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ABSTRACT 

To achieve fast and accurate detection of wheat impurities, this study proposes an improved YOLOv8-based 

algorithm that targets three typical impurity types: bran, straw, and spike. The original C2f module is replaced 

with the C2f_UIB structure from MobileNetV4 to reduce model complexity, and a High-level Screening Feature 

Pyramid Network (HS-FPN) is integrated to enhance multi-scale feature fusion. Additionally, a Generalized 

IoU loss function is adopted to improve detection robustness in dense impurity scenarios. The optimized model 

is deployed on an embedded Jetson Nano platform for real-time inference, coupled with an industrial camera 

and LED lighting system. To validate its practical effectiveness, an indoor experimental setup was constructed 

to simulate field conditions. A total of 30 wheat samples were tested, and results demonstrate high consistency 

between system detection and manual annotation, with minimal deviation across all impurity types. The 

proposed algorithm exhibits excellent accuracy, lightweight characteristics, and strong potential for deployment 

in intelligent agricultural equipment. 

 

摘要  

为实现对小麦杂质的快速准确检测，本文提出一种基于改进 YOLOv8 的杂质识别算法，主要针对三类典型杂

质：麦麸、秸秆和麦穗。该算法将 YOLOv8中的 C2f模块替换为 MobileNetV4的 C2f_UIB结构，以降低模型

复杂度，并引入高级筛选特征金字塔网络（HS-FPN）以提升多尺度特征融合能力。此外，采用广义 IoU 损失

函数以增强高密度杂质场景下的检测鲁棒性。优化后的模型部署于 Jetson Nano嵌入式平台，并结合工业相机

与 LED 面光源构建图像采集系统，实现了模型的实时推理。为验证其实际应用效果，搭建室内试验平台模拟

田间作业环境，对 30 组小麦样本进行了检测实验。结果显示，系统识别结果与人工标注高度一致，各类杂质

检测误差极小，表明所提算法具备良好的检测精度、轻量化特性及农业装备部署应用潜力。 

 

INTRODUCTION 

 Wheat is one of the most important staple crops globally, playing a critical role in food security and 

economic development. However, the presence of impurities such as straw, wheat bran, and other foreign 

materials during the harvesting process significantly affects the quality and market value of wheat. Traditional 

methods for impurity detection rely heavily on manual labor, which is not only time-consuming but also prone 

to human error. With the aging agricultural workforce and rising labor costs, there is an urgent need for 

automated and precise impurity detection systems to improve the efficiency and quality of wheat harvesting.

 In early research on visual impurity detection in agriculture, traditional image processing techniques 

such as color thresholding and morphological filtering were commonly used. 

 Chen et al. (2020) proposed a machine vision-based real-time impurity detection system for rice 

combine harvesters, employing decision tree algorithms to classify grain morphological features (A1-A6). The 

integrated lateral illumination system and decision tree model achieved 76% classification accuracy on training 

datasets, establishing a foundation for real-time parameter optimization in harvesting machinery.  

 Marjanović et al. (2018) developed a rainfall-triggered landslide prediction model using decision tree 

algorithms to analyze precipitation data from 2001-2014. Critical thresholds of 30 mm rainfall in 2-3 days and 

140 mm cumulative rainfall over 30 days were identified, revealing dominant mechanisms of medium-term 

rainfall impacts on landslides in Western Serbia.  

 Ok et al. (2012) applied random forest with parcel-based analysis to SPOT5 imagery crop 

classification, achieving 85.89% overall accuracy (8% improvement over maximum likelihood methods), 

demonstrating superiority in multispectral interpretation.  
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 Mavridou et al. (2019) systematically reviewed agricultural machine vision technologies across seven 

domains (fruit grading/yield estimation/disease detection), analyzing multi-sensor integration strategies to 

guide precision agriculture implementation.  

 These traditional methods are limited by their reliance on handcrafted features, low adaptability to 

complex environments, and difficulty in handling high-density impurity scenarios. In contrast, deep learning 

techniques have shown great potential by leveraging convolutional neural networks (CNNs) to automatically 

extract multi-level semantic features. 

 Deep learning overcomes these limitations by leveraging convolutional neural networks (CNNs) to 

automatically extract multi-level features.  

 Shen and Zhao (2021) proposed a lightweight YOLOv3-based detection model for peanut sorting 

systems, solving missed detection problems while ensuring real-time inference on CPUs. 

 Qi et al. (2023) designed a GhostNet-based pest detection model with attention-guided receptive field 

fusion, achieving high mAP and FPS under lightweight constraints. 

 Shi et al. (2023) developed a DCGA-YOLOv8 system for multi-crop navigation line extraction, 

achieving 98.9%-100% correct clustering rates for cabbage/kohlrabi/rice. The integration of threshold-

optimized DBSCAN and B-spline curve modelling enabled safe agricultural machinery path planning.  

 Jia et al. (2024) proposed ADL-YOLOv8 for weed detection, incorporating AKConv networks and 

DySample upsampling. The model improved mAP@0.5 by 3.07% while maintaining 15.77% compression rate, 

providing lightweight high-precision solutions for smart weeding devices.  

 Zhang et al. (2024) built HR-YOLOv8 for crop growth monitoring using dual self-attention mechanisms 

and parallel feature fusion. The model enhanced detection accuracy by 5.2% for oil palm and 0.6% for 

strawberries, enabling high-resolution feature preservation.  

 Jiang et al. (2022) optimized YOLOv7 with CBAM attention modules for Muscovy duck flock counting, 

achieving 98.6% accuracy and 2.3% mAP@0.5 improvement over baseline models, supporting automated 

density monitoring in poultry farming.  

 Wang et al. (2022) streamlined YOLOv5s for real-time apple calyx/stem recognition via detection head 

search and channel pruning. The compressed model achieved 25.51 FPS on CPUs with 93.89% accuracy, 

enabling efficient automated sorting.  

 Mathew and Mahesh (2022) deployed YOLOv5 for bell pepper bacterial spot detection, implementing 

whole-image feature extraction to identify micro-lesions, providing early disease warnings for mobile 

agricultural systems.  

 These studies highlight that deep learning not only supports real-time multi-target recognition in 

complex scenes, but also enables flexible model design through end-to-end training. 

 In the domain of wheat impurity detection, several notable deep learning-based methods have 

emerged recently. 

 Zhou et al. (2023) proposed WheNet, an Inception-v3-based CNN that achieved 98.59% Top-1 

accuracy for classifying wheat and five impurity types. 

 Li et al. (2023) combined terahertz 3D imaging with a metaheuristic RetinaNet model (AHA-RetinaNet-

X), obtaining over 95% accuracy for impurity classification in non-destructive testing. 

 Chen et al. (2022) developed Ro-YOLOv5 based on rotated bounding boxes and Circular Smooth 

Labels, significantly improving impurity detection in wheat CT images. 

 However, many of these approaches rely on complex imaging systems (e.g., THz, CT), large-scale 

models, or lack the ability to run in real-time on resource-limited embedded devices. In addition, some methods 

focus on image classification rather than instance-level detection and localization, which limits their deployment 

in actual harvesting scenarios. 

 To address these challenges, this study proposes a lightweight wheat impurity detection algorithm 

based on an improved YOLOv8 architecture, integrating a Universal Inverted Bottleneck (UIB) module for 

computational efficiency, a High-level Screening Feature Pyramid Network (HS-FPN) for multi-scale fusion, 

and a GIoU-based loss function for robust object localization. The model is deployed on a Jetson Nano 

embedded platform with industrial camera input, and validated through indoor experiments simulating real-

world conditions. Compared with existing methods, our approach achieves high accuracy, fast inference, and 

low computational cost, making it highly suitable for intelligent agricultural equipment in modern farming 

environments. 
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MATERIALS AND METHODS 

 The wheat used in this study was provided by the Xizhai Agricultural Machinery Cooperative in 

Tianzhuang Town, Pingdu City, Qingdao, Shandong Province. The wheat was harvested using a combine 

harvester. The main impurity categories included wheat bran, straw, and spikes, which are the most common 

and representative types of impurities during the wheat harvesting process. 

 Wheat bran refers to fragments of the outer shell and germ produced during threshing. It is typically 

yellow or brown and has a regular shape. Straw is the residual stem of wheat plants with a smooth surface 

and varying thickness, appearing yellow or light yellow in color. Spikes are yellow or brown and usually consist 

of multiple unthreshed wheat kernels adhered together. Sample images of these impurities are shown in Figure 

1. 
 

 
 

Fig. 1 - Partial Wheat Impurity Samples  

 

 

 The image acquisition system used a Hikvision MV-CS060-10GC industrial camera equipped with a 

Hikvision MVL-HF0828-6MPE lens. The camera supported a maximum resolution of 3072×2048 pixels. During 

image capture, an acrylic tray was used to hold the wheat samples, and the shooting distance was fixed at 95 

mm. The output image resolution was set to 2048×2048 pixels to ensure clarity and preserve the visual 

characteristics of the impurities. This also helped improve the precision of the subsequent labeling process. In 

total, 720 wheat images were collected. 

 The dataset was annotated using the X-AnyLabeling-GPU software and saved in YOLO format. To 

improve the model’s generalization and robustness, the dataset was augmented through operations such as 

mirror flipping, 30° rotation, and brightness adjustment. A total of 2,140 images were selected for training, with 

the training and validation sets divided at a ratio of 8:2. The Mosaic augmentation function of YOLOv8 was 

also enabled during training to further enhance model robustness. 

 During wheat harvesting, the straw and spike impurities vary significantly in size and shape. 

Moreover, the relatively small sample size for these two categories makes accurate detection more 

difficult. While existing object detection algorithms can barely  meet basic requirements, they often suffer 

from high complexity and large model parameters. Therefore, this study chose to improve the YOLOv8 

model to better suit the task.  

 To enhance computational efficiency while maintaining accuracy and better utilize the computing 

power of the device, the Bottleneck module in the YOLOv8 C2f module was replaced with the Universal 

Inverted Bottleneck (UIB) module from MobileNetV4, forming a new structure named C2f_UIB. To improve 

the extraction of impurity features with diverse scales and shapes, the original PANet feature fusion 

network was replaced by the High-level Screening Feature Pyramid Network (HS-FPN). Compared with 

PANet, HS-FPN achieved better multi-scale feature fusion with fewer parameters. The network structure 

of the improved YOLOv8 model is illustrated in Figure 2. 
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Fig. 2 - Improved YOLO v8 Lightweight Network Model  

 
Universal Inverted Bottleneck 

 The Universal Inverted Bottleneck (UIB) was a lightweight network architecture introduced by 

MobileNetV4 to improve the efficiency of object detection  (Qin et al., 2024). The UIB module significantly 

reduced the number of parameters and computational load by incorporating two optional depthwise 

convolutions (DW) into the Inverted Bottleneck (IB). Its core idea was to treat deep convolution as a 

variable structure by sharing common components such as pointwise expansion and projection. This 

design effectively reduced computational redundancy and optimized resource utilization efficiency.

 Compared with the conventional Bottleneck structure used in the C2f module, the UIB module 

offered greater efficiency under limited computing resources. By replacing the Bottleneck in the C2f 

module with the UIB, an improved module named C2f_UIB was constructed. Experimental results 

demonstrated that the new module greatly reduced computation and memory usage without sacrificing 

performance. This improvement was of practical significance for large-scale deep learning tasks, 

especially in resource-constrained environments such as edge devices or mobile applications. The 

application of the C2f_UIB module further confirmed the potential and practical value of lightweight design 

for efficient object detection. 

 
Fig. 3 – UIB Module Structure Diagram 
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Feature fusion network HS-FPN 

 The High-level Screening Feature Pyramid Network (HS-FPN) was a multi-scale feature fusion 

structure designed to enhance the attention and semantic understanding capabilities of the model when 

detecting impurities of different sizes, particularly straw and spikes. The HS-FPN framework consisted of 

two major components: a feature selection module and a feature fusion module (Chen et al., 2023). These 

modules worked together to aggregate features of varying semantic depths and spatial resolutions, thus 

providing more accurate and informative representations for impurity detection. The improved HS-FPN 

structure adapted to the YOLOv8 backbone is shown in Figure 4. 

 

 
 

Fig. 4 – HS-FPN Structure Diagram 
 

 The feature selection module aimed to filter and reweight the multi-scale feature maps using a 

channel attention (CA) mechanism. As shown in the figure, the CA module first processed the input feature 

map using global average pooling and global max pooling to calculate the weights of each channel. These 

weights were then passed through a Sigmoid activation function to determine their importance. The 

weighted values were used to enhance the original feature map, emphasizing the most relevant feature 

channels for detection.  

 The feature fusion module served as the core component of HS-FPN. It combined feature maps of 

different resolutions to enhance the model’s representational ability. Within this module, the Selective 

Feature Fusion (SFF) mechanism was used to selectively merge feature information. 

 The fusion process included two SFF blocks. Firstly, the high-level features with a size of 𝑓ℎ𝑖𝑔ℎ ∈

𝑅𝐶×𝐻×𝑊 was up sampled via transposed convolution (T-Conv) to obtain 𝑓ℎ𝑖𝑔ℎ−𝑇 ∈ 𝑅𝐶×2𝐻×2𝑊 matching the 

scale of lower-level features. The channel attention module generated a weight vector  𝑓𝐶𝐴 ∈ 𝑅𝐶×1×1 , which 

was used to reweight the low-level feature 𝑓𝑙𝑜𝑤  The final fused feature output was calculated by the 

weighted addition of both: 

𝑓𝑜𝑢𝑡 = 𝑓𝑙𝑜𝑤 × 𝑓𝐶𝐴 + 𝑓high−T                                               (1) 

 This process enabled the model to leverage both detailed and abstract features. The transposed 

convolution and CA module jointly reconstructed the high-level features and facilitated their integration 

with low-level semantics. The optimization of this fusion strategy improved multi -scale feature utilization 

and overall detection performance. 

 

Optimize loss function 

 The original YOLOv8 model employed the Complete IoU (CIoU) loss function for bounding box 

regression. However, CIoU suffered from ambiguity in aspect ratio representation and was not well -suited 

for high-density target detection. To overcome these limitations, this study adopted the Generalized IoU 

(GIoU) loss, which introduced the concept of an inclusion box.  
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 GIoU not only measured the overlap between predicted and ground truth boxes but also quantified 

their spatial relationship when no intersection existed, thus providing richer gradient information for 

optimization (Zhang et al, 2022). 

 In high-density impurity scenes, GIoU utilized the surrounding region to enhance robustness under 

occlusion and tight target spacing. Moreover, its simplified formulation reduced normalization overhead 

and lowered computational complexity. These advantages made GIoU better suited for detecting varied-

scale impurities under dense distribution, offering a more stable optimization path.  

 
Fig. 5 – GIoU Loss Function 

 The GIoU is defined as: 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶∖(𝐴∪𝐵)|

|𝐶|
                                                          (2) 

where：𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
：represents the intersection and union ratio of the prediction box and the real box. 𝐶 

: It’s the minimum closure rectangle containing the prediction box and the real box |𝐶 ∖ (𝐴 ∪ 𝐵) : It’s the 

area in the closure rectangle that does not belong to the union of the prediction box and the real box. |𝐶| 

: It’s the area of the closure rectangle. 

 The corresponding GIoU-based loss function is: 

𝐿𝐺𝐼𝑜𝑈 = 1 − 𝐺𝐼𝑜𝑈                                                             (3) 

 This design not only reduced computational cost but also improved detection reliability in dense 

impurity scenarios. 

 

Indoor Experimental Setup 

 To evaluate the proposed impurity detection model under practical conditions, an indoor 

experimental system was constructed to simulate the post-harvest wheat impurity collection environment. 

The system consisted of a sampling box, an industrial camera (Hikvision MV-CS060-10GC), a rectangular 

LED light source, and a Jetson Nano embedded processor for real-time inference, as shown in Figure 6. 

 
Fig. 6 - Structure of the indoor impurity detection system. 

 

 The camera was fixed at a certain height above the observation window to ensure clear imaging of 

the wheat samples. The interior of the sampling box was coated with matte material to reduce light 

reflection and background interference. During each test, wheat samples were spread fully across the 

sampling area, and the system automatically captured images under stable lighting conditions. The 

collected images were then processed in real time by the YOLOv8 detection model deployed on the Jetson 

Nano platform. 
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 This setup replicated key aspects of a combine harvester's impurity output environment and enabled 

controlled validation of the model's detection accuracy. A total of 30 samples were tested in this 

configuration, forming the basis for performance evaluation described in the Results section.  

 

RESULTS 

Test environments and parameter configuration 

 The experimental environment is Windows10 operating system, the CPU is AMD EPYC 7402 24-Core 

Processor, the main frequency is 2.79 GHz, the Python 3.9.7 development environment is used, the deep 

learning framework is Pytorch1.12.1, the GPU uses NVIDIA GeForce RTX 3090 for computing acceleration, 

and the GPU runs memory of 24 GB. The software environment is configured as CUDA12.2. The input image 

size is 640 pixels × 640 pixels, the training rounds are set to 300 rounds, the batch size is set to 16, and the 

optimizer is SGD. 

 

Evaluating indicator 

 In the task of wheat impurity detection, it is essential to consider the model's accuracy, size, and 

deployment feasibility on edge devices. To objectively evaluate the performance of the target detection 

algorithms, this study employs a series of standardized evaluation metrics, including precision (P), recall (R), 

and mean average precision (mAP), alongside the model's memory usage and parameter count for a 

comprehensive performance comparison. These metrics collectively provide a thorough quantitative 

assessment of the model's precision, efficiency, and resource consumption in practical applications.  

 The calculation formula is as follows： 

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                                                                   (4) 

𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                                                                  (5) 

𝑚𝐴𝑃 =
∑ 𝐴𝑁

𝑖=1 𝑃𝑖

𝑁
                                                                           (6) 

 Precision measures the proportion of correctly predicted positive samples among all predicted positives, 

where 𝑇𝑝 is the number of correctly detected positive samples and 𝐹𝑝 is the number of false positives; Recall 

measures the proportion of actual positive samples detected by the model, where 𝐹𝑛 is the number of missed 

positive samples; mean Average Precision is the average of the precision-recall curve area across all classes, 

with 𝑁 being the total number of classes, and mAP comprehensively reflects the overall performance of the 

model in multi-class detection tasks. 

 

Comparative test analysis of different algorithms 

 To evaluate the effectiveness of the proposed improved YOLOv8 model, it was compared with 

mainstream detection models, including Faster R-CNN, YOLOv5s, YOLOv7-Tiny, and the original YOLOv8n. 

As shown in Table 1, the improved model achieved the highest accuracy rate, recall rate, and average 

accuracy, outperforming all baseline models. Specifically, compared to YOLOv8n, the improved model 

increased accuracy by 1.0%, recall by 0.9%, and average accuracy by 1.3%. Notably, the model size was 

reduced by 46.7%, and parameter quantity decreased by 28.4%. This demonstrates that the lightweight design 

and multi-scale fusion effectively balance performance and efficiency. While YOLOv7-Tiny achieved 

comparable accuracy, its recall rate and average accuracy were inferior, and its parameter count remained 

higher. Traditional models like Faster R-CNN exhibited significantly lower performance and excessive resource 

consumption, highlighting the superiority of the proposed lightweight improvements. 

Table 1 
Model Performance Comparison 

Models  
accuracy 

rate  
recall 
rate  

average 
accuracy  

model 
memory usage 

parameter 
quantity 

[%] [%] [%]  [MB] x 109 [FLOPS] 

Faster R-CNN 79.6 82.1 45.3 315.6 137.2 

YOLOv5s 92.3 93.8 96.7 13.7 16.5 

YOLOv7-Tiny 93.5 94.6 96.6 11.7 13.2 

YOLO v8n 93.2 93.6 97.4 6.0 8.1 

YOLO v8n+UIB+HSFPN+GIOU 94.2 94.5 98.7 3.2 5.8 
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 Figure 7 shows the comparison between the improved model and YOLOv8n in terms of accuracy, recall 

and average accuracy. On the whole, our method performs better than YOLOv8n on all indicators. 

 
Fig. 7 – Performance curves of YOLOv8 model and improved YOLOv8 model 

 

 As demonstrated in Figure 8, the enhanced YOLOv8 model exhibits superior detection performance 

relative to the original architecture, with notable improvements in impurity recognition capability. The optimized 

model achieves reduced occurrence of both missed detections and false positives, while demonstrating higher 

confidence scores in accurate impurity identification. 

 

 
Fig. 8 – Comparison of model detection effects 

Ablation test 

 Ablation experiments were conducted to validate the contribution of each proposed improvement. As 

shown in Table 2, the baseline YOLOv8n achieved 93.2% accuracy, 93.6% recall, and 97.4% mAP. Introducing 

the UIB module alone slightly improved accuracy but reduced model memory usage by 11.7% and parameters 

by 13.6%. Replacing PANet with HS-FPN yielded more significant gains: accuracy increased to 93.7%, recall 

to 94.6%, and mAP to 97.8%, with a 33.3% reduction in memory. Using GIoU loss alone improved recall and 

mAP without affecting model size. Combining UIB+HSFPN achieved 93.8% accuracy, 94.4% recall, and 98.3% 

mAP, while reducing memory to 3.2 MB. Finally, integrating all three improvements achieved optimal 

performance: 94.2% accuracy, 94.5% recall, and 98.7% mAP, confirming the synergistic effect of lightweight 

design, multi-scale fusion, and loss optimization.  
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Table 2 

Ablation experiment 

Models  

Accuracy 

rate  

Recall 

rate  

Average 

accuracy  

Model memory 

usage 

Parameter 

quantity 

[%] [%] [%]  [MB] x 109 [FLOPS] 

YOLOv8n 93.2 93.6 97.4 6.0 8.1 

YOLOv8n+UIB 93.4 93.5 97.4 5.3 7.0 

YOLOv8n+HSFPN 93.7 94.6 97.8 4.0 6.9 

YOLOv8n+GIoU 93.6 94.3 97.7 6.0 8.1 

YOLOv8n+UIB+HSFPN 93.8 94.4 98.3 3.2 5.8 

YOLOv8n+UIB+HSFPN+GIoU 94.2 94.5 98.7 3.2 5.8 

 

Indoor Test and Validation 

 To evaluate the practical performance of the proposed wheat impurity detection algorithm, an indoor 

test was conducted under simulated harvesting conditions. The experimental setup was described in detail in 

the Materials and Methods section. 

 A total of 30 wheat samples were tested. For each sample, the system automatically captured images 

and detected three impurity types: wheat spike, bran, and straw. The recognition results were displayed in 

real-time and recorded for statistical analysis. Figure 9 shows the indoor test platform, and Figure 10 presents 

representative detection results. 

 

 
Fig. 9 – The indoor test 

 

 
Fig. 10 – Comparison of impurity counts for systematic detection and manual annotation 

 

 According to the statistics, the model achieved high detection consistency. Only one sample had a 

single-object deviation in spike detection, and two samples had minor deviations in straw detection. Among 

the 162 bran targets, only six samples showed a one-object difference. These results validate the model’s 

detection accuracy and robustness under realistic lighting and target distribution conditions. 

 The experimental outcomes further demonstrate the model’s deployment potential in embedded 

platforms for intelligent agricultural equipment. 
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CONCLUSIONS 

 This study proposed an improved YOLOv8-based wheat impurity detection algorithm, focusing on 

lightweight design, multi-scale feature fusion, and enhanced loss function. By integrating the Universal Inverted 

Bottleneck (C2f_UIB), High-level Screening Feature Pyramid Network (HS-FPN), and GIoU loss, the model 

achieved a significant reduction in computational cost while maintaining high detection accuracy. 

 The detection system was deployed on a Jetson Nano embedded platform and validated through indoor 

experiments simulating post-harvest impurity collection conditions. The experimental results demonstrated 

high recognition consistency and robustness, with most impurity categories exhibiting only minimal detection 

deviation. 

 Compared with existing mainstream detection models, the proposed approach offers a balanced trade-

off between accuracy and efficiency, making it well-suited for real-time deployment in intelligent agricultural 

machinery. This work provides a practical reference for the application of deep learning in grain impurity 

detection, and lays a foundation for future field experiments and system integration. 
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