
Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 

346 

 FARMLAND OBSTACLE RECOGNITION BASED ON IMPROVED FASTER R-CNN 
/ 

基于改进 FASTER R-CNN的农田障碍物识别 

 
Xiangyu BAI1,2), Kai ZHANG2), Ranbing YANG1,3), Zhiguo PAN1), Huan ZHANG1), Jian ZHANG*1,3),  

Xidong JING1), Shiteng GUO1), Sen DUAN1) 
1) College of Electrical and Mechanical Engineering, Qingdao Agricultural University, Qingdao/ China 

2) National Key Laboratory of Intelligent Agricultural Power Equipment, Henan/ China 
3) College of Mechanical and Electrical Engineering, Hainan University, Haikou/ China 

Tel: +8618561879013; E-mail: zhangjian_qau@163.com 

Corresponding author`: Jian Zhang 

DOI: https://doi.org/10.35633/inmateh-75-29 

 
Keywords: Obstacle detection, Multi-scale detection, ResNet50, ROI Align 

 
 

ABSTRACT  

For the accurate detection of obstacles in complex farmland environments, ResNet50 is adopted as the 

backbone feature extraction network, feature pyramid network (FPN) is utilized to enhance the multi-scale 

feature fusion capability, and the region of interest alignment (ROI Align) strategy is introduced to improve the 

candidate box localization precision. The experimental results show that the precision, recall, and mean 

accuracy (mAP) of the improved model are 91.6%, 89.7%, and 93.8%, respectively, which are improved by 

2.7, 2.3, and 3.1 percentage points compared with the original base network, and provide a technical reference 

for navigation and obstacle avoidance of unmanned agricultural machinery. 

 

摘要  

针对复杂农田环境中障碍物的准确检测，采用 ResNet50 作为骨干特征提取网络，利用特征金字塔网络（FPN）

提升多尺度特征融合能力，并引入感兴趣区域对齐（ROI Align）策略提高候选框定位精度。实验结果显示，

改进模型的精度、召回率和平均精度（mAP）分别为 91.6%、89.7%和 93.8%，相比于原基础网络，提升了

2.7、2.3和 3.1个百分点，为无人农业机械的导航避障提供了技术参考。 

 

INTRODUCTION 

 Driven by the rapid development of agricultural machinery intelligence and automation, unmanned 

agricultural machinery has made significant progress. In order to ensure that these unmanned agricultural 

machines can operate safely and efficiently during operation and effectively avoid collision with obstacles such 

as utility poles, trees, buildings, etc., it is necessary to carry out accurate and fast identification of obstacles in 

the field. In farmland obstacle detection, deep learning detection algorithms have higher detection accuracy, 

stronger generalization ability and better adaptability than other detection algorithms, and can more accurately 

identify complex and changing obstacles in farmland, while maintaining stable detection performance under 

different light, climate and crop growth conditions. 

Deep learning-based detection algorithms are divided into two categories: single-stage object 

detection algorithms (such as SSD and YOLO series) and two-stage object detection algorithms (such as 

Sparse R-CNN and Faster R-CNN). The latter, although more complex in process and relatively slower in 

speed, demonstrates higher accuracy. Research on obstacle detection in the field of machine vision has made 

significant progress. 

He et al., (2022), improved the recognition accuracy by enhancing Mask R-CNN, employing Swin-Le 

Transformer for feature extraction and ME-PAPN for feature fusion. They integrated a multi-scale 

enhancement method to boost the detection capability of small targets, achieving a mean Average Precision 

(mAP) of 91.3% and an average detection time of 4.2 frames per second (FPS). 

Rahman et al., (2022) implemented a transfer learning model based on the convolutional neural 

network MobileNetV2, which can be used on low-configured devices while maintaining a balance between 

detection speed and processing efficiency. The accuracy of obstacle detection reached 97.00%. 

Xue et al., (2022) improved the Faster R-CNN object detection algorithm to identify obstacles in 

agricultural fields, effectively enhancing the speed of obstacle recognition while reducing false positives and 

missed detections. This improvement meets the real-time detection requirements for low-speed operations of 

tractors. 
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Du et al., (2024), proposed an optimized obstacle detection method based on an improved YOLOv8. 

By removing the P5 layer and introducing DCNv2 to optimize the bottleneck, the model enhances the detection 

capability for small and irregular obstacles. The improved model achieved a 3.4% increase in mAP50, a 34.5% 

reduction in GFLOPs, a 77.4% decrease in parameters, and a 73% reduction in model size. 

Han et al., (2024) investigated an autonomous driving obstacle avoidance method based on YOLOv5 

monocular vision. This approach combines a deep reinforcement learning path planning algorithm to 

dynamically generate safe driving paths. By introducing a monocular vision obstacle avoidance aggregation 

network, the MMA obstacle avoidance method is developed, achieving an accuracy that fluctuates between 

78.76% and 88.26%. 

Zhao et al., (2024), proposed a real-time high-precision railway obstacle detection model based on a 

lightweight CNN and an improved Transformer (RH-Net). This model includes a Lightweight Feature Extraction 

Module (LEM) to minimize computational load, an Improved Transformation Module (IFM) that enhances the 

capability of extracting global contextual information, and an Enhanced Multi-Scale Feature Fusion Module 

(EFM) that optimizes the detection of obstacles of varying sizes. 

Yang et al., (2025) proposed the YOLO-Region model to solve the problem of oversensitive obstacle 

detection in unmanned electric locomotives in underground coal mines, the model backbone adopts the 

InceptionNeXt block and the NSPP module, extends the FPN+PAN architecture with the Impro-TSCODE 

header and introduces the repulsion loss to enhance the detection of occluded targets. 

Researchers have made significant progress in the field of obstacle recognition, confirming the 

feasibility of target detection technology for obstacle detection. However, in today's era of unmanned farming, 

there is relatively little research on using drone equipment to capture images of agricultural fields for obstacle 

recognition. To address this gap, this paper selects the second-stage detection algorithm Faster R-CNN, which 

offers higher detection accuracy, for detecting obstacles in farmland. Given the complexity of agricultural 

environments, directly applying Faster R-CNN to unstructured agricultural scenes for obstacle detection may 

lead to decreased model accuracy, particularly under complex and variable weather conditions, where the 

effectiveness of obstacle detection can be significantly weakened. Therefore, this paper conducts targeted 

optimization based on the Faster R-CNN model, aiming to address the current issues of insufficient accuracy 

and poor robustness in deep learning models for obstacle detection in agricultural fields. 

 
MATERIALS AND METHODS 

Acquisition of images of farmland obstacles 

 This study adopts a combined ground and airborne acquisition of the dataset, i.e., combining ground-

based cell phone acquisition with airborne UAV acquisition, as shown in Figure 1. Ground-based acquisition 

can obtain detailed and accurate information about obstacles, including the shape, size, and material of 

obstacles, which is suitable for complex terrain and dense obstacle areas, and can capture details that may 

be missed by aerial acquisition. Aerial acquisition can quickly cover a large area and improve acquisition 

efficiency, and it has unique advantages for high-altitude obstacles or areas that are difficult to reach on the 

ground. The combination of the two can result in a more complete and accurate obstacle dataset, which is 

useful for subsequent application and analysis. 

 
a) Aerial collection 

 
b) Ground collection 

Fig. 1 – Data collection method 

 

The dataset was collected from March to June 2023 through aerial photography and mobile imaging 

in Hebei and Shandong provinces, under varying lighting conditions during the morning, afternoon, and 

evening. The drone used was a DJI Mavic 3, which captured vertical aerial shots of the plots at an altitude of 

10 meters and a flight speed of 7 m/s.  
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The drone automatically collected images at predetermined intervals along a designated flight path. 

Both longitudinal and lateral overlap rates were set at 70%. Each flight generated approximately 200 images. 

Simultaneously, mobile phones and cameras were employed to capture multi-angle views of the field 

obstacles, as illustrated in Figure 2. The types of obstacles were diverse, specifically including buildings, high-

voltage power towers, trees, telegraph poles, water wells, personnel, and agricultural machinery, categorized 

into seven main groups. 

 
a)  

 
b)  

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

Fig. 2 – Example of dataset image 
a) building; b) high-voltage power towers; c) tree; d) telegraph pole; e) water well; f) agricultural machinery; g) person 

 

Data expansion 

To improve the robustness and generalization performance of the dataset, an image enhancement 

strategy is implemented. As shown in Fig. 3, data enhancement includes random brightness adjustment to 

simulate different lighting environments, Gaussian noise addition, horizontal flip, and vertical flip to simulate 

diverse shooting angles. These methods not only increase the number of images, but also effectively reduce 

the overfitting problem during model training, and finally an expanded dataset containing 7707 obstacle images 

is obtained. 

 
Fig. 3 – Data enrichment 

 

Image annotation and dataset construction 

Using the LabelImg image annotation tool, obstacles were annotated on the processed images. The 

dataset comprises 7,707 images with a total of 11,578 annotation tasks for obstacles. The training data was 

organized into the standard PASCAL VOC 2007 format. From the entire dataset, 6,823 images were randomly 

selected as the training set for model learning and parameter tuning, while 884 images were designated as 

the validation set to monitor the performance of the model in real-time during training, allowing for timely 

adjustments to the training strategy. A separate test set was established for the final evaluation of the model's 

recognition accuracy and generalization capability. This division ensures both the thorough utilization of the 

dataset and the objectivity and accuracy of the evaluation results. 

 

Faster R-CNN model 

Faster R-CNN, as a two-stage detection algorithm, has a more complex process and relatively slower 

running speed compared to one-stage algorithms such as the YOLO series and SSD (Single Shot MultiBox 

Detector), but it demonstrates a higher level of detection accuracy. Faster R-CNN consists of a feature 

extraction layer, a Region Proposal Network (RPN), and an RoI Pooling layer (Region of Interest Pooling). The 

detection process of Faster R-CNN is summarized as follows: First, the training images are resized to a uniform 

dimension and input into the network, where feature maps are generated via the feature extraction layer; 

second, the RPN network generates a series of anchor boxes on the feature map based on predefined 

Intersection over Union (IoU) thresholds; then, the anchor boxes produced by the RPN are combined with the 

feature map and sent to the RoI Pooling layer to obtain fixed-size (7x7) feature representations of the anchor 

boxes; finally, these feature representations are input into the classification and regression layers for bounding 

box regression predictions and object detection classification, resulting in accurate detection outcomes. The 

entire detection process is illustrated in Figure 4. 
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Fig. 4 – Faster R-CNN Detection Flowchart 

 

Improved Faster R-CNN model 

To enhance the obstacle detection capability of the Faster R-CNN model in complex agricultural 

environments, this study implemented the following key improvements: first, the original VGG16 feature 

extraction backbone used in Faster R-CNN was replaced with the more efficient ResNet50. Second, by 

introducing a Feature Pyramid Network (FPN), the fusion of high-level and low-level features was achieved, 

thereby enriching the information content of the feature maps. Finally, the ROI Align strategy was adopted to 

replace the original ROI Pooling layer, which improved the model's accuracy in candidate box localization. The 

architecture of the improved Faster R-CNN model is illustrated in Figure 5. 

 

RetNet50 backbone network 

To address the hardware resource limitations in agricultural environments, and to significantly enhance 

the feature extraction capability of the obstacle detection model while optimizing the deployment of the network 

model in practical production operations, this study adopted ResNet50 as a replacement for the original 

VGG16, serving as the new backbone network. The ResNet50 network effectively resolves the degradation 

problem in deep neural networks by introducing residual units. Its architecture, as shown in Figure 5, consists 

of five core components: conv1, conv2_x, conv3_x, conv4_x, and conv5_x. The conv1 component includes 

only one convolutional layer and one max pooling layer, which can be considered as the preprocessing stage 

of the network. The remaining four components (from conv2_x to conv5_x) are structurally similar, consisting 

of repeated stacks of residual structures such as ReB1 and ReB2. 

 
Fig. 5 – ResNet50 structure diagram 

 

Feature pyramid network 

Aiming at the problem of complex background and diverse scales of obstacle images jointly captured 

by UAVs and cell phones, this paper adopts the feature pyramid network FPN to improve the Faster R-CNN 

model. As shown in Figure 6, FPN fuses the rich semantic information of the high-level feature map with the 

rich spatial details of the shallow feature map to generate a richer and more accurate feature representation. 
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Fig. 6 – Feature pyramid network architecture 

 

The structure combining the FPN network with the ResNet50 network is illustrated in Figure 7. First, 

the ResNet50 network performs bottom-up convolution operations to extract feature maps of varying scales 

and different channel numbers, denoted as {C2, C3, C4, C5}. Subsequently, these feature maps are fused 

through a top-down pathway. During the fusion process, the feature maps are first adjusted using 1×1 

convolution operations, resulting in a new set of feature maps {M1, M2, M3, M4}. Then, adjacent feature maps 

M are fused using upsampling, followed by processing with 3×3 convolution operations, ultimately generating 

the feature map P. To control computational complexity, this paper only selects four feature maps of different 

scales for output during the feature extraction phase, namely {P2, P3, P4, P5}. Finally, all feature maps 

generated by the FPN are input into the Region Proposal Network (RPN), thus achieving effective fusion of 

high-level and low-level features, further enhancing the model's feature extraction capability. 
 

 
Fig. 7 – Feature pyramid network architecture 

 

ROI Align 

The operational process of ROI Align is illustrated in Figure 8. First, the predicted candidate regions 

are accurately mapped to the corresponding feature levels and thoroughly traversed. At this stage, each 

candidate region is meticulously divided into k × k uniform small grids, while ensuring the precision of boundary 

coordinates, effectively avoiding potential errors introduced during the quantization process. Subsequently, 

within each small grid, the specific values of four key sampling points are accurately calculated using bilinear 

interpolation. These values are then used as the basis for performing the maximum pooling operation, which 

determines the comprehensive feature representation of each grid. By integrating the ROI Align strategy, the 

model is not only able to flexibly adapt to uniform input size requirements when processing candidate regions 

but also achieve more precise and detailed localization, significantly enhancing the model's object recognition 

capability. 

 
Fig. 8 – ROI Align Principle 
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The Faster R-CNN model architecture after the above improvements is shown in Fig. 9. 

 
Fig. 9 – Improved Faster R-CNN model architecture 

 

 

RESULTS AND ANALYSIS 

Test environment 

The experiments were conducted in the Anaconda environment under the Windows 10 operating 

system, utilizing the PyTorch framework for development and programming within PyCharm. The hardware 

setup included an AMD Ryzen 7 4800H processor, a Radeon Graphics 2.0GHz graphics card, an Nvidia 

GeForce RTX 2060 GPU, and 6GB of RAM. 

 

Test evaluation indicators 

In order to test the correctness of the algorithm, Precision (P), Recall (R), mean average precision 

(mAP) are used as model evaluation metrics. In terms of model complexity, the key factors considered are the 

parameter and FPS. Parameter indicates the computational memory resources consumed by the model, and 

FPS indicates the number of images that the model can process per second. The calculation formula is as 

follows. 

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (1) 

𝑅 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (2) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅

0

1

 (3) 

𝑚𝐴𝑃 =
∑  𝑁

𝑖=1 𝐴𝑃𝑖

𝑁
  (4) 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑟^2 × 𝑎 × 𝑣 + 𝑣 (5) 

In the formula, TP denotes the number of samples where the positive class is predicted to be positive, 

FP  denotes the number of samples where the negative class is predicted to be positive, FN  denotes the 

number of samples where the positive class is predicted to be negative, a is the input size, r is the size of the 

convolution kernel, and v is the output size. 
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Comparative test analysis of different algorithms 

To validate the effectiveness of the improved Faster R-CNN model used in this study for detecting 

obstacles in agricultural fields, comparative experiments were conducted under the same training environment 

and hyperparameter settings, contrasting the improved model with single-stage models in the deep learning 

domain (SSD, YOLOv8n) and two-stage models (Sparse R-CNN, Cascade R-CNN). 

Table 1 
Different model experiment results 

Models Precision/% Recall/% mAP@0.5% Parameters/MB FPS/(img/s) 

Faster R-CNN 88.9 87.4 90.7 41.36 8.3 

SSD 81.2 82.1 82.7 25.6 4.6 

YOLOv8n 86.4 83.4 87.9 2.51 10.5 

Sparse R-CNN 87.7 84.5 88.2 43.01 7.8 

Cascade R-CNN 87.5 84.8 87.9 40.12 7.1 

Our 91.6 89.7 93.8 41.45 8.7 

 

According to the data in Table 1, Faster R-CNN demonstrates the highest accuracy, recall, and mean 

Average Precision (mAP) when compared to both single-stage and two-stage models, providing a solid 

foundation for further optimization of subsequent models. The improved Faster R-CNN model surpasses SSD, 

YOLOv8n, Sparse R-CNN, and Cascade R-CNN in mean Average Precision by 11.1, 5.9, 5.6, and 5.9 

percentage points, respectively. In terms of accuracy, it also outperforms these models by 10.4, 5.2, 3.9, and 

4.1 percentage points, respectively. Additionally, the improved Faster R-CNN exhibits excellent recall, 

exceeding these models by 7.6, 6.3, 5.2, and 4.9 percentage points. These data conclusively demonstrate that 

the improved Faster R-CNN model excels in extracting effective features and accurately predicting the 

coordinates and category information of obstacles. 

Ablation test analysis 

To evaluate the specific improvements in the performance of the basic Faster R-CNN model achieved 

by using ResNet50 as the backbone network, the Feature Pyramid Network, and the Region of Interest Align 

(ROI Align) strategy, ablation experiments were designed while keeping the dataset and experimental 

parameters consistent. 

Table 2 
Results of ablation experiment 

Test ResNet50 FPN ROI Align P/% R/% mAP@0.5% Parameters/MB FPS 

1 × × × 88.9 87.4 90.7 41.36 8.1 

2 √ × × 89.5 88.1 91.9 41.14 8.3 

3 √ √ × 90.7 88.5 93.2 41.14 8.7 

4 √ √ √ 91.6 89.7 93.8 41.25 8.7 

 

As shown in Table 2, in Experiment 2, ResNet50 was used to replace the original VGG16 as the 

backbone network. Benefiting from the residual structure of ResNet50, the improved backbone network not 

only increased the number of convolutional layers but also achieved improvements of 0.6%, 0.7%, and 1.2% 

in accuracy, recall, and mean Average Precision (mAP), respectively, while reducing the number of 

parameters. In Experiment 3, the introduction of the Feature Pyramid Network (FPN) for multi-scale feature 

fusion allowed the feature maps to integrate high-level semantic information and low-level spatial information, 

thereby enhancing the model's capabilities in multi-scale and small object detection. This improvement 

resulted in increases of 1.2%, 0.4%, and 1.3% in accuracy, recall, and mean Average Precision, respectively. 

In Experiment 4, ROI Align was used to replace the original ROI Pooling. ROI Align improved the overall 

regression performance of the predicted bounding boxes, making them more precise when detecting 

obstacles. This enhancement led to increases of 0.9%, 1.2%, and 0.6% in accuracy, recall, and mean Average 

Precision, respectively. Overall, the results of the ablation experiments indicate that these improvements 

played a positive role in enhancing obstacle detection accuracy. Compared to the original Faster R-CNN 

model, the improved model not only reduced the number of model parameters and increased detection speed 

but also achieved increases of 2.7%, 2.3%, and 3.1% in accuracy, recall, and mean Average Precision, 

respectively. 
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Test results of different obstacles 

To clearly present the differences in performance between the original model and the improved model 

in detecting various categories of obstacles, the test results of both models were compared and the comparison 

results were displayed in Figure 10. Additionally, the mean Average Precision (mAP) of the obstacle detection 

results during the training process were statistically analyzed and they are listed in Table 3. 

According to the data analysis in Table 3, the improved Faster R-CNN model, compared to its original 

version, shows only a slight improvement in agricultural machinery detection tasks, while achieving a 

significant increase in mean Average Precision (mAP) for other obstacle detection tasks. This improvement is 

reflected not only in the overall optimization of detection performance but also in the notable enhancement of 

specific obstacle detection. Taking utility pole detection as an example, the mAP@0.5 of the original model 

was only 82.1%, whereas after adopting the improved YOLOv8 model, the mAP@0.5 for utility pole detection 

increased to 89.8%. Although there remains a certain gap in detection accuracy for utility poles compared to 

other obstacles such as vehicles and pedestrians, the improved model has made significant progress 

compared to the original model. As shown in Figure 10, the improved Faster R-CNN model not only reduces 

the instances of missed detections and false positives compared to the original model, but it also enhances 

the confidence level of obstacle detection. 

Table 3 
 Training results for different types of obstacles 

Types of obstacles 
mAP@0.5/% 

pre-optimization post-optimization 

telegraph pole 82.1 89.8 

high-voltage power towers 92.7 94.5 

tree 91.3 93.8 

building 92.5 94.6 

person 89.4 93.7 

agricultural machinery 95.1 95.2 

water well 92.0 94.8 

all 90.7 93.8 

 

According to the data analysis in Table 3, the improved Faster R-CNN model, compared to its original 

version, shows only a slight improvement in agricultural machinery detection tasks, while achieving a 

significant increase in mean Average Precision (mAP) for other obstacle detection tasks. This improvement is 

reflected not only in the overall optimization of detection performance but also in the notable enhancement of 

specific obstacle detection. Taking utility pole detection as an example, the mAP@0.5 of the original model 

was only 82.1%, whereas after adopting the improved YOLOv8 model, the mAP@0.5 for utility pole detection 

increased to 89.8%. Although there remains a certain gap in detection accuracy for utility poles compared to 

other obstacles such as vehicles and pedestrians, the improved model has made significant progress 

compared to the original model. As shown in Figure 10, the improved Faster R-CNN model not only reduces 

the instances of missed detections and false positives compared to the original model, but it also enhances 

the confidence level of obstacle detection. 

 

telegraph pole 

   

high-voltage 
power towers 

   

tree 
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a) Original images b) Faster R-CNN c) Improved Faster 
R-CNN 

Fig. 10 –Comparison of Faster R-CNN and Improved Faster R-CNN Detection Results 
 

As shown in Figure 10, the improved Faster R-CNN model not only reduces the instances of missed 

detections and false positives compared to the original model, but it also enhances the confidence level of 

obstacle detection. 

 

CONCLUSIONS 

This study developed a farmland obstacle detection model based on an improved Faster R-CNN 

model. Validation using the same obstacle dataset showed that the improved model achieved a recognition 

accuracy of 91.6% and a recall rate of 93.8%. In practical applications, the model's recognition rate for static 

obstacles such as utility poles, high-voltage towers, trees, buildings, agricultural machinery, and wells 

exceeded 90%. Simultaneously, the model's recognition rate for dynamic obstacles, such as people walking 

at a speed of 0.8 m/s, also remained at 90%, with an average detection frame time of 108 ms, meeting the 

requirements for real-time detection. 
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