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ABSTRACT  

Wheat grains are a common type of cereal variety, and due to their large quantity and high demand, traditional 

manual quality inspection requires a significant amount of labor with potentially inadequate results. To address 

this issue, this study focuses on intact, damaged, moldy, and shriveled wheat grains, and establishes a YOLO-

wheat automatic wheat grain appearance quality detection model. First, a large number of wheat grain sample 

images were collected, preprocessed, and annotated. Next, YOLOv5n, YOLOv8n, and YOLOv10n wheat grain 

object detection models were established, and the optimal model YOLOv8n was selected as the base model 

for automatic wheat grain appearance quality detection. To further improve wheat grain detection performance, 

the Dilation-wise Residual (DWR) module was integrated into the YOLOv8n network structure to enhance 

feature extraction from the expandable receptive field in the higher layers of the network. Additionally, the 

TripletAttention attention mechanism was introduced, and this improved network was named YOLO-wheat. 

Experimental results showed that YOLO-wheat achieved an mAP value of 91.3% in wheat grain appearance 

quality detection, representing a 4.3% improvement compared to the previous version. This study provides 

technical support for automatic wheat quality detection. 

 

摘要 

小麦籽粒是一种常见的谷物类品种，且由于其数量多需求量大，在传统人工品质检测时耗费大量精力而效果不

见得足够好。为解决上述问题，本研究以小麦完善粒、破损粒、发霉粒和干瘪粒为研究对象，建立 YOLO-wheat

小麦籽粒外观品质自动检测模型。首先，采集了大量小麦籽粒样本图像，并进行了数据预处理和标注整理。其

次，建立了 YOLOv5n、YOLOv8n、YOLOv10n 小麦籽粒目标检测模型，从中选取最优模型 YOLOv8n 为小麦

籽粒外观品质自动检测基础模型。为了进一步提升小麦籽粒检测性能，在 YOLOv8n 网络结构中使用 Dilation-

wise Residua(DWR)模块加强从网络高层的可扩展感受野中提取特征，并引入了 TripletAttention 注意力机制，

将此网络命名为 YOLO-wheat。实验结果表明 YOLO-wheat 在小麦籽粒外观品质检测中 mAP 值为 91.3%,较改

进前提升 4.3% 。该研究可为小麦品质自动检测提供技术支持。 

 

INTRODUCTION 

In daily life, wheat is one of the most demanded and high-quality food products for human consumption 

(Zahra et al., 2023; Shewry et al., 2023), requiring both high quantity and quality standards. However, due to 

its large volume and the difficulty in distinguishing quality categories, traditional manual inspection methods 

are highly complex, time-consuming, and labor-intensive, often leading to unsatisfactory results. With the 

development of machine vision and deep learning technologies, the use of computers to achieve automated 

analysis of target detection images (Dhanya et al., 2022) has become a powerful tool to solve this problem, 

improving production efficiency and reducing labor costs. Therefore, machine learning and deep learning 

techniques can be utilized in combination with large datasets of labeled wheat grain samples to perform target 

detection on wheat grains through automated and intelligent methods, promoting the modernization and 

intelligent development of the agricultural industry. Furthermore, this can later be integrated with robotics to 

achieve intelligent agriculture (Soori et al., 2024). 

Target detection tasks based on deep learning have been widely applied in agricultural production due 

to their high precision and rapid detection capabilities. In 2021, Wang Qiujin et al., (2021), developed a wheat 

fusarium head blight grain recognition model based on feature band fusion images and deep learning 

algorithms. By comparing recognition accuracy, the optimal deep learning model was selected, enabling real-

time online detection of fusarium-infected wheat grains.  
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In 2023, Wang Ling et al., (2023), proposed a wheat grain counting method based on the YOLOv7-ST 

model. The YOLOv7-ST model accurately and quickly detected issues such as grain occlusion and adhesion 

under varying degrees of dispersion, significantly improving the efficiency of wheat seed testing. In 2024, Yu 

Zhaofu et al., (2024) proposed a genetic algorithm-based optimizer designed for the YOLOv8 network, 

addressing the challenge of optimizing complex networks through intelligent algorithms, thus providing a better 

method for soybean grain recognition. Tomáš Zoubek et al., (2024), conducted a comparative study of YOLO 

models for weed and crop recognition. By adjusting different parameters, the model was fine-tuned to address 

weed recognition challenges, and it was determined that different models showed improved performance for 

specific feature detection problems. In 2024, Ma et al. (2024), focused on wheat grains and proposed an 

improved YOLOv8-based wheat grain detection and counting method. Today, the applications of deep learning 

in agriculture are not limited to crop recognition. Yue et al., (2024), proposed a lightweight pest detection 

method based on an improved YOLOv8 model, capable of identifying dynamic pests affecting crops. This 

method enhanced YOLOv8’s feature extraction capabilities, addressing issues like low precision in small-

object detection and improving the model’s suitability for embedded deployment, providing valuable insights 

for the lightweight model in this study. In addition, YOLO models can be repeatedly modified to make them 

better suited for specific detection scenarios. For instance, Liu et al., (2024), proposed a Fusion Transformer 

YOLO-based model for grape disease detection. Sangaiah et al, (2024), developed UAV T-YOLO-Rice, an 

efficient and lightweight rice leaf disease detection model; and Ren et al, (2024), introduced the FPG-YOLO 

model for detecting pollination stamens of “Yulu Fragrant” pears in unstructured environments. These studies 

demonstrate that target detection algorithms show excellent performance in agricultural modernization, 

especially in crop localization and recognition. Beyond agriculture, YOLOv8n-based models have also been 

improved for various applications. For instance, Li Bohao et al., (2024), proposed an improved UAV aerial 

small-object detection algorithm model based on YOLOv8n. Qin et al., (2024), developed a cable switch fault 

diagnosis model based on YOLOv8n; and Yang Ruijun et al., (2024), designed a lightweight remote sensing 

image detection algorithm for military aircraft using YOLOv8n. These applications highlight that visual detection 

using the YOLOv8n base model has found use across diverse fields, providing inspiration for this study. 

However, research on detecting wheat grains of varying qualities remains relatively scarce, with low 

recognition accuracy. Therefore, this study focuses on detecting the quality of wheat grains, specifically intact grains, 

damaged grains, moldy grains, and shriveled grains, using deep learning methods for intelligent quality detection.   

First, a large dataset of wheat grain images was collected and annotated using labeling. The detection 

performance of YOLOv5n, YOLOv8n, and YOLOv10n was compared, and the YOLOv8n model was ultimately 

selected as the base model. To further enhance the detection accuracy of the model, the Dilation-wise 

Residual (DWR) module, which is more suitable for small-object detection, and the TripletAttention attention 

mechanism were integrated into the YOLOv8n model. The enhanced model, named YOLO-wheat, was 

developed to achieve automated detection of wheat grain appearance quality. 
 

MATERIALS AND METHODS 

Data Acquisition and Pre-processing 

In this study, a total of 684 images of intact grains, damaged grains, moldy grains, and shriveled grains 

were collected (Zhixiao et al., 2020). These images included various scenarios such as white backgrounds, 

black backgrounds, different shooting angles, varying lighting conditions, different rotation degrees, and 

scattered stacking, aiming to realistically replicate various situations that may occur in practical application 

scenarios. Figure 1 shows some of the collected wheat grain images. 

 

  
(a)White Background (b)Black Background 

Fig. 1 - Partial Data Collection  
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The images were annotated using labeling in the YOLO format. During annotation, the mouse was used 

to accurately draw bounding boxes on the images, ensuring that no wheat grains were missed. Each grain in 

the images was labeled according to its appearance quality, categorized into four classes: intact grains 

(denoted as "w"), damaged grains (denoted as "p"), moldy grains (denoted as "f"), and shriveled grains 

(denoted as "g"). The annotation results were then saved for subsequent operations.   

Since images captured in a laboratory environment cannot fully reflect real-world scenarios, data 

augmentation techniques were applied to enrich the dataset. The collected images were further processed 

with random rotations, noise addition, brightness adjustments, and other image enhancement methods. These 

techniques were randomly combined to simulate various situations that might be encountered in practical 

algorithm application scenarios. Figures 2 and 3 show a comparison between the original wheat grain images 

and the augmented images under different backgrounds. 

 
Fig. 2 - Comparison of Data Augmentation Effects for Wheat Grains on a Black Background 

 
Fig. 3 - Comparison of Data Augmentation Effects for Wheat Grains on a White Background 

 

The images were divided into a training set, validation set, and test set in a ratio of 7:2:1. The specific 

distribution is shown in Table 1. The dataset is categorized into two types: black background and white 

background. There are 348 images with a white background and 336 images with a black background. Among 

the white background images, the training set, validation set, and test set contain 243, 70, and 35 images, 

respectively. For the black background images, the training set, validation set, and test set contain 235, 67, 

and 34 images, respectively. 
Table 1 

Comparison of Experimental Parameters for Each Model 

Augmented 
dataset 

White 
Background 

Black 
Background 

Augmented 
dataset 

White 
Background 

Black 
Background 

Training Set 243 235 Training Set 243 235 
Validation Set 70 67 Validation Set 70 67 

Test Set 35 34 Test Set 35 34 
Total 348 336 Total 348 336 

 

YOLOv8n Model 

The YOLO algorithm series has a long history of development (Jiang et al., 2020; Terven et al., 2023). 

Among them, YOLOv8n is a state-of-the-art, lightweight object detection model capable of processing images 

in real-time and identifying various objects within them. It demonstrates superior performance in addressing 

the issues designed in this study. For instance, in real-world application scenarios, it can provide rapid 

feedback, allowing operators sufficient time to address problems identified after detection. This makes it highly 

practical in terms of both usability and accuracy. 

The YOLOv8n network model primarily consists of three components: the Backbone, the Neck, and the 

Head. In deep learning-based object detection algorithms, these three major components have distinct roles. 

The Backbone is mainly responsible for increasing the feature depth and level of abstraction of the input image, 

transforming it into feature maps that contain various information such as the location and shape of objects in 

the image. The Neck is primarily designed to aggregate feature information from different levels and is situated 

between the Backbone and the Head. The Head is used to predict the categories and locations of objects, 
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including their bounding boxes. The basic structure of a deep learning-based object detection algorithm follows 

the sequence: Input → Backbone → Neck → Head → Output. 

 

DWR（Dilation-wise Residual）Model 

The DWR module acts as a tool for extracting features at different scales in the higher layers of the 

network, significantly improving the algorithm's accuracy, it’s structure as shown in Figure 4. First, a multi-

branch structure is used to expand the receptive field, where each branch employs a dilated depthwise 

convolution with different dilation rates. Second, a specially designed Simple Inverted Residual (SIR) module 

is used to extract features from the lower layers of the network. This module has only a small receptive field 

of 3×3 and adopts an inverted bottleneck structure to expand the number of channels, ensuring stronger 

feature extraction capability. Finally, based on the combination of the DWR module and the SIR module, the 

network DWRSeg was constructed. In this network, the decoder adopts a simple structure similar to FNC. The 

decoder uses strong semantic information from the last two stages to directly upsample the feature maps and 

then concatenate them with feature maps from earlier stages for the final prediction. 

 

 

Fig. 4 - Diagram of the DWR Module 

 

In summary, the introduction of the DWR (Dilation-wise Residual) module in the YOLO algorithm plays 

a crucial role in improving the accuracy of object detection. Its efficiency lies in the following key aspects:(1) 

Powerful receptive field expansion capability: The DWR module leverages the characteristics of dilated 

convolution to expand the receptive field of the convolution operation on the input image. This helps the 

network capture more extensive spatial information in the image. By expanding the receptive field, the model 

can better understand object features such as position, size, and shape, thereby improving the accuracy of 

object detection. (2) Multi-scale feature fusion: The DWR module introduces a residual connection mechanism 

to fuse feature information at different scales, enabling the network to comprehensively utilize feature 

representations from multiple levels. Through residual connections, the model can better learn semantic 

information across different scales, enhancing its ability to detect objects in complex scenes and small targets. 

(3) Enhanced network representation capability and learning efficiency: By incorporating residual connections 

and dilated convolution, the DWR module improves the network's representation capacity and learning 

efficiency. Residual connections help mitigate the vanishing gradient problem, accelerate the network's 

convergence process, and improve the model's learning efficiency.  
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Meanwhile, dilated convolution enhances the network's ability to learn contextual information from the 

image, enabling it to better understand global information in the image, thereby improving object detection 

accuracy. The introduction of this module allows the YOLO algorithm to achieve better performance in object 

detection tasks and demonstrates greater potential for practical applications. 

 

TripletAttention Model 

The Triplet Attention mechanism (Triplet Attention) refers to a mechanism in the field of deep learning 

that enables models to focus on multiple specific regions. It is a specialized attention mechanism designed for 

processing sequential data, extending the traditional bidirectional attention mechanism. It allows the model to 

simultaneously consider the past, present, and future information when calculating attention weights.  

The YOLOv8-ALTE bridge crack detection algorithm proposed by Yang et al. (2024) incorporates the 

Triplet Attention mechanism into the shallow layers of the backbone feature extraction module. In the traditional 

bidirectional attention mechanism, the model generates attention weights based on the current input and 

achieves a more specific and detailed understanding of the context by comprehensively considering a series 

of historical and future information. The Triplet Attention mechanism introduces the representation of future 

information, enabling the model to balance the importance of past, current, and future information when 

calculating attention weights. Specifically, the Triplet Attention mechanism consists of three independent 

attention weight vectors, which represent the importance of past, present, and future information, respectively. 

These three attention weights are then combined to produce the final attention weight.  

This mechanism is often applied to tasks such as image segmentation and object detection to help 

models better focus on important regions of the image, thereby improving model performance and accuracy. 

In the field of deep learning, attention mechanisms are typically used to help models focus on important 

parts of the input when processing sequential data or images. By weighting and integrating information from 

different parts, attention mechanisms enhance the model's ability to process input effectively. Multi-head 

attention, on the other hand, learns multiple sets of different attention weights in various subspaces, allowing 

for a more comprehensive capture of the complex features of the input data. Triplet Attention combines these 

two mechanisms to help the model focus on three important regions in an image.  

By learning three sets of different weight parameters, the model can independently focus on these three 

regions and better integrate their information to understand the image. This mechanism improves the model's 

ability to locate and recognize objects, thereby enhancing the performance of tasks such as object detection. 

The Triplet Attention mechanism offers several advantages, including a comprehensive understanding of 

context, reduced risk of information leakage and overfitting, and improved predictive performance. Therefore, 

this study primarily improves the YOLOv8n algorithm based on the Triplet Attention mechanism. 

 

Improvement Method in This Study 

The shape of wheat grains is inherently small, and factors such as adhesion further increase the difficulty 

of wheat grain detection. To enhance the model's ability to extract features of small objects, this study 

incorporates a Dilation-wise Residual (DWR) module into the C2F module of the YOLOv8n backbone network. 

In C2F module, the feature aggregation functionality is mainly implemented by the Bottleneck module. 

Therefore, in the process of algorithm improvement in this paper, the Bottleneck module is replaced with the 

DWR module to achieve a shift in the feature aggregation direction. This modification shifts the detection focus 

toward the feature extraction of small objects, strengthening the network's ability to extract features of wheat 

grains and improving the network's capability to learn image details and contextual information. This ultimately 

enhances the accuracy and robustness of the detection results. Additionally, the Triplet Attention mechanism 

is integrated into the YOLOv8n model after the 9th-layer SPPF module. This enables the network to focus 

more on multiple specific regions and capture the minute features of wheat grains, thereby enhancing the 

network's effectiveness in handling complex target scenes.  

This makes the model's feature extraction and recognition capabilities more precise and reliable. The 

improved network is named YOLO-wheat (as shown in Figure 5). The YOLO-wheat model comprehensively 

understands the context, reduces the risks of information leakage and overfitting, and improves prediction 

performance, ultimately enhancing the recognition results. 
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Fig. 5 - Flowchart of the Improved Algorithm Network 

 

Model Evaluation Metrics 

To quantitatively evaluate the performance of the proposed method and other comparative methods, 

three metrics were adopted as the evaluation criteria for object detection: Precision, Recall, and Mean Average 

Precision (mAP). These metrics can be calculated using Equations (1) to (4). 

               Precision =
TP

TP+FP
                                    （1） 

    Recall =
TP

TP+FN
                                      （2） 

      AP = ∑ (Rn − Rn−1)Pnn                                 （3） 

      mAP =
1

|C|
∑ APi

|C|
i=1                                     （4）  

Here, TP and FP represent the number of true positives and false positives, respectively. FN indicates 

the number of all actual instances that the network model failed to detect. n is the index of data points sorted 

in ascending order based on recall, Pn (Precision) denotes the precision of the data point at index n, Rn 

(Recall) denotes the recall of the data point at index n, |C| represents the number of categories, and  APi 

denotes the average precision for category i. 
 

RESULTS 

The operating system used for the experiment was Windows 10. The GPU model was NVIDIA GeForce 

RTX 3080. The CPU model was 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz. The system memory was 

16GB, and the solid-state drive capacity 1TB. The GPU acceleration libraries used were CUDA 12.3 and 

cuDNN 8.7. The Python version used was Python 3.11.7, and the deep learning framework PyTorch 2.3.1. 

The image size for deep learning training was 640×640 pixels, with 200 training epochs. 
 

Comparison of Detection Results for YOLO Models 

In this study, YOLOv5, YOLOv8, and YOLOv10 models for wheat grain quality detection were developed, 

and the experimental results are shown in Table 2.  

As observed in Table 2, the YOLOv8n model achieved the highest mAP value of 87%, demonstrating 

the best detection performance.  
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From the above analysis, it is evident that the core parameters of YOLOv8n are superior, resulting in 

better detection outcomes. Therefore, this study adopts YOLOv8n as the baseline model and optimizes it 

further to achieve efficient detection of wheat grain quality. 

Table 2 
Comparison of Experimental Parameters for Different YOLO Models 

Model P R mAP mAP0.5:0.95 GFLOPs 

YOLOv10n 72.7 76.2 81 65.5 6.5 

YOLOv8n 79.7 79.7 87 66.3 7.6 

YOLOv5n 73.7 82.7 85.5 65.9 7.1 

 

Detection Results of the Improved Algorithm 

To evaluate the effectiveness of the improved algorithm, experiments were conducted on the wheat 

grain dataset using the improved YOLO-wheat model and the baseline YOLOv8 model. The results are shown 

in Table 3. In the table, “w” represents the "intact" category, “p” represents the "damaged" category, “f” 

represents the "moldy" category, and “g” represents the "shriveled" category. As seen in the table, after 

applying the improved algorithm, the mAP value for the "intact" category increased from 93.3% to 95.6%, with 

an improvement of 2.3%. For the "damaged" category, the mAP value increased from 89.9% to 93.4%, with 

an improvement of 3.5%. For the "moldy" category, the mAP value increased from 84.2% to 87.5%, with an 

improvement of 3.3%. For the "shriveled" category, the mAP value increased from 80.2% to 88.9%, with an 

improvement of 8.7%. Overall, the mAP value for all categories improved from 87% to 91.3%, showing an 

increase of 4.3%. The mAP@0.5:0.95 metric improved from 66.3% to 75.8%. These results demonstrate that 

the proposed YOLO-wheat model achieves better detection performance for different categories of wheat grains. 
 

Table 3 
 Detection results with YOLO-wheat and YOLOv8n 

Model Category P R mAP mAP0.5:0.95 

YOLOv8n 

w 85.9 87.1 93.9 74.4 

p 81.7 84.1 89.9 68.6 

f 77.4 75.1 84.2 61.2 

g 73.8 72.7 80.2 60.9 

all 79.7 79.7 87 66.3 

YOLO-wheat 

w 88.8 90 95.6 81.5 

p 90.3 87.3 93.4 77.5 

f 81.4 78.6 87.5 71.4 

g 84 74.7 88.9 72.9 

all 86.1 82.7 91.3 75.8 

 

Ablation Experiment 

As shown in Table 4 of the ablation experiment results, the baseline YOLOv8n algorithm achieves an 

mAP of 87%. After adding the DWR module to YOLOv8n, the mAP increases to 90%. When only the Triplet 

Attention is added, without the DWR module, the mAP reaches 89.1%. Finally, when both DWR and Triplet 

Attention are incorporated together, the model achieves the best recognition performance: Precision increases 

to a maximum of 86.1%, Recall rises to a maximum of 82.7%, and mAP reaches a peak of 91.3%.  

The experimental results demonstrate that adding either DWR or Triplet Attention individually enhances the 

network's feature extraction capability, but the performance is optimal when both are incorporated into the network. 
 

Table 4 
The results of the ablation experiment 

Baseline DWR Triplet Attention P R mAP 

√ × × 79.7 79.7 87 

√ √ × 84.6 81.8 90 

√ × √ 82.3 82.7 89.1 

√ √ √ 86.1 82.7 91.3 
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Overall, YOLO-wheat has the following advantages over the original YOLOv8 model: With the addition 

of the Triplet Attention mechanism, the model can better and more accurately capture important information in 

images, improving the precision and performance of object detection, particularly for detecting the appearance 

and types of wheat grains. It also enhances the handling of both global and local information. The DWR module 

allows the algorithm to provide better feature extraction for complex and small objects by expanding the 

receptive field. In other words, the Triplet Attention mechanism helps balance the attention given to global and 

local information, making the model more effective at handling targets of different scales. The DWR module, 

on the other hand, offers better adaptability to complex backgrounds and higher precision for small targets. 
 

Experimental results with different backgrounds 

In real-world application scenarios, different backgrounds may be encountered. Therefore, during the 

data collection phase, wheat grains were collected with both white and black backgrounds to explore the 

impact of background color on the algorithm's accuracy. The detection results of wheat grains with different 

backgrounds using the YOLO-wheat algorithm established in this paper are shown in Table 5. From Table 5, 

it can be observed that compared to the white background, the Precision of wheat grains with the black 

background increased by 14.4%, and the mAP improved by 7.8%. Specifically, the mAP for intact grains 

increased by 3.1%, the mAP for damaged grains increased by 5.2%, the mAP for moldy grains increased by 

12.7%, and the mAP for shriveled grains increased by 10.2%. This suggests that background color has a 

certain impact on wheat grain detection, with a more significant improvement in target detection when using a 

black background. In practical applications, setting the background to black would yield the best detection 

results. 
 

Table 5 
Detection results under different backgrounds 

Background Category P R mAP mAP0.5:0.95 

White 
background 

w 84.3 94.4 92.1 71.8 

p 75.1 89.1 91.9 68.8 

f 75.9 73.9 82.2 59.2 

g 70.7 77.8 83.6 64.1 

all 76.5 83.3 87.5 66 

Black 
background 

w 96.9 83.3 95.2 65.9 

p 92.9 89.9 97.1 61.9 

f 88.5 88.6 94.9 61.7 

g 85.6 86.8 93.8 65.3 

all 90.9 87.2 95.3 63.7 

 

 

Visualization of detection results 

The trained YOLO-wheat model was used to validate the wheat grain dataset, and the detection results 

are shown in Figure 6. It can be observed that the improved algorithm in this study performs well in detecting 

both dispersed and clustered wheat grains under black and white backgrounds. 
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Fig. 6 - Visualization of detection results 

 

CONCLUSIONS 

With the development of machine learning and deep learning technologies, machine vision has become 

increasingly widespread in the agricultural sector. This study successfully developed an improved object 

detection model based on YOLOv8n, named YOLO-wheat, which aims to precisely locate the position and 

recognize the appearance quality of wheat grains. It provides technical support for intelligent wheat harvesting 

and recognition, as well as data collection for wheat yield analysis, making it suitable for related production 

environments. 

(1) The dataset used in this study was constructed with black and white backgrounds as templates, 

incorporating image processing techniques such as random rotation, noise addition, and brightness 

adjustment. The goal was to simulate real-world environmental conditions and provide optimal templates for 

real detection environments. For example, detection should ideally be performed in a black background setting. 

(2) This study employed the DWR module and the Triplet Attention module to enhance the recognition 

performance. YOLOv8n was used as the base model, with the DWR module placed in the C2F (Cross Feature 

Fusion) layer, and the Triplet Attention mechanism added after the SPPF (Spatial Pyramid Pooling Fast) layer 

to further improve the accuracy of the YOLOv8n model. The improved model achieved a mean Average 

Precision (mAP) of 91.3% for wheat grain quality detection, a 4.3% improvement over the original YOLOv8n 

model. This demonstrates that the proposed improvement enhances accuracy for small object detection. 

This study focused on the appearance quality detection of a single type of wheat grain. However, the 

quality detection of multiple wheat varieties remains limited, highlighting the need for a more comprehensive 

dataset to increase sample diversity and improve the model's generalization capability. Finally, as this 

experiment is still in the algorithm research phase, further research and design of lightweight models or 

optimized algorithms for high-real-time scenarios may be needed before applying this in actual automated 

classification tasks. 
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