parameters as effectively as more 

advanced machine learning methods such as tree-based models or deep learning approaches. 

Each of these eight machine learning models contributed with insights into anomaly detection, 

leveraging different mathematical approaches to identify deviations from normal operating conditions. 

Interestingly, some of the models identified similar patterns of abnormal behavior, reinforcing their reliability in 

predictive maintenance and suggesting consistency in detecting potential failures. 
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An important observation in this study was that Gaussian Naïve Bayes failed to detect any anomalies, 

making it unsuitable for inclusion in the final anomaly “voting” process. This is most likely due to the fact that 

Naïve Bayes relies on well-defined probability distributions and requires a larger dataset or extended training 

time to accurately learn the underlying patterns in the data. Given the complexity and variability of hydraulic 

pressure fluctuations, its assumptions about feature independence and Gaussian distribution may not have 

aligned well with the dataset, leading to an inability to effectively distinguish anomalies from normal operating 

conditions. This outcome underscores a broader challenge in artificial intelligence: the difficulty in predicting 

why certain models perform effectively in specific contexts while others fail to recognize meaningful patterns. 

Given its inability to identify anomalies in this dataset, Gaussian Naïve Bayes was excluded from the final 

decision-making process, ensuring that only models capable of reliably detecting deviations contributed to the 

"Council of the Wise voting” framework. 

The implementation of all machine learning models was carried out using Python 3.9. The experiments 

were conducted using widely adopted open-source libraries, including Scikit-learn, TensorFlow, Keras, 

XGBoost, NumPy, and Matplotlib. Model training and evaluation were performed on a workstation equipped 

with an Intel Core i7 processor, 32 GB of RAM, and the Ubuntu 20.04 LTS operating system. This configuration 

provided sufficient computational resources to train the models efficiently and ensured the reproducibility of 

results in a controlled and stable software environment. 

The dataset used in this study was recorded during real-life plowing operations in May 2023, using a 

Massey Ferguson 7700 S tractor equipped with a hydraulic pressure sensing system. In order to minimize 

external variability and isolate equipment behavior, an approximately constant torque level was maintained 

throughout the entire recording period, regulated by the onboard electronic control system. The dataset 

includes measurements sampled at a frequency of 20 Hz and later aggregated using harmonic means 

calculated over one-minute intervals, providing a stable temporal structure suitable for anomaly detection 

models. The models based on unsupervised learning, such as Isolation Forest, One-Class SVM, K-means, 

and Autoencoder, were trained using data presumed to represent normal system behavior, as no labeled 

anomalies were available at the time of analysis. For the deep learning models (Autoencoder and 1D CNN), 

the training was performed exclusively on segments of data identified as non-anomalous, with model 

evaluation conducted by observing reconstruction errors and deviation from learned representations. No 

separate validation dataset was required in the traditional supervised sense, as the focus of the analysis was 

on outlier and anomaly detection in time-series sensor data using models that learn from normal conditions. 

The detection results were cross-referenced with expert knowledge and system behavior to verify the 

correctness of anomaly localization. 

The decision to average the pressure values was based on the operational characteristics of hydraulic 

systems, where most mechanical degradation processes and failure precursors evolve over extended periods 

rather than instantaneously. High-frequency fluctuations, while relevant in some cases, can introduce 

unnecessary noise in anomaly detection models, potentially leading to false positives. By computing one-

minute mean values, we retained essential variations indicative of progressive component wear, valve 

inefficiencies, or pressure instabilities while minimizing the impact of momentary perturbations caused by 

sensor noise or minor operational transients. Additionally, reducing the data dimensionality improved 

computational efficiency. Despite this averaging process, the dataset still captured meaningful pressure 

variations associated with the hydraulic system’s health, ensuring that predictive maintenance insights were 

not compromised. 

 

RESULTS 

To comprehensively assess anomalies in the hydraulic system of the Massey Ferguson 7700 S tractor, 

seven machine learning models were applied: Isolation Forest, One-Class SVM, KMeans, DBSCAN, 

Autoencoders, CNNs, and XGBoost. Each of these models independently analyzed the sensor data, identifying 

deviations from normal operating conditions. 

Figure 2 presents a comparative analysis between Moving Average, Moving Median, and the 

anomalies detected by Isolation Forest in the hydraulic pressure data. The Moving Average smooths out short-

term fluctuations by averaging data points within a defined window, providing a clearer trend of pressure 

variations. Similarly, the Moving Median filters out transient spikes and noise, making it particularly effective in 

handling abrupt outliers that might distort the overall trend. A significant portion of the anomalies flagged by 

Isolation Forest aligns with points where the Moving Average and Moving Median exhibit noticeable deviations 

or sudden shifts, suggesting that the system experienced abnormal fluctuations in hydraulic pressure. 

However, while the Moving Average and Moving Median indicate general pressure trends, they do not 

inherently classify anomalies, unlike Isolation Forest, which explicitly isolates unusual patterns. 
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Fig. 2 – Moving Average and Moving Median compared with the anomalies detected by Isolation Forest  

in the hydraulic pressure data 

 

This comparison highlights that statistical smoothing techniques like Moving Average and Moving 

Median can aid in visually interpreting pressure fluctuations, but they lack the ability to proactively detect 

anomalies with the same precision as machine learning-based models. The observed correlation between 

some of the Isolation Forest anomalies and deviations in the statistical trends reinforces the effectiveness of 

machine learning models in predictive maintenance, as they can effectively differentiate between normal 

system variations and potential faults. 

The following figures (Figure 3 to 9) present the results of each machine learning model, showcasing 

their performance in detecting anomalies over time within the hydraulic pressure data. Each plot highlights 

pressure fluctuations and flagged anomalies, allowing for a comparative analysis of detection performance. 

 
Fig. 3 – Isolation Forest results 

 

 
Fig. 4 – One-Class SVM results 
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Fig. 5 – KMeans clustering results 

 

 
Fig. 6 – DBSCAN results 

 

 
Fig. 7 – Autoencoder results 

 

 
Fig. 8 – CNN results 
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Fig. 9 – XGBoost results 

 

 

Each figure provides a visual representation of how each algorithm performed in identifying anomalies, 

offering insights into their sensitivity, reliability, and potential limitations. The final anomaly decision (Table 3 

and Figure 10), however, was determined using the "Council of the Wise" method, where an anomaly was 

validated only if at least four out of the seven models concurred on its presence. This consensus-based 

approach enhances the robustness of anomaly detection by reducing false positives and ensuring that flagged 

anomalies are significant deviations from normal operating conditions. By integrating these machine learning 

models, a robust anomaly detection framework was developed, ensuring greater accuracy in predictive 

maintenance. The results demonstrate that while some models are more sensitive, others provide a higher 

precision in detecting real faults. 

Table 3 presents critical pressure anomalies identified 

through a consensus-based approach, where multiple 

machine learning models independently flagged specific 

points as outliers. These anomalies, identified under the 

specified experimental conditions, represent deviations from 

normal operational behavior in the hydraulic system of the 

Massey Ferguson 7700 S tractor. “The Council of the Wise” 

method, proposed in this study, combines the outputs of seven 

anomaly detection models (Isolation Forest, One-Class SVM, 

KMeans, DBSCAN, Autoencoders, CNNs, and XGBoost). 

Instead of relying on a single detection method, the approach 

ensures robustness by requiring that at least four models 

agree on an anomaly before it is classified as an outlier. This 

majority “voting” mechanism helps mitigate false positives and 

enhances detection accuracy. 

Each entry in the table corresponds to a timestamp 

(Time, in minutes) and a recorded pressure value (Pressure, 

in bar), which has been identified as anomalous. These 

anomalies may indicate incipient mechanical degradation, 

hydraulic system inefficiencies, or potential faults, such as: 

valve malfunctions, leading to sudden pressure drops or 

spikes; cavitation or fluid instability, which can create short-

term fluctuations in pressure; internal component wear, 

affecting system performance. 

Since pressure variations in hydraulic systems are 

inherently dynamic, the use of this “voting”-based ensemble 

method significantly could improve reliability in predictive 

maintenance. These flagged anomalies warrant further 

inspection and maintenance intervention before they evolve 

into critical failures, thereby reducing downtime and improving 

system longevity. 

Table 3 

Final anomalies 
 

Time (s) Pressure (bar) 

2164 151.71 

2175 151.81 

2186 151.81 

2203 151.83 

211 188.71 

247 188.62 

370 188.50 

378 145.43 

381 145.40 

483 188.52 

499 188.34 

500 145.03 

502 144.98 

504 145.13 

505 145.08 

507 145.05 

509 144.95 

515 144.95 

516 144.95 

591 188.80 

621 188.36 

633 188.34 

672 188.62 
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While this study focuses primarily on hydraulic pressure as a key indicator for predictive maintenance, 

additional sensor data – such as vibration, temperature, and load variation – were also collected during the 

experimental phase. However, to ensure clarity, reproducibility, and focus in this first phase of model 

evaluation, only pressure-based analysis was presented. These additional sensor signals are currently being 

processed and will be integrated into a multi-sensor anomaly detection framework in future work. The inclusion 

of multiple sensor streams is expected to enhance the robustness of the models and allow more nuanced fault 

detection and diagnostics. 

 
Fig. 10 – Final ”voted” anomalies 

 

CONCLUSIONS 

The final results, summarized in Table 3, confirm the effectiveness of the "Council of the Wise" 

approach in identifying critical anomalies in the hydraulic system of the Massey Ferguson 7700 S tractor. The 

detected anomalies indicate significant deviations from normal operating conditions, with pressure values 

fluctuating beyond expected ranges. This validates the robustness of the multi-model “voting” framework, 

which successfully filtered out noise, reduced false positives, and preserved the most relevant anomalies.  

The temporal distribution of anomalies reveals two key insights. Clusters of anomalies occurring within 

short intervals suggest transient mechanical instabilities, possibly due to sudden pressure surges, valve 

malfunctions, or localized hydraulic inefficiencies. In contrast, isolated anomalies at different time points 

indicate gradual wear or intermittent system irregularities that may not be detected by traditional threshold-

based monitoring. By using seven machine learning models, this ensemble-based approach improves 

predictive maintenance reliability by incorporating diverse detection capabilities. The ability to reduce false 

alarms while capturing early indicators of mechanical degradation enhances its practical applicability for 

agricultural machinery maintenance. While this study highlights the potential of the approach, future research 

could further refine adaptive sampling techniques to enhance data utilization. Retaining raw high-frequency 

sensor data where beneficial, alongside dynamic aggregation methods, may improve both detection accuracy 

and computational efficiency. Additionally, optimizing the data preprocessing pipeline could help achieve a 

better balance between real-time responsiveness and long-term trend analysis. This study focused primarily 

on hydraulic pressure as an indicator, but incorporating additional sensor data – temperature fluctuations, 

vibration analysis, mechanical load variations, and fuel consumption metrics – could provide a more 

comprehensive failure prediction framework. Expanding monitored parameters would enhance fault detection 

accuracy, root cause analysis, and predictive capabilities. 

It is acknowledged that under typical agricultural operations, torque is not constant and may vary due 

to factors such as soil resistance, implement load, or maneuvering dynamics. In the current experimental 

setup, torque was intentionally held approximately constant in order to isolate the effects of internal system 

behavior on hydraulic pressure, and to validate the ability of machine learning models to detect anomalies 

under controlled conditions. Future stages of this research will involve data collection under variable torque 

conditions, representing more realistic operating environments. This will allow the models to learn and adapt 

to fluctuations caused by load dynamics, and assess the robustness of anomaly detection under more complex 

field conditions. 



Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 

948 

Overall, these findings demonstrate that the multi-model “voting” framework is a promising predictive 

maintenance methodology, offering a reliable, automated, and proactive solution for identifying failures before 

they escalate into costly breakdowns. Future research should explore its adaptability to different agricultural 

machinery types and operational conditions, refining the approach through advanced AI techniques and real-

time deployment. 
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