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ABSTRACT

Conventional simultaneous localization and mapping (SLAM) systems for agricultural robots rely heavily on
static rigidity assumptions, which makes it susceptible to the influence of dynamic target feature points in the
environment thus leading to poor localization accuracy and robustness of the system. To address the above
issues, this paper proposes a method that utilizes a target detection algorithm to identify and eliminate dynamic
target feature points in a farm depot. The method initially employs the YOLOv5 target detection algorithm to
recognize dynamic targets in the captured warehouse environment images. The detected targets are then
integrated into the feature extraction process at the front end of the visual SLAM. Next, dynamic feature points
belonging to the dynamic target part are eliminated from the extracted image feature points using the LK optical
flow method. Finally, the remaining feature points are used for location matching, map construction and
localization. The final test on the TUM dataset shows that the enhanced vision SLAM system improves the
localization accuracy by 91.47% compared to ORB-SLAM?2 in highly dynamic scenes. This improvement
increases the accuracy and robustness of the system and outperforms some of the best SLAM algorithms
while maintaining high real-time performance. These features make it more valuable for mobile devices.

WE

LM BN HIEG L E (LRI (SLAM) R G5t IRKFESE L AR TS WITE R, X E7F ERE 5%
B30 85 H AR AL TN T FECR G FE (AT EFTE I 2. HXT L i, X387 — R
H b 152 I 5772 9K TR 70 55 A 5 15 5 8 H B E £ 1 7770 120 7R PIAR/ YOLOVS  H bl 572K 26
TIRIESF S B IR A 195085 H Fro 2RI 12 T ZY 0 H #v B 5 2) 000 SLAM GTim )15 ik F8 ML R 262, 1T
HH LK L7772 M BT B RAF AL 5t G0 I T 5085 H B el 7 9B & FF L o iR IR HIFFIE R T-07 VL
B R EREN . & TUM HHEE L IRAZM AR, #Ems)&a 729, HiEHEHw SLAM %45 ORB-
SLAM2 FLL, JENIFG/EHEE T 91.47% . 13— 2018 T R NI IERTEFFEIE, I (R1F 5 SEI G [ &
B LT SLAM J27% 0 ISR i RN FE ) 1 75 EH 11

INTRODUCTION

With the development of autonomous mobile robot platforms, agricultural robots have been widely
used in agricultural production and warehousing services, such as farm management, orchard inspection, fruit
picking, and automation of warehousing tasks. In these scenarios, robots need to understand the entire area
and the precise location of the target objects in the map to accomplish autonomous navigation. In order to
realize autonomous navigation, mobile robots need to accomplish two tasks: attitude estimation and map
construction. Simultaneous localization and mapping (SLAM) refers to the robot in an unknown environment,
which through its own matching sensors estimates its own position and build the environment map (He et al.,
2020). SLAM according to the different sensors are mainly divided into two categories. One is SLAM equipped
with LiDAR, which is a mature system with small computation and accurate ranging, but the cost of LIDAR is
high and not easy to maintain, so it is not commonly used in indoor robots. The other category is the camera-
equipped vision SLAM, which is characterized by low cost, high cost-effectiveness, and the ability to obtain
rich environmental information, so it has become a hot spot of attention in the field of robotics research.
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Currently, visual SLAM can be classified into two kinds according to the methods used: the feature
point method with FAST corner points as feature extraction and BRIEF descriptors as identity information
matching, which can be used for sparse point cloud building; and the direct method with the information of the
image gray value to directly judge the camera motion, which can be used for dense point cloud building, but
with certain assumptions on the gray invariance. ORB-SLAM2 is considered to be one of the most complete
one of the visual SLAM frameworks and also represents the feature point method (Mur et al., 2017), but its
results are not satisfactory in highly dynamic working environments, which leads to the low applicability of
SLAM systems in real-world scenarios. The implementation of the direct method is based on the assumption
of constant gray scale, but the light in the environment changes from time to time, and the assumption is
difficult to be completely valid, so the SLAM system based on the direct method has poor robustness. In indoor
dynamic environments, the feature points extracted from irregularly changing moving objects will seriously
affect the accuracy of the camera position evaluation. Engel et al., (2014), proposed LSD-SLAM, which utilizes
gray values to achieve localization and construct semi-dense point cloud stacks. Wang et al., (2017),
contributed DSO-SLAM based on the sparse direct method is superior to LSD-SLAM in terms of robustness,
accuracy, and speed, but it does not include the loopback detection function, which is an incomplete SLAM
algorithm.

Among the approaches relying on deep learning, Bescos et al., (2018), proposed the DynaSLAM
algorithm, which utilizes a priori information for segmenting dynamic targets by means of a deep learning
neural network, Mask R-CNN, which was first proposed by He et al., (2017), and Liu et al., (2018), utilized
semantic segmentation to identify the a priori dynamic regions of an image, and tracking and mapping using
static feature points. Yu et al., (2018), proposed a DS-SLAM algorithm that combines a SegNet real-time
semantic segmentation network with motion consistency detection to reduce the impact of dynamic targets on
the system and reduce the localization accuracy in dynamic scenes compared to ORB-SLAM2. Compared
with ORB-SLAM2, the localization accuracy in dynamic scenes is improved by one order of magnitude, but the
semantic segmentation is time-consuming and fails to meet the real-time requirements. RDS-SLAM proposed
by Liu et al., (2021), adds semantic tracking threads and optimization threads on the basis of the ORB-SLAM3
system and eliminates the outliers of the tracking threads by using the data correlation algorithm. The RTD-
SLAM proposed by Wang et al., (2023), adds YOLOV5-based parallel semantic threads and optical flow
modules to the tracking threads to eliminate dynamic feature points, which improves the system's localization
accuracy and real-time performance. Based on the ORB-SLAMS3 system, the semantic segmentation thread
is added to improve the camera localization accuracy in dynamic scenes, but the dynamic feature points of
potential dynamic targets (e.g., books held by people) are detected as static feature points, which are used in
the tracking thread for feature matching and camera pose computation, resulting in a decrease in the system
localization accuracy (Law et al., 2018).

In summary, the SLAM system's positioning accuracy may be affected by dynamic objects in the
complex environment, leading to poor real-time performance. To tackle these issues, this paper selects
YOLOVS5 as the target detection network. Then, it combines the optical flow method in the tracking thread of
the SLAM system to eliminate feature points that do not meet the requirements. Finally, only the processed
feature points are utilized for estimating the camera position. Experiments were conducted on the TUM dataset
and compared with ORB-SLAM2 and other dynamic SLAM algorithms. The results showed that the localization
accuracy of the improved visual SLAM system was 91.47% higher than that of ORB-SLAM2. Compared to
ORB-SLAMZ2, the improved visual SLAM system demonstrated a 91.47% increase in localization accuracy in
highly dynamic scenes. This enhancement effectively improves the system's robustness and localization
accuracy, while also providing higher real-time performance on mobile devices. As a result, the system has
greater application value.

MATERIALS AND METHODS
ORB-SLAM?2 system

ORB-SLAM2 is a feature-point based SLAM system that enables simultaneous localization and map
construction using camera-captured image data. It is highly stable, operates quickly, and is easy to implement.
Currently, it is the most widely used system in the field of vision SLAM. The system contains three main threads:
tracking, local map construction, and closed-loop detection. Figure 1 shows the system framework.
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Fig. 1 — ORB-SLAM2 algorithm system framework

Improved SLAM system

The ORB feature points extracted from dynamic objects in the traditional tracking thread can
accumulate errors when matching positions, resulting in reduced position evaluation accuracy or even
localization failure (Liang et al., 2022). To minimize the impact of dynamic objects on the system and improve
positioning accuracy, this paper proposes a method that combines target detection and optical flow algorithms
to reject dynamic feature points in the scene (Liang et al., 2022). A target detection module and a dynamic
feature point rejection module have been added to the tracking thread of the ORB-SLAM2 framework, as
shown in Figure 2. A new detection thread has been included in the front-end, and the tracking and detection
threads share information (Placed et al., 2022). When the system receives the image frames, they are
processed by the tracking and detection thread. The process involves two threads: tracking and detection. The
tracking thread extracts ORB feature points from the image and uses the optical flow method to track and
match the remaining feature points. The detection thread recognizes the object based on a priori information,
such as the screen, chair, and human, and calculates the frame position of each category. The tracking thread
then divides the frames into dynamic and static categories based on the returned frame information and
categories, and calculates the basis matrix. The system's robustness and positioning accuracy are improved
by matching the remaining static points with features to estimate their position, which reduces the influence of
dynamic objects in the environment (Khan et al., 2022; Wang et al., 2022; Tian et al., 2023; Engel et al., 2017).
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Fig. 2 — Improved trace threads
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Feature tracking and matching based on the LK optical flow method

The optical flow method can be used for computer vision tasks by comparing the change in brightness
values of corresponding pixels in two images to infer the direction and magnitude of the pixel's motion in the
image. This method can track the motion process of a stationary pixel and a dynamic target's same pixel in
the image (Xu et al., 2021). The two types of optical flow are sparse optical flow, which describes the motion
state of some pixels in the image, and dense optical flow, which describes the motion state of all pixels (Shen
etal., 2023). The Hom-Schunck optical flow represents the dense optical flow, while the Lucas-Kanade optical
flow, also known as LK optical flow, dominates the sparse optical flow (Zou et al., 2022).

In this paper, the purpose is to reduce computation by computing only the optical flow field of the
ORB feature points extracted by the visual odometry of the SLAM system. Therefore, the LK optical flow is
used (Fang et al., 2009).

The LK optical flow is founded on 3 assumptions:

1. For a moving target in a grayscale image, the luminance (gray scale) of its pixel points does not
change between adjacent frames.

2.Time continuity or motion is small enough that there is no drastic change in the target position due
to time change in each computation, and the change in the corresponding position of pixel points of a moving
target between adjacent frames is relatively small.

3. Spatial consistency, the vicinity of feature points All neighboring pixel points move similarly.

As shown in Fig. 3, the gray scale of an image can be regarded as a function of time: at moment ¢
the gray scale of an ORB feature point located at (x, y) in the image can be written as /(x, y, ¢). According to
the gray scale invariance assumption of the optical flow method, the gray scale value of the same feature point
is fixed in each image. For a feature point located at (x, y) at time ¢ it will move to (x+dx, y+dy) at time (t+dt)
(Zhang et al., 2020).
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Fig. 3 — Schematic diagram of LK optical flow method

The following mathematical formula is obtained based on the assumption of gray scale invariance:
I(x+dx, y+dy, t+dt) =1(x, y, t) (1)
A Taylor expansion of the left-hand side of the equal sign of Eq. (1), retaining the first-order terms
yields Eq. (2):
I(x+dx, y+dy, t+dt)=~I(x, v, t)+gdx+gdy+gdt (2)
Ox oy ot
According to the gray scale invariance assumption, the gray scale values of the feature points at
moments ¢and t+dt are equal, which can be obtained:
gdx+gdy+gdt20 3)
Ox Oy ot
Both sides are obtained by dividing by dt at the same time:
orox oloy ol (4)
Ox Ot Oy ot ot
In Eq. (4) dx/dtis the motion velocity of the feature point on the X-axis and dy/dtis the velocity on the
Y-axis, which are denoted as u and v, respectively (Kundu et al., 2009).
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d1/0x is the gradient of the image in the X-axis direction at the point, and dI/dy is the gradient in the
Y-axis direction, which are denoted as Iy and I, respectively (Migliore et al., 2009). The amount of change in
the grayscale of the feature point with respect to the time is denoted as it. It is written in the form of a matrix,
as shown in Eq. (5) as follows (Lin et al., 2010):
u
[lxly]m =1, (5)

According to Eq. (5), additional constraints need to be introduced to find the velocity vector of a pixel
(Zou et al., 2012). In the LK optical flow, a 6 x 6 window is assumed with the feature point as the center, and
according to Assumption 3, the 36 pixels inside have the same motion, and the equation is transformed into a
super-definite linear equation about u, v. The equation is transformed into a hyper-definite linear equation
about, and solved by the least squares method (Du et al., 2020). Since in the actual application scenario, the
static part of the image generates optical flow vectors due to the movement of the camera, the average optical
flow vectors of the static part of the image are calculated according to Equation (6) (You et al., 2023).

Ul 12|y
]

The feature points are filtered using equation (6) to determine whether the feature points are dynamic
or not (Xiao et al., 2019).

Ju-UP+(-V) >z 7)

where z is the threshold value for determining whether the feature point is a dynamic feature point, which is
generally twice the static mean optical flow vector. If it is greater than this value, it is judged to be a dynamic
feature point, and vice versa for a static feature point (Zhong et al., 2018).

Dynamic property setting for indoor targets

The YOLO algorithm is a neural network-based object recognition and localization tool that is fast and
can be used in real-time systems. It is currently one of the most widely used single-stage target detection
algorithms. The YOLOV5 version contains five models: YOLOv5n, YOLOv5s, YOLOv5m, YOLOvVSI, and
YOLOb5x. The detection accuracy of the YOLOv5 model gradually increases from YOLOv5n to YOLO5x, while
the detection speed gradually decreases. YOLOv5 employs mosaic data enhancement technology to enhance
the generalization of the model by synthesizing multiple images into one large image. Secondly, it performs
adaptive optimization in anchor point and image scaling processing to improve the performance of the model.
For the backbone layer, YOLOv5 combines Focus and CSP structures to extract more representative features.
The neck network introduces FPN and PAN structures to realize multi-scale feature fusion and improve
detection accuracy. Finally, in the head output layer, the loss function GIOU_Loss and the predictive frame
filtering GIOU_nms are improved to increase the accuracy and recall of the model. (Wu et al., 2021, Redmon
etal., 2016; Redmon et al., 2017; Redmon et al., 2018).

This paper selects the widely used YOLOv5s network for dynamic target detection due to its better
balance between accuracy and speed. YOLOv5s is only 27MiB in size and has a fast inference speed, meeting
the real-time detection requirements of the visual system when compared to YOLOv4 (Liu et al., 2016; Lin et
al., 2017; Bochkovskiy et al., 2020).

The data structure of the YOLOvV5 detection frame is output in the format (X, ¥, W, H, class,
confidence), where X and Y represent the X and Y coordinates of the center point of the detection frame,
respectively, W and H represent the width and height of the frame, class represents the category, and
confidence represents the confidence level. In order to facilitate reading in the SLAM system, it is necessary
to transform the first 4 position information into the coordinates under the original image. The conversion
formula is as follows:
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The current approach defines dynamic and static boxes based on given coordinates and image
dimensions. Where (X;, Y;) and (X,, Y,) denote the upper left and lower right coordinates of the detection frame,
and L and D denote the width and height of the image respectively. The detection frame for the human body
is defined as dynamic, while the detection frames for other objects are tentatively defined as static. Once the
ORB feature points are extracted, the tracking thread receives the detection data from YOLOV5 and traverses
the feature points in the detection frame. The feature points are categorized according to the definition of
different frames. Figure 4 depicts the schematic diagram of feature points. To determine whether a feature
point is dynamic or static when two boxes overlap, check if it is located inside the dynamic box and outside the
static box. If the condition is met, the feature point is considered dynamic. If not, it is considered static (Girshick
et al., 2014; Borrego et al., 2018; Ren et al, 2015).
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Fig. 4 — Schematic diagram of feature points

The current strategy for rejecting dynamic feature points necessitates the dynamic detection of all
feature points within the target detection anchor frame. While this approach can improve localization accuracy
in low dynamic sequences, it negatively impacts the system's real-time performance. To address this issue,
this paper proposes a new dynamic feature point rejection strategy. This strategy employs a priori knowledge
to classify targets. For instance, frequently moving targets like people, animals, and sweeping robots are
classified as dynamic targets, while targets like tables and chairs that may move due to human movement are
classified as potential dynamic targets.

Table 1
Dynamic property setting for indoor targets
Target objects Target category Target objects Target category
Human a Desk b
Dog a Chair b
Cat a Water cup b
Bird a Book b
Pig a Laptop b

Table 1 displays the categorization of common indoor targets, where 'a' denotes a dynamic target

and 'b' denotes a potential dynamic target. Based on these classifications, feature points located in the anchor
frame of dynamic targets are classified as dynamic feature points, feature points located in the anchor frame
of potentially dynamic targets are classified as potentially dynamic feature points, and the remaining feature
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points are classified as static feature points. Assuming that the set of dynamic feature points in an image frame
is Z, the set of potential dynamic feature points is Q, and the set of static feature points is P, the number of
feature points that need to be dynamically detected can be reduced. This improves the real-time performance
of the system.

Using Fig. 5 as an example, the tracking thread of the SLAM system extracts feature points while
employing the YOLOVv5s target detection network for target detection. Feature points in the anchor frames of
dynamic targets (e.g. people in the two figures) are placed in set Z. Feature points in the anchor frames of
potentially dynamic targets (e.g. the computer screen and chair in the figure) are placed in set Q, and the
remaining feature points are placed in set P.

Calculate the optical flow vectors of the feature points in sets Q and P using the Lucas-Kanade optical
flow method. The optical flow vectors of the feature points in set P are used as the optical flow vectors of the
static region and are substituted into Equation (6) to calculate the average optical flow vectors. The optical
flow vectors of the feature points in set Q are substituted into Equation (7) to make a judgment. If they are less
than the threshold value, it means that the feature point is a static feature point and is then moved into set P
of the static feature points. Finally, the feature points in set P are retained for feature matching and camera
pose estimation, and the remaining feature points are rejected.

re removing feature

e

(c) Before removing feature points (d) After feature removal
Fig. 5 — Dynamic feature point rejection effect comparison

Our strategy utilizes the LK optical flow method to determine whether a feature point is affected by a
dynamic target, rather than simply removing all feature points in the target detection frame. An optical flow
vector threshold is set; if the optical flow vector is less than this threshold, it indicates that the feature point is
not affected by the dynamic target and can be added to the set P. Increasing the number of feature point
matches can further improve the localization accuracy and robustness of the system. The effect of dynamic
feature point rejection is demonstrated in Fig. 5. The algorithm rejects feature points on the person as dynamic
and retains feature points on the computer anchor frame that overlap with the person's anchor frame, provided
that the optical flow vector is less than the threshold. Feature points on the chair's anchor frame portion are
also rejected as dynamic due to the person's movement. This strategy enables more accurate rejection of
dynamic feature points, resulting in improved system stability and accuracy.

RESULTS
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Experiment details

To evaluate the effectiveness of the improved ORB-SLAM2 algorithm, experiments and tests using
the TUM dataset were conducted. This dataset consisted of synchronized RGB images and depth images of
an indoor warehouse scene captured by a robot equipped with a Kinect sensor. It became one of the most
widely used evaluation datasets in the field of SLAM for comparing the performance of different algorithms.
This paper tested six sequences from the TUM dataset, including sitting_xyz, sitting_static, walking_halfsphere,
walking_rpy, walking_static, and walking_xyz. The sitting_xx sequence was a low-dynamic scenario, while the
walking_xx sequence was a high-dynamic scenario. Generally, SLAM algorithm evaluation considered aspects
such as time consumption, complexity, and accuracy.

Accuracy evaluation was often the most important, and it involved metrics such as absolute and
relative trajectory errors. This paper used root mean square error (RMSE) and standard deviation (STD) to
evaluate these metrics. To reduce the impact of tracking failures in dynamic sequences during experiments,
each sequence was run fifty times and the average value was recorded as the experimental data.

The experimental equipment used for the experiment was a Shenzhou laptop, its CPU model was 17-
12650H, memory was 16G, the graphics chip was NVIDIA Geforce GTX4060, the system environment was
Ubuntu20.04, and the deep learning framework PyTorch 1.9.0 was loaded in the virtual environment of
Anaconda. The target detection experiment running software was Visual Studio Code. The target detection
network was written in Python3.6, and the SLAM part was written in C++.

Analysis of experimental results

Since the system in this paper is an improvement on the ORB-SLAM2 system, the improved system
with the ORB-SLAM2 system is compared and the evo tool is used to compare the bitwise trajectories
estimated by the algorithm in this paper and the ORB-SLAM2 algorithm with the real trajectory map
groundtruth.txt given by the dataset to quantify the effect of the algorithm in this paper on the improvement
effect of the SLAM algorithm.
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Fig. 6 — Comparison of trajectories and errors of datasets on walking_xyz

Figures 6 and 7 compare and analyze the camera trajectories evaluated by ORB-SLAM2 and this
algorithm on the walking_xyz and walking_halfsphere datasets, respectively. The dotted line represents the
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real trajectory, while the solid line represents the camera trajectory evaluated by ORB-SLAM2 and this
algorithm. The absolute trajectory error is denoted as (ATE). Figures 6 and 7 demonstrate the algorithm's
accuracy by showing the similarity between its trajectories and the real trajectories. Additionally, the improved
algorithm (Figures 6(d) and 7(d)) significantly reduces various types of error values compared to the
unimproved algorithm.

To verify the effectiveness of the experimental design, ablation experiments were conducted on the
TUM dataset. ORB-SLAM2 served as the base group, and the base group + YOLOv5s (ORB+YOLO) and the
base group + LK optical flow method (ORB+LK), as well as the improved algorithm proposed in this paper,
were tested.
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Fig. 7 — Comparison of trajectories and errors of datasets on walking_halfsphere

The comparison results are presented in Table 2, which demonstrate the superior effectiveness of
the improved algorithm.

Table 2
Comparison results of ablation experiments
Data ORB-SLAM2 ORB + YOLO ORB + LK Ours
set Rmse STD Rmse STD Rmse STD Rmse STD

walking_xyz 0.2991 0.1186 0.0197 0.0116 0.1894 0.0752 0.0185 0.0092
walking_halfsphere 0.4754 0.1676 0.0411 0.0327 0.0752 0.0436 0.0381 0.0161
walking_static 0.0925 0.0714 0.0098 0.0087 0.0168 0.0114 0.0094 0.0082
walking_rpy 0.3575 0.2364 0.0468 0.0359 0.0748 0.0367 0.0349 0.0249
sitting_xyz 0.0153 0.0068 0.0161 0.0052 0.0151 0.0067 0.0134 0.0052
sitting_static 0.0122 0.0043 0.0124 0.0051 0.0097 0.0048 0.0082 0.0030

In this paper, the algorithm is simulated on six datasets in high and low dynamic environments, and
the improvement degree of the improved algorithm over ORB-SLAM?2 is calculated as shown in Eq. (9), which
visually expresses the optimization effect.

=277 100% 9)
U
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In the formula: p is the degree of improvement; y is the result data of ORB-SLAM2 algorithm; y is the
result data of this paper's algorithm.

Table 3 and Table 4 show that the improved algorithm has an average improvement rate of RMSE
and STD of less than 25% for the two sitting datasets in low dynamic scenarios, which is suboptimal. In
datasets with dynamic objects, the removal of portrait feature points has little effect on the system's normal
operation in low dynamic scenarios. However, in high dynamic scenarios, the algorithm presented in this paper
shows an average improvement of 91.47% in the RMSE of four dynamic datasets compared to the ORB-
SLAM2 algorithm. This indicates that the algorithm in this paper provides better localization accuracy in high
dynamic scenarios.

Table 3
Comparison of absolute trajectory errors between ORB-SLAM2 and our algorithm

Data ORB-SLAM2 Ours Relative uplift rate/%

set Rmse STD Rmse STD Rmse STD
walking_xyz 0.2991 0.1186 0.0185 0.0092 93.815 92.243
walking_halfsphere 0.4754 0.1676 0.0381 0.0161 91.986 90.394
walking_static 0.0925 0.0714 0.0094 0.0082 89.838 88.515
walking_rpy 0.3575 0.2364 0.0349 0.0249 90.238 89.467
sitting_xyz 0.0153 0.0068 0.0134 0.0052 12.418 23.529
sitting static 0.0122 0.0043 0.0082 0.0030 32.787 30.233

In recent years, scholars have presented numerous cases using the fusion of deep learning and
optical flow methods. This paper compares the reliability of the algorithm with recent domestic and international
dynamic vision SLAM algorithms, as shown in Table 5. The compared algorithms include DynaSLAM, DS-
SLAM, and RDS-SLAM, with the root-mean-square error of the absolute trajectory path as the comparative
data. The comparison data is the root mean square error of the absolute trajectory path. To eliminate the
influence of other factors, such as hardware equipment, this paper calculates the relative improvement rate.
This directly illustrates the improvement rate of the enhanced algorithm compared to the original SLAM
algorithm under the same experimental conditions. The DynaSLAM algorithm and the algorithm proposed in
this paper have shown the best results. However, the DynaSLAM algorithm's use of a semantic segmentation
algorithm for dynamic feature point rejection consumes a lot of time, making it unsuitable for real-time
requirements. In contrast, this paper's algorithm has demonstrated relatively impressive localization accuracy
in highly dynamic scenes, confirming its reliability.

Table 4
Comparison of relative trajectory errors between ORB-SLAM2 and our algorithm
Data ORB-SLAM2 Ours Relative uplift rate/%
set Rmse STD Rmse STD Rmse STD
walking_xyz 0.2107 0.1079 0.0163 0.0088 92.264 91.844
walking_halfsphere 0.3247 0.1642 0.0274 0.0142 91.561 91.352
walking_static 0.0372 0.0612 0.0042 0.0063 88.710 89.706
walking_rpy 0.3547 0.4665 0.0351 0.0462 90.104 90.096
sitting_xyz 0.0167 0.0062 0.0162 0.0061 2.994 1.613
sitting_static 0.0114 0.0018 0.0111 0.0017 2.632 5.556
Table 5
Comparison of ATE analysis between the improved algorithm and other dynamic SLAM algorithms
Data set DynaSLAM RDS-SLAM DS-SLAM Ours
walking_xyz 92.74/% 91.27/% 90.56/% 93.82/%
walking_halfsphere 94.28/% 90.74/% 89.38/% 91.99/%
walking_static 87.78/% 86.54/% 83.34/% 89.84/%
walking_rpy 92.67/% 90.13/% 86.52/% 90.24/%

CONCLUSIONS
This paper proposes a method that uses a target detection algorithm to identify and exclude feature
points of dynamic targets in a farm depot. The method first utilizes the YOLOvV5 target detection algorithm to
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identify dynamic targets in the acquired environment images. The recognized targets are then integrated into
the visual SLAM front-end for feature extraction. Next, an LK optical flow method is used to eliminate dynamic
feature points that belong to the dynamic target portion of the extracted image feature points. The remaining
feature points are then utilized for bit matching and map construction to determine the location of the feature
points. Tests were also conducted on the TUM dataset to evaluate the performance of the proposed method.
The experimental results show that the enhanced visual SLAM system improves the localization accuracy by
91%. In highly dynamic scenes, the system effectively improves the localization accuracy and robustness by
47% over ORB-SLAM2. In addition, compared with other excellent SLAM algorithms, the system has
significantly improved localization accuracy and higher real-time performance, so it is more suitable for the
application of mobile devices on agricultural robots, which will promote the development of smart agriculture.
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