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ABSTRACT 

The efficiency and quality of tobacco leaf harvesting are crucial for the economic performance of the tobacco 

industry. To enhance harvesting efficiency, a non-destructive tobacco leaf harvesting robot based on machine 

vision and robotics technology was developed. Experimental evaluations of key components demonstrated 

that the biomimetic flexible gripper based on the fin ray effect has good stiffness when the clamping force is 

2.5 N, ensuring stable subsequent harvesting and collection of tobacco leaves. The introduction of a 6+1-axis 

robotic arm significantly expands the working range compared to the original 6-axis design, effectively covering 

the height of the tobacco stalk. The robotic arm's speed notably affects harvesting time (P < 0.001), with 1.2 

m/s identified as optimal for balancing recognition efficiency and success rates. Additionally, exposure time 

plays a critical role in success rates (P < 0.001), achieving peaks of 90.00% in the morning and 83.33% in the 

afternoon at 40000 μs. These advancements enhance tobacco harvesting technology and provide valuable 

insights for intelligent crop harvesting. 

 

摘要 

烟叶采摘的效率和质量对烟草行业的经济效益至关重要。为了提高采摘效率，基于机器视觉和机器人技术开发

了一种无损烟叶采摘机器人。关键部件的实验评估表明，基于鳍条效应的仿生柔性夹爪在夹紧力为 2.5 N 时具

有良好的刚度确保了后续烟叶采摘和回收的稳定性。引入的 6+1 轴机械臂相比原有的 6 轴设计，显著扩展了工

作范围，有效覆盖了烟草柱的高度。机械臂的速度显著影响采摘时间（P < 0.001），1.2 m/s 的速度被确定为平

衡识别效率和成功率的最佳值。此外，曝光时间对成功率也有关键作用（P < 0.001），上午和下午在 40000 μs

时成功率分别达到 90.00%和 83.33%。这些进展提升了烟叶采摘技术，并为农作物智能采摘提供了借鉴。 

 

INTRODUCTION 

Tobacco leaves represent a significant economic crop, with a vast global market for planting and 

consumption (Liu S. X. et al, 2015). Harvesting tobacco leaves is a critical process in the tobacco production 

chain, where efficiency and quality directly influence the economic benefits of the tobacco industry (Bu L. X. et 

al, 2020). Currently, tobacco leaf harvesting is predominantly manual, characterized by high labor intensity, 

long hours, and substantial costs. Moreover, variations in subjective awareness and technical skills among 

workers can easily lead to damage and contamination of the leaves, adversely affecting both quality and yield  

(Xu Y. C. et al, 2016). The introduction of automated harvesting machinery has greatly improved efficiency. 

Research in this field led Li Yang et al, (2022) to develop a semi-automated tobacco harvesting machine, in 

which optimal parameters for the harvesting mechanism were determined through experimental trials, resulting 

in improved efficiency. However, the damage rate still exceeds 20%. Similarly, Ma Sijie et al, (2024), focused 

on designing and optimizing the key structures of automated tobacco harvesting machinery, employing 

experimental design methods to establish optimal harvesting parameters and successfully reducing the 

damage rate to below 10%, though this figure remains relatively high.  
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Overall, existing bulk automated harvesting solutions often result in significant damage to tobacco 

leaves, limiting their practical application in production. 

The integration of machine vision and robotic technology presents a promising solution for tobacco leaf 

harvesting (Jin Y. et al, 2020). Machine vision enables rapid identification and localization of leaf maturity, while 

robotic technology allows for precise execution of harvesting actions. This combination not only enhances the 

success rate of harvesting but also significantly reduces damage to the leaves, achieving an intelligent and 

precise harvesting process. While these technologies have been widely applied in harvesting other agricultural 

products (Shu Y. F. et al, 2024), their implementation in tobacco leaf harvesting remains rare (Zhi H.E. et al, 

2023). The primary challenges in applying machine vision and robotics to tobacco harvesting include: 1) 

ensuring harvesting stability and effectiveness, which necessitates designing actuators with good enveloping 

characteristics and appropriate stiffness for damage-free harvesting; 2) achieving seamless integration of 

agronomy and machinery, requiring an organic combination of maturity identification and harvesting 

procedures to enhance efficiency; 3) maintaining high visual recognition success rates in complex 

environments, which involves breakthroughs in recognition technology, improvements in recognition efficiency, 

and methods for actuator matching. 

To address these challenges, this study develops an intelligent, damage-free tobacco harvesting robot 

based on machine vision. The focus is on innovatively designing the end-effector structure for tobacco leaves, 

optimizing the harvesting path of the robot in conjunction with agronomy, and fine-tuning key parameters of 

the vision system through field tests to achieve a comprehensive solution for an efficient and stable tobacco 

harvesting system. This research not only advances tobacco harvesting technology, enhancing both efficiency 

and quality, but also provides valuable insights for the intelligent harvesting of other crops, holding significant 

practical application value. 

 

MATERIALS AND METHODS 

Machine structure and workflow 

Machine structure 

The developed intelligent, non-destructive tobacco harvesting robot, shown in Fig. 1, features a tracked 

mobility system, a 6+1-axis robotic arm, an end-effector, a depth camera, and a control system. The tracked 

mobility system ensures excellent terrain adaptability for flexible movement in complex agricultural 

environments, enhancing operational efficiency. The 6+1-axis robotic arm adds a vertical degree of freedom, 

allowing seamless integration with tobacco harvesting operations to improve efficiency. The end-effector 

employs a novel soft-hard gripping structure designed to maximize precision and efficiency while minimizing 

leaf damage. The control system integrates path planning, obstacle avoidance, and multi-task coordination, 

dynamically adjusting the arm's trajectory based on real-time visual feedback to ensure safety and stability. Its 

compact, modular design facilitates maintenance and upgrades, automating harvesting operations and 

enhancing intelligence through integrated vision and motion control, demonstrating significant application 

potential. 

 
Fig. 1 – Machine Structure of the Tobacco Harvesting Robot 
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Workflow 

The control system connects the end-effector, sliding device, robotic arm, and visual sensors via a 

central controller to facilitate automated and intelligent tobacco harvesting (Fig. 2). The process begins with 

program initiation, positioning the depth camera at the recognition point and issuing a recognition command. 

If obstructions are detected, the camera requests trajectory planning. The vision system identifies the petiole 

of the tobacco leaf, calculates the coordinates and angular orientation of the harvesting point, and transmits 

this data to the controller. The robotic arm then moves the end-effector to the harvesting point to complete the 

process. The system enters standby mode, ready to resume recognition and harvesting upon receiving new 

commands, concluding operations only when a stop command is issued. 

 
Fig. 2 – Workflow Diagram of the Tobacco Harvesting Robot 

 

Design and Verification of the End Effector 

Design of gripper structure 

This study utilizes a gripper-style end-effector that combines gripping, harvesting, and transport 

functions. The design and optimization of the gripper structure are essential for effectively grasping and moving 

tobacco stems. After gripping and cutting the leaves, rapid transportation is needed, necessitating strong 

envelopment and structural rigidity. The fin-effect gripper must balance these functions through targeted design. 

An improved fin-effect gripper was developed, as illustrated in Fig. 3. The skeleton is made from thermoplastic 

polyurethane elastomer (TPU), which offers excellent elasticity and support, while the soft silicone contact 

surface securely envelopes the tobacco leaves. The gripper features ribs that are thicker in the center and 

taper toward the edges, with outer joints designed to taper based on deformation needs and inner joints further 

thinned. This design aligns with the leaf stem's cross-sectional profile and the clamps' rigidity requirements. 

  
Fig. 3 – The structure design of fin gripper Fig. 4 – The physical properties testing of tobacco 

leaves and stems 

The material model parameters of tobacco 

The gripper structure is composed of two hyperelastic materials: TPU and silicone. The TPU material 

closely fits the second-order Mooney-Rivlin model, and its strain energy function is expressed as:  

 10 1 01( 3) CW C I I= − + 2（ - 3） (1) 

where W represents the strain energy, [MPa]; C10 and C01 are material parameters, [MPa]; I1 and I2 are the 

first and second strain invariants, respectively, with material parameters set as C10=2.101MPa and 

C01=0.105MPa (Guan Y. K. et al, 2023). 
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The second-order Yeoh model effectively characterizes silicone rubber, and its strain energy density 

function is expressed as: 

 
2

10 1 20 2( 3) ( 3)W C I C I= − + −  (2) 

where C10 and C20 are material parameters set at 0.11 MPa and 0.02 MPa, respectively (Polygerinos P. et al, 

2015). 

The physical properties of tobacco leaf stems were determined through experimentation, with 

equipment and samples shown in Fig. 4. The tobacco leaves used in the experiment were collected from the 

Modern Tobacco Planting Demonstration Base in Malong District, Qujing City, Yunnan Province, China, and 

belong to the Yunyan 301 variety. Thirty mature and harvested tobacco leaves were randomly selected. The 

leaf blades were removed, retaining only the stems, which were cut into approximately 12 mm segments. Axial 

compression, radial compression, axial shear, and radial shear tests were conducted on the leaf stems using 

an electronic universal testing machine (ZQ-990). The density of the leaf stems was measured using the 

drainage method with an electronic balance (LQ-C20002) and a graduated cylinder. Due to slight variations in 

the shape and size of the test stems, each test was repeated 10 times, and the average value was calculated. 

The leaf stems were assumed to be transversely isotropic, meaning the radial and chord directions share the 

same modulus parameters. The final physical property parameters of the leaf stems are shown in Tab. 1, and 

Poisson's ratio was calculated using the following equations: 

 1
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Table 1 

The physical property parameters of tobacco leaves and stems 

Parameters 
Elastic modulus [MPa] Shear modulus [MPa] Poisson’s ratio Density [kg·m-3] 

EX EY/EZ GXY/GXZ GYZ vXY/vXZ vYZ ρ 

Values 5.34 3.95 1.93 1.84 0.38 0.07 993.30 

 

Finite element analysis of clamping force 

Nonlinear static analysis was conducted using ANSYS Workbench. A simplified clamp model was 

imported, focusing on the clamping and wrapping behavior on the left side of the tobacco stem. Fillets and 

small step features were removed, and material connections were simplified to surface contact for enhanced 

computational efficiency. New materials were defined in the material library based on the given parameters 

and assigned to each part of the clamp. Friction contact was established between the silicone and the surface 

of the tobacco stem, while bonded contact was defined between the inner silicone surface and the TPU. A 

nonlinear meshing strategy was applied, generating first-order hexahedral elements to ensure computational 

efficiency and stability. To determine the optimal clamping force of the redesigned clamp, a fixed constraint 

was applied to the cylindrical hole of the clamp, while a lateral displacement constraint was added at the base 

of the stem. A clamping force was then applied on the opposite side of the stem, and the effects of clamping 

forces of 2 N, 2.5 N, and 3 N were explored. An integral solution method was used, accounting for large 

deformation, with nonlinear control implemented using the asymmetric Newton-Raphson method. The final 

solution met the force convergence criterion. 

The displacement cloud diagrams of stable clamping under different forces are shown in Fig.5. It 

illustrates that as the clamping force increases, the enveloping capacity improves. Due to the large curvature 

of the outer contour of the leaf stem, achieving complete envelopment is challenging. Further modification of 

the clamp’s size parameters to achieve full envelopment would result in excessive deformation and may cause 

the left and right jaws to collide. Therefore, this study improved the overall stiffness of the clamp while 

maximizing its envelopment of the leaf stem. Fig. 5 shows that under the studied clamping forces, the clamp 

envelops most of the outer edge of the leaf stem’s left side, achieving overall good coverage. Additionally, 

because of the small transverse thickness of the leaf stem, excessive clamping force may cause the jaws to 

collide. At a clamping force of 2.5 N, the line connecting the top and bottom of the clamp passes through the 

long axis of the stem’s cross-section, indicating the critical force at which the jaws might collide. Therefore, the 

clamping force should be kept at ≤ 2.5 N. 
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To further investigate the clamp’s stiffness, the equivalent strain cloud diagrams under different clamping 

forces were obtained, as shown in Fig.6. It illustrates that the equivalent strain distribution in the contact area 

is relatively uniform, with higher equivalent stress at each joint, reaching a maximum of 0.24 m/m under a 3 N 

clamping force. Additionally, the greater the clamping force, the larger the equivalent strain in the contact area 

between the clamp and the leaf stem, resulting in greater elastic recovery energy and improved clamp stiffness. 

Based on the maximum force limit from the above analysis, a clamping force of 2.5 N provides sufficient 

stiffness to ensure stable tobacco leaf harvesting and retrieval. Therefore, this clamping force of 2.5 N was 

selected for subsequent harvesting tests. 

    
 (a) 2N (b) 2.5N (c) 3N 

Fig. 5 – The displacement cloud diagrams of clamped leaf stems under different forces 

 

    
 (a) 2N (b) 2.5N (c) 3N 

Fig. 6 – The equivalent strain cloud diagrams of clamped leaf stems under different clamping forces 

 

The motion analysis of robotic arm 

The structure and parameter design 

The tobacco leaves harvesting robot uses the AUBO-I5 robotic arm, with its key parameters listed in 

Tab. 2. As shown in Tab. 2, the robotic arm has a working radius of 886.5 mm, while the average height of the 

tobacco leaves is approximately 1.5 m. Since tobacco plants mature gradually from top to bottom over 1-2 

months, with only 2-3 leaves harvested at the same height during each picking cycle, a single robotic arm 

cannot meet agronomic needs. In this study, a 6+1 axis robotic arm solution was implemented, adding an 800 

mm adjustable sliding platform at the base of the robotic arm. This setup allows the adjustment of the arm’s 

workspace to meet the agronomic requirements for layered tobacco leaf harvesting, while keeping the slide’s 

position fixed during the process. 

Table 2 

The parameters of the AUBO-I5 Robotic Arm 

Max load 5 kg Weight ＜24 kg Free load ratio ＜4.8 

Degrees of Freedom 6 Repeat positioning accuracy ±0.02 mm Working radius 886.5 mm 

Maximum velocity of each axis 

J1 J2 J3 J4 J5 J6 

223 °/s 223 °/s 223 °/s 237 °/s 237 °/s 237 °/s 

 

Workspace Analysis 

The AUBO-I5 robotic arm features six degrees of freedom, with the first three controlling the end-

effector’s position and the latter three its orientation. A fixed coordinate system was established for the links to 

describe each joint's motion in three-dimensional space, with the joint posture represented by its coordinate 

system position. The kinematic model was derived using homogeneous coordinate transformation, employing 

the modified Denavit-Hartenberg (M D-H) method for the forward kinematic model.  
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where, si and ci represent sinθi and cosθi, respectively.  

 

Multiplying the above matrices in sequence on the right yields the robot’s forward kinematics expression. 

 
0 0 1 2 3 4 5 6

7 1 2 3 4 5 6 7T T T T T T T T=  (6) 

Fig.7(a) illustrates the model diagram and the coordinate systems for each joint, while Tab.3 lists the 

corresponding D-H parameters. The M D-H method provides the coordinate transformation matrix for the 

homogeneous transformation from coordinate system i to system i-1 (Peng J. et al., 2019). 

 

   
(a) Coordinate system model (b) 6-axis workspace (c) 6+1-axis workspace 

Fig. 7 – AUBO-I5 robot model and workspace 

Table 3 

The M D-H parameters of 6+1 axis robotic arm  

Link i ai-1 [mm] αi-1 [°] di [mm] θi [°] Variation range 

1 0 0 d1 0 0-800 mm 

2 0 90 122 θ1 ±360° 

3 0 -90 121.5 θ2 ±175° 

4 408 180 0 θ3 ±175° 

5 376 180 0 θ4 ±175° 

6 0 -90 102.5 θ5 ±175° 

7 0 90 94 θ6 ±360° 

 

In Matlab, the Link and SeriaLink functions were used to create a simplified model of the robotic arm’s 

links. The simplified teaching model is shown in Fig. 7(a). The Monte Carlo method was used to simulate and 

analyze the robot’s workspace, generating random values for each joint variable (Li J. et al, 2023): 

 min max min( ) rand( ,1)i i i i N   = + −   (7) 

 

Substituting the joint variables into the forward kinematics equation produces a point cloud map of the 

robot’s workspace, as shown in Fig. 7(b) and 7(c). From the workspace point cloud, it is evident that without 

the sliding device, the workspace of the AUBO-I5 robotic arm is circular. With the 6+1 axis structure and the 

sliding device, the workspace becomes elliptical. This expanded workspace covers a larger area, meeting the 

height requirements for tobacco leaf picking by covering most of the plant’s height. Additionally, the workspace 

analysis provides a theoretical basis for path planning and collision warning of the gripper. 
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Tobacco leaf recognition and positioning  

The visual recognition system consists of an Intel RealSense D435i depth camera and an Nvidia Jetson 

Nano platform. The D435i camera, with a depth range of 0.1 to 10 m, captures tobacco leaf images, while the 

Jetson Nano, powered by a quad-core processor and CUDA GPU, handles deep learning tasks. 

 

   
(a) Tobacco leaf identification (b) Picking point identification (c) Depth map 

Fig. 8 – Visual system recognition and positioning 

 

YOLOv7, a fast and accurate object detection algorithm, is used for real-time tobacco leaf recognition. 

The system captures images, processes them through YOLOv7’s convolutional layers for feature extraction, 

and detects leaf stems using an Anchor-Free mechanism to generate bounding boxes. After non-maximum 

suppression, the system outputs the optimal coordinates for guiding the robot arm in precise picking. The 

method’s high recognition accuracy and real-time performance make it suitable for complex field environments. 

To further enhance YOLOv7's accuracy, data augmentation, attention mechanisms, loss function refinements, 

and model integration were employed. The results of the visual recognition system are shown in Fig. 8. 

 

RESULTS 

Experimental conditions 

The field test for tobacco leaf picking was conducted from August 14 to 16, 2024, in the modern tobacco 

leaf production demonstration area in Malong District, Qujing City, Yunnan Province. The test subjects were 

tobacco plants of the Yunyan 301 variety grown in the demonstration area. The test process is illustrated in 

Fig. 9.  

   
(a) Testing process (b) During picking (c) After picking 

Fig. 9 – Tobacco leaf harvesting field experiment 

 

To evaluate the tobacco leaf picking performance of the entire machine, the time taken to fully pick a 

single leaf was used as a measure of overall picking efficiency. During preliminary testing, it was observed that 

jitter at the end of the robotic arm affected the recognition efficiency of the vision system. Therefore, the 

efficiency test was conducted at five speed levels: 20%, 40%, 60%, 80%, and 100% of the maximum 

movement speed of the robotic arm (the maximum linear speed and acceleration of the arm’s end were 1.5 

m/s and 1 m/s², respectively). The picking time at each speed level was recorded. To eliminate the effects of 

lighting variations, all tests were scheduled for the morning of the same day. Each speed level was tested by 

picking 10 tobacco leaves, and the average picking time was calculated over 50 tests. The picking success 

rate was used to evaluate the machine’s reliability. Tests were conducted in both the morning and afternoon. 

Five camera exposure times—10000 μs, 25000 μs, 40000 μs, 55000 μs, and 70000 μs—were selected as 

factors for exploration. At each exposure level, 30 tobacco leaves were picked, and the success rate was 

calculated over 150 tests. 
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Effect of robotic arm velocity on picking efficiency 

The results of the tobacco leaf picking test at different robotic arm speeds are summarized in Tab. 4. As 

the robotic arm speed increased from 0.3 m/s to 1.5 m/s, the average picking time dropped significantly from 

9.00 seconds to 2.47 seconds, indicating a clear downward trend. Variance analysis of the robotic arm speed 

revealed significant differences between groups (P < 0.001). Therefore, the speed of the robotic arm has a 

highly significant effect on the tobacco leaf picking time. As the robotic arm speed increases, the amplitude of 

vibrations at the arm’s end increases, potentially affecting the efficiency of the vision system's recognition. In 

practical picking, a balance must be struck between recognition efficiency and picking success rate. This is 

primarily because tobacco leaves near the plant may overlap or intertwine, and if the robotic arm moves too 

quickly, it could damage the surrounding leaves. Therefore, an efficient and relatively stable speed of 1.2 m/s 

was selected for subsequent experiments, ensuring maximum picking efficiency without compromising 

accuracy.  

Table 4 

The test results of tobacco leaf picking efficiency at different robot arm speeds 

No. Mechanical arm speed [m/s] Average picking time [s] Variance 

1 0.3 9.00 0.37 

2 0.6 6.75 0.13 

3 0.9 5.22 0.03 

4 1.2 3.71 0.01 

5 1.5 2.47 0.04 

 

Effect of exposure time on picking success rate 

Exposure time is a crucial parameter for calibrating the visual recognition system. To investigate the 

effect of varying exposure times on picking success rates while accounting for changes in ambient light 

intensity during actual harvesting, experiments were conducted at 8 a.m. and 2 p.m., reflecting different 

ambient light conditions. The test data and pictures are shown in Tab. 5 and Fig. 10 respectively.  

 

Table 5 

Experimental results on tobacco leaf picking success rate under different exposure times 

Exposure time  

[μs] 

Picking success rate (a.m)  

[%] 

Picking success rate (p.m)  

[%] 

10000 33.67 43.33 

25000 63.33 60.00 

40000 90.00 83.33 

55000 73.33 66.67 

70000 53.33 46.67 

 

     
(a) 10000 μs (b) 25000 μs (c) 40000 μs (d) 55000 μs (e) 70000 μs 

 

Fig. 10 – Tobacco leaf harvesting picture under different exposure times 

 

The results indicate that there are significant differences in picking success rates across various 

exposure times, regardless of the time of day. The variance analysis results show P < 0.001, indicating an 

extremely significant effect. In the morning, when the exposure time was set to 40000 μs, the picking success 

rate peaked at 90.00%. In the afternoon, under the same exposure time, the picking success rate also reached 

a peak of 83.33%. Overall, variations in ambient light intensity significantly influenced the picking success rates 

at the same exposure time. Under poor ambient lighting conditions, the upper limit of the picking success rate 

may be restricted. Therefore, selecting appropriate harvesting times and weather conditions is crucial. In 

conclusion, selecting an appropriate exposure time can significantly enhance the system’s ability to identify 

tobacco leaves, ultimately improving the picking success rate. The tobacco leaf picking robot system 

developed in this study, based on machine vision, demonstrates excellent picking performance. 
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CONCLUSIONS 

This study developed an intelligent, non-destructive tobacco leaf picking robot utilizing machine vision. 

The research focused on the design and analysis of key components, with field experiments conducted to 

assess the machine's overall picking performance. This research yielded the following conclusions: 

(1) The clamping jaw structure was redesigned based on the fin-ray effect. Finite element analysis 

revealed that increasing the clamping force improves the jaw’s wrapping capability. To prevent collisions while 

maintaining sufficient rigidity and stability during tobacco leaf picking and collection, the clamping force was 

set to 2.5 N. 

(2) The working space of the robot arm without the sliding table is circular, while the 6+1-axis arm with 

the sliding table has an elliptical workspace. This larger range covers most of the tobacco plant height, meeting 

the operational requirements for leaf picking. 

(3) The speed of the robotic arm significantly impacts the picking time (P < 0.001). At 1.5 m/s, the 

average picking time was minimized to 2.47 seconds. A speed of 1.2 m/s was found to balance efficiency and 

picking success rate. 

(4) Exposure time significantly affects the picking success rate (P < 0.001). A 40000 μs exposure 

achieved a peak success rate of 90.00% in the morning and 83.33% in the afternoon. Overall, changes in 

ambient light intensity noticeably impacted success under the same exposure conditions. 
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