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ABSTRACT  

Unmanned Aerial Vehicles (UAVs) are revolutionizing precision agriculture, particularly in the domain of 

fertilization. Equipped with advanced sensors, mapping tools, and variable-rate application systems, drones 

enable farmers to precisely distribute fertilizers based on field variability. This targeted approach reduces 

waste, minimizes environmental impact, and optimizes crop yield. The integration of technologies such as 

multispectral imaging and AI-driven decision-making systems further enhances efficiency by allowing real-time 

assessment of soil and crop conditions. Despite their numerous advantages, challenges such as high costs, 

regulatory limitations, and technical scalability remain key barriers to widespread adoption. This article 

explores the innovations UAVs bring to precision fertilization, their benefits, and the obstacles hindering their 

broader application in agriculture. 

 

REZUMAT  

Vehiculele Aeriene Fără Pilot (UAV-uri) revoluționează agricultura de precizie, în special în domeniul fertilizării. 

Echipate cu senzori avansați, instrumente de cartografiere și sisteme de aplicare cu rată variabilă, dronele 

permit fermierilor să distribuie fertilizanții cu precizie, în funcție de variabilitatea terenului. Această abordare 

țintită reduce risipa, minimizează impactul asupra mediului și optimizează randamentul culturilor. Integrarea 

tehnologiilor precum imagistica multispectrală și sistemele de luare a deciziilor bazate pe inteligență artificială 

îmbunătățește eficiența prin evaluarea în timp real a condițiilor solului și ale culturilor. În ciuda numeroaselor 

avantaje, provocările precum costurile ridicate, limitările reglementărilor și scalabilitatea tehnică rămân bariere 

semnificative în calea adoptării pe scară largă. Acest articol explorează inovațiile aduse de UAV-uri în 

fertilizarea de precizie, beneficiile acestora și obstacolele care împiedică aplicarea lor extinsă în agricultură. 

 

INTRODUCTION 

 The rapid growth of global agriculture demands innovative solutions to improve productivity, optimize 

resource usage and reduce environmental impacts. Traditional agricultural practices, especially in fertilization, 

often face challenges such as overuse of fertilizers, uneven application, labor shortages, and inefficiency in 

large-scale farming operations. To address these issues, smart agriculture, driven by advanced technologies, 

is emerging as a transformative approach to modern farming (Subeesh et. al., 2021). 

 Drones, also known as Unmanned Aerial Vehicles (UAVs), have become a pivotal tool in smart 

agriculture due to their versatility, cost-effectiveness, and ability to perform precision-based tasks (Zhou et. al., 

2024). When integrated with technologies such as Global Positioning Systems (GPS), remote sensing, and 

artificial intelligence (AI), drones can revolutionize fertilization practices. They enable precise delivery of 

fertilizers, monitor crop health, and reduce waste, thereby enhancing yields and promoting sustainable farming 

(Zhou et. al., 2023). 

 This review explores the role of drones in fertilization within smart agriculture systems. It discusses the 

technologies involved, benefits, challenges, and future trends. The integration of drone technology for 

fertilization not only ensures efficient use of agricultural inputs but also contributes to reducing environmental 

degradation and improving food security. 

 The global demand for food is steadily increasing due to population growth, which necessitates more 

efficient and sustainable agricultural practices (Gokool et. al., 2024). Smart agriculture, driven by 

advancements in technology, aims to optimize farming processes (Van Klompenburg et. al., 2020) by 

integrating tools such as sensors, data analytics, and unmanned aerial vehicles (UAVs), commonly known as 
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drones. Drones have emerged as a versatile solution for precision farming, offering applications in crop 

monitoring, irrigation management, and fertilization (Singh et. al., 2024). 

 Smart agriculture, or precision agriculture, uses advanced technologies like sensors, GPS, drones, and 

AI to optimize farming practices. By collecting real-time data on factors such as soil moisture, crop health, and 

weather, farmers can make more informed decisions about irrigation, fertilization, pest control, and harvesting 

(Eckert et. al., 2024). 

 This approach enhances farm efficiency, reduces waste, and minimizes environmental impact by 

applying resources like water and fertilizers precisely where needed. It also supports sustainability by lowering 

resource use while maintaining or increasing crop yields (Tanaka et. al., 2024). Automation and robotics further 

improve productivity and reduce labor costs. Also, technologies like remote sensing, enhanced by cloud-based 

server-side processing of high-resolution satellite imagery, and Big Data analytics platforms such as Google 

Earth Engine (GEE), along with uncrewed aerial vehicles (UAVs), have significantly improved the ecological 

monitoring of natural habitats (Tripathi et. al., 2024). 

 According to the International Society of Precision Agriculture (ISPA), precision agriculture is an 

approach to agricultural management that utilizes technology and agricultural data to enhance the quality, 

sustainability, and productivity of farming (Zualkernan et. al., 2023). 

 Bhat et. al., 2021, talks about achieving sustainable agricultural production, mentioning that the 

agriculture sector must adopt advanced technologies such as blockchain, IoT, and (AI Shadrin et. al., 2019). 

With the progression of 6th generation (6G) communication (Sitharthan et. al. 2023), new demands are 

emerging for integrated sensing and communication (ISAC) (Htun et. al. 2024). Sensing improves 

communication accuracy by detecting nearby objects and delivering real-time feedback on relevant 

environmental information (Li et. al., 2024). 

 
Fig. 1 - Concept of the integrated UAV 

(Popescu et. al., 2020) 

 

 As global food demand rises and resources like water and arable land become scarcer, there is an 

urgent need for efficient, sustainable agricultural practices (Sharma et. al., 2020). Smart agriculture, or 

precision farming, uses technologies like sensors, GPS, drones, and AI to optimize crop management 

(Andreasen et. al., 2022). This approach helps farmers use resources more efficiently, reduce waste, and 

minimize environmental impact (Yang et. al., 2024). By providing real-time data on soil conditions and crop 

health, smart agriculture enables precise irrigation, fertilization, and pest control, improving yields and 

sustainability (Kumar et. al. 2023). In the face of resource limitations and environmental challenges, smart 

agriculture is key to meeting food demand while protecting the planet (Chiu et. al., 2024). 

 Ali et. al., 2008, discusses the importance of water productivity, emphasizing its critical role in 

sustainable agricultural practices. By addressing factors such as soil quality, crop type, irrigation techniques, 

and climate conditions, the paper identifies opportunities to enhance water efficiency (Yang et. al., 2020). The 

importance of improving water productivity lies in its potential to increase food production, conserve water 

resources, and ensure agricultural sustainability in the face of growing global water scarcity and demand (Chen 

et. al., 2023). 
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 To improve agricultural productivity and food management, there is an urgent need for precision 

agriculture monitoring on a larger scale (Murugan et. al., 2017). 

 

 
Fig. 2 - Key issues in Agriculture 

(Dhanaraju et. al., 2022) 

 

 

 In the agricultural context, Canicattì et. al., 2024, says that vegetables play a vital role as protective 

foods, offering essential nutrients to the human diet. They are rich in vitamins, fibers, minerals, and 

nutraceuticals, contributing significantly to overall health and well-being. 

 Gokool et. al., 2023, talks about precision agricultural practices supported by unmanned aerial vehicles. 

UAVs have gained significant traction in the agricultural sector and hold great potential for applications on 

smallholder farms (Albetis et. al., 2019). 

 Drones, or Unmanned Aerial Vehicles (UAVs), are transforming precision agriculture by providing 

farmers with innovative tools for field management (Caballero et. al., 2024). Equipped with advanced sensors 

and cameras, drones capture real-time aerial data, allowing farmers to monitor crop health, detect pests, and 

assess irrigation needs (Rejeb et. al., 2022). 

 Drones also enable precise application of fertilizers, pesticides, and herbicides, reducing waste and 

environmental impact (Yacoob et. al. 2024). By targeting specific areas (Dou et. al., 2023), they help optimize 

resource use, improve yields, and lower costs. UAV systems represent, in most cases, the most efficient option 

to reach the inaccessible portions of the objects, providing a complete coverage of the infrastructure to be 

monitored (Massimo et. al., 2024). 

 Dronova et. al., 2021, talks about the fact that UAVs have become valuable tools in the global remote 

sensing community, functioning as small, flying robots capable of accessing hazardous or remote areas (Lee 

et. al., 2024). They capture high-resolution imagery and support environmental monitoring and research 

(Couturier et. al., 2021), spanning broad applications like agricultural management to specialized fields such 

as marine mammal behavioral ecology. UAVs are particularly advantageous for environmental monitoring 

(Shahi et. al., 2022), (Shahi et. al., 2023)  as they overcome constraints in complex, dynamic, and limited-

access environments that have traditionally been difficult to survey (Ming et. al., 2024). Additionally, UAVs 

reduce the time and labor required for ground-based surveying and sampling, allowing for more focused 

managerial activities, such as restoration assessments, that might otherwise be neglected (Pereira et. al., 

2024). 

 UAVs provide high operational efficiency, excellent adaptability to various terrains, and safe applications 

(Nahiyoon et. al., 2024). 
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Fig. 3 - Block diagram of a drone system 

(Guebsi et. al., 2024) 

 

 UAVs are already established across various fields (Khan et. al., 2021), and their market is projected to 

grow to $200 billion in the coming years. Yamaha introduced its first UAV model, the Yamaha RMAX, designed 

for crop monitoring and pest control; however, production was discontinued in 2007 (Castro et. al., 2023). They 

developed a spray system integrated into a UAV platform, resulting in an autonomous spraying system used 

for pest management and vector control. Additionally, a Pulse Width Modulation (PWM) controller was 

implemented for UAV precision agriculture sprayers, enabling the UAV to be remotely controlled or operated 

autonomously through preprogrammed flight plans (Buters et. al., 2019). 

 Fertilization plays a fundamental role in enhancing crop productivity and maintaining soil fertility (Yuan 

et. al., 2024). However, traditional fertilization methods often lead to inefficiencies, including excessive fertilizer 

use, environmental pollution, and increased costs. Precision fertilization, enabled by drone technology, aims 

to address these issues by delivering the right amount of nutrients to crops in a targeted manner (Niu et. al., 

2024).  

 Currently, there is excessive use of fertilizer and inadequate uniformity in the fertilizer distribution in corn 

fertilizer planters (Wang et. al., 2022). 

 Fertilization is essential for boosting crop yields by providing key nutrients like nitrogen, phosphorus, 

and potassium. These nutrients support plant growth, resulting in higher productivity and better-quality crops 

(Hasan et. al., 2020). 

 However, improper fertilization can harm soil health (Scherrer et. al., 2019). Overuse can lead to nutrient 

imbalances, soil degradation, and environmental issues like water pollution. Balanced and precise fertilization, 

based on soil testing, helps avoid these problems while maintaining soil fertility (Kannan et. al., 2024). 

 Chebrolu et. al., 2018, talks about the automated crop monitoring being a crucial component of precision 

farming, enabling farmers to make informed decisions about when, where, and how much fertilizer or pesticide 

to apply (Pu et. al., 2015). It also enhances yield estimation, contributing to improved efficiency and productivity 

in agricultural practices. 

 Esposito et. al., 2021, talks about precision agriculture utilizing technologies that integrate sensors, 

information systems, and data-driven management practices to enhance crop productivity while minimizing 

environmental impact. Nowadays, precision agriculture has diverse applications across various agricultural 

contexts, including pest control, fertilization, irrigation, sowing, and harvesting. 

 The knowledge of plant nutrient requirements and the use of inorganic fertilizer allow an increase in crop 

production (Farias et. al., 2020). 

 However, as drones began to be utilized in crop management (Valente et. al., 2013), challenges 

emerged regarding the standardization of operational parameters, such as height, speed, nozzle type, angle, 

flow rate, and spray width, as well as issues related to application drift and the type of agrochemicals used 

(Martínez-García et. al., 2023). To address these challenges, advanced precision technologies have been 

incorporated into drones for crop spraying, enhancing efficiency across multiple areas (García-Munguía et. al., 

2024). 
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 Drones equipped with advanced technologies, such as GPS, multispectral cameras, and variable-rate 

application systems, enable precision fertilization by delivering nutrients directly to targeted areas (Huang et. 

al., 2024). This approach not only enhances fertilization accuracy but also reduces input costs and minimizes 

the environmental footprint, making it an attractive solution for modern agriculture (Carreño et. al., 2024). 

 

  
a) b)  

Fig. 4 - DJI Multispectral drones  

(Panday et. al., 2020) 

(a) DJI P4 senseFly eBee SQ 

(https://www.dji.com/global/support/product/p4-multispectral ), 

(b) fixed-wing drone  

(https://www.sensefly.com/solutions/drones/ ) 

 

 

  
a) b) 

Fig. 5 - DJI M600 Pro  

(Panday et. al., 2020) 

 

 Khanal et. al., 2017, states that precision agriculture (PA) leverages advanced tools and technologies 

to detect variability in soil and crops within fields, aiming to enhance farming practices and optimize the use of 

agronomic inputs. Traditionally, optical remote sensing (RS), which uses visible light and infrared regions of 

the electromagnetic spectrum, has been a key component of PA for monitoring crops and soil conditions 

(Huang et. al. 2024). The use of agricultural drones not only helps reduce production costs but also boosts 

crop yields by minimizing losses during cultivation (Zhichkin et. al., 2023). 

 This review aims to assess the application of drones in smart agriculture for fertilization, focusing on the 

technologies and methods utilized in drone-based fertilization, the efficiency and precision of these systems 

compared to traditional approaches, the environmental and economic benefits they offer, as well as the 

challenges and opportunities for future advancements. 

 

MATERIALS AND METHODS 

 After full-text analysis, 80 studies were included in this review based on their relevance to drone-based 

fertilization in agriculture. 

 From the selected studies, data on drone type and sensor technologies, fertilization methods, operational 

efficiency, and case study results were extracted. Findings were organized into categories such as technological 

advancements, application accuracy, and environmental impacts. A qualitative synthesis of the findings was 

performed, focusing on recurring trends, technological improvements, and challenges in drone-based fertilization. 

Quantitative data, such as coverage efficiency and cost savings, were extracted for comparative analysis. 

 

Data on drone types and sensor technologies 

 The DJI Phantom 4 Multispectral is a specialized drone designed for precision agriculture and 

environmental monitoring. It combines DJI’s reliable drone technology with a multispectral imaging system to 

provide accurate data on crop health, soil condition, and vegetation analysis. 

https://www.dji.com/global/support/product/p4-multispectral
https://www.sensefly.com/solutions/drones/
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Fig. 6 - DJI Phantom 4 Multispectral 

(Dong et. al., 2024) 

 

 DJI A3 System is a high-performance flight controller designed for professional drones, particularly in 

industrial applications, aerial photography, and custom drone builds. It provides advanced flight control, stability, 

and customization options for multirotor platforms 

 

 
Fig. 7 - 6-rotor drone and spreading device controlled by DJI A3 system 

(Han et. al., 2024) 

 

 The DJI Phantom 4 Pro is widely preferred in agriculture due to its compact design, affordability, and 

advanced features that make it ideal for various farming tasks. 

 Although the DJI Inspire 1 is less commonly used in routine agricultural operations compared to the 

Phantom 4 Pro, it remains valuable for specialized applications that require more advanced capabilities. 

 

  

 

Fig. 8 - DJI Drones (Messina et. al., 2020)                         
(a) DJI Phantom 4 pro                                                                                   (b) DJI Inspire 1 
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Tabel 1 

Features DJI Phantom 4 pro and DJI Inspire 1 

Feature DJI Phantom 4 Pro DJI Inspire 1 

Camera 
20 MP, 1-inch sensor, 4K at 60 fps 

4K camera with Zenmuse X3 or X5 gimbal 
(interchangeable lenses) 

Flight Time 30 minutes 18-20 minutes 

Speed 45 mph (72 km/h) 50 mph (80 km/h) 

Flight Range OcuSync (up to 4.3 miles or 7 km) Lightbridge (up to 1.2 miles or 2 km) 

Obstacle 
Avoidance 5 sensors (front, rear, downward) Front and downward sensors only 

Dual Control 
No 

Yes, dual operator control (pilot + camera 
operator) 

Intelligent Flight 
Modes 

ActiveTrack, TapFly, Return-to-Home Follow Me, Waypoints, Point of Interest 

Camera Control 
Fixed camera 

Interchangeable lenses with high control over 
the camera 

Best For General crop monitoring, field mapping, 
surveying, precision agriculture 

Advanced inspections, professional-grade 
mapping, specialized tasks 

 

 

  
Fig. 9 - Fixed-wing Drones 

(Radoglou-Grammatikis et. al., 2020) 

 
      a) Fixed-wing UAVs                                                                                                    b) Rotary-wing UAVs  

 

Tabel 2 

Key differences between fixed-wing UAVs and rotary-wing UAVs 

Aspect Fixed-wing UAVs Rotary-wing UAVs 

Lift Mechanism Lift generated by fixed wings 

during forward flight 

Lift generated by rotating 

blades/rotors 

Takeoff & Landing Requires a runway or launch 

method (except VTOL models) 

Vertical takeoff and landing 

(VTOL) 

Flight Duration Longer flight times due to 

higher efficiency 

Shorter flight times due to 

energy-intensive hover 

Speed Faster, suitable for long-

distance travel 

Slower, more maneuverable 

Maneuverability Less maneuverable, limited to 

forward flight 

Highly maneuverable, can 

hover and move in any 

direction 

Applications Long-range surveying, 

mapping, agriculture 

Aerial photography, 

inspections, search and rescue 
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Sensor technologies 

 UAVs rely on advanced sensors to capture important data for various applications. Four key types of 

sensors used by UAVs include thermal, RGB, multispectral, and hyperspectral sensors. 

 

  
  

Fig. 10 - Examples of sensors used by UAVs  
(Tsouros et. al., 2019) 

(a) thermal sensor, (b) RGB sensor, (c) multispectral sensors  (d) hyperspectral sensor  

 

Seeding methods 

 
Fig. 11 - Seed metering device for aero sowing of forest pelleted seeds 

(Lysych et. al., 2021) 

 

 In this paper, Lysych et. al., 2021, studied the design and simulation of a precision seed metering device 

tailored for aero sowing forest pelleted seeds. The system is developed to address the challenges of 

reforestation in difficult-to-access areas by leveraging drone technology. The seed metering device integrates 

advanced components, including a rotary seed metering mechanism, precise release systems, and simulation 

models to ensure uniform seed distribution. The design focuses on achieving optimal sowing accuracy, 

minimizing seed waste, and adapting to diverse terrain conditions. Results from simulations validate the 

system’s efficiency, highlighting its potential for sustainable reforestation and ecological restoration efforts. 
This system uses balls with seed and fertilizer to help the seed develop. 

 

 
Fig. 12 - Spraying system reservoir developed  

(Barcelos et. al., 2024) 

Case Study Results 

 Han et. al., 2024, studied the development of a rotor speed prediction model for multi-rotor unmanned 

aerial spraying systems (UASS) which enhances the efficiency and effectiveness of agricultural spraying. By 

predicting rotor speed based on real-time flight speed and payload, the system ensures stable flight and 

optimal spraying conditions. The study highlights the importance of matching rotor speed with the UASS load 

to optimize power consumption, performance, and reliability.  
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It also emphasizes the impact of rotor speed on the downwash field, which affects droplet deposition and spray 

effectiveness. Using a neural network for the prediction model demonstrates the potential of machine learning 

in precision agriculture, enabling real-time monitoring, adjustments, and improved operational efficiency, 

ultimately reducing waste and increasing crop yields. 
 

  

a) b) 

Fig. 13 – Rotor speed prediction model for multi-rotor unmanned aerial spraying systems  

(Han et. al., 2024) 

a) TopXGun F16                                                                              b) UAV power system test platform  

 

 The rotor speed prediction model, developed using a neural network with real-time flight speed and 

payload as inputs, showed strong accuracy with correlation coefficients (R²) of 0.728, 0.719, and 0.726 for 

training, validation, and test sets, respectively. A quadratic relationship between rotor speed and thrust was 

established, with a fitting parameter (R² > 0.999), indicating excellent alignment with test data. Under full-load 

conditions, the single-axis load capacity reached 50% of its maximum, increasing by over 75.83% compared 

to the no-load state, significantly affecting rotor speed and system performance. The model accurately 

predicted rotor speed, aligning well with theoretical calculations and test results. This study provides a reliable 

foundation for optimizing UASS performance and efficiency during continuous operation. 

 Jibon et. al., 2023, demonstrates that the use of an autonomous UAV greatly reduces the time and labor 

required for seed planting and fertilizer distribution. By operating without constant human intervention, the UAV 

ensures precise application, optimizing resource use and improving crop yields while minimizing waste. 

Equipped with ArUco markers and a computer vision-based control system, the UAV can navigate 

autonomously, enhancing its range and effectiveness. Automation of these processes reduces overall costs, 

making farming more economical, especially for small-scale farmers. Additionally, precise seed and fertilizer 

application reduces environmental impact, supporting sustainable farming practices. The UAV system is 

scalable and adaptable to different crops and field conditions, making it suitable for both small and large-scale 

agricultural operations. 
 

  
a) b) 

Fig. 14 – System hardware architecture and autonomous flight plan  
(Han et. al., 2023) 

 

 Liu et. al., 2021, study highlights the use of small fixed-wing and rotor-wing UAVs in precision agriculture, 

equipped with sensors to capture high-resolution images for monitoring crop health, detecting pests, and 

optimizing field practices. Deep learning (DL) techniques like CNNs and RNNs enable tasks such as crop 

classification, weed detection, and growth monitoring. The study emphasizes edge intelligence, combining AI with 

edge computing for real-time data processing on UAVs and IoT devices, reducing latency and bandwidth issues. 

Techniques like parameter pruning and quantization optimize DL models for resource-limited edge devices. It also 
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provides UAV-based remote sensing datasets for validating DL methods and suggests future research on 

advanced DL models, multi-source data integration, and improved edge intelligence to enhance precision 

agriculture scalability and performance. 

 

 

a) 

 

b) 

Fig. 15 - The use of small fixed-wing and rotor-wing UAVs in precision agriculture  

(Liu et. al., 2021) 

                             a) Cloud computing paradigm                                                        b) Edge computing paradigm for UAVs RS 

 

 Studies on precision agriculture highlight the benefits of integrating advanced technologies like GPS, 

remote sensing, and wireless sensors for real-time monitoring and data collection, enabling informed decisions 

on fertilization and irrigation (Lu et al., 2022). These technologies, along with variable rate technology (VRT), 

help optimize resource use, improve crop health, and reduce costs. Similarly, UAV-captured multispectral 

images can effectively estimate nitrogen concentration, uptake, and the nitrogen nutrition index (NNI) in grass 

seed crops, with NDRE and CIRE indices showing the best performance for predicting nitrogen status (Wang 

et al., 2019). 

 Research by Xu C. et al., 2017, found that increasing planting density boosted grain yield by 7% and 

improved nitrogen use efficiency by enhancing nitrogen remobilization, while reducing N2O emissions and 

greenhouse gas intensity by 61.5% and 46.2%, respectively. Additionally, Xue X. et al., 2024, identified that 

sampling point height significantly affected droplet deposition rate, with UAV flight height and particle size 

having minimal impact. They used machine learning methods to predict droplet deposition and drift, with ELM 

showing the best prediction accuracy. The study also employed grid atomization technology to optimize droplet 

size, reducing drift and improving deposition for more effective spraying. 

 

 
 

Fig. 16 - Spraying operations of the plant protection drone (Yu et. al., 2023) 
a) XAG V40; b) DJI T30 six-rotor electric; c) Knapsack Electric Sprayer 

 

 Yu et. al., 2023, found that increasing spray volume from 60 L/ha to 120 L/ha significantly improved 

droplet density, coverage, and uniformity in the citrus canopy. The XAG V40 drone achieved 18.7–41.7 

droplets/cm² with an 87.8% increase in coverage, while the DJI T30 reached 146.0–205.3 droplets/cm², with 

better penetration, particularly in the lower and middle canopy layers. 
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 Droplet distribution uniformity improved, with the coefficient of variation decreasing by 22.0% for the 

XAG V40 and 26.8% for the DJI T30. In contrast, the knapsack electric sprayer (2400 L/ha) showed higher 

droplet density in the lower canopy but less uniform coverage (40.3%–42.4%). 

 

RESULTS 

 A qualitative synthesis of the findings was performed, focusing on recurring trends, technological 

improvements, and challenges in drone-based. Quantitative data, such as coverage efficiency and cost savings, 

were extracted for comparative analysis. 

 This graph displays the qualitative analysis results for using drones in smart agriculture for fertilization. Each 

factor is rated on a scale from 1 to 5, with efficiency, environmental impact, precision, and resource 

optimization achieving the highest scores. Cost savings and scalability also show strong performance, 

highlighting the overall benefits of drones in precision fertilization. 

 

 
Fig. 17 - Comparative analysis for the case studies 

 
 The next table provides a comprehensive comparison of 8 UAVs used for liquid fertilizers application based 

on essential features such as payload capacity, spray efficiency, power source, battery life, spraying system, 

navigation, obstacle avoidance, durability, ease of use, and cost. 

Tabel 3 

Comprehensive comparison of 8 UAVs used for liquid fertilizers 

Feature 
DJI Agras 

T30 
XAG P100 

Pro 
TTA M6E 

Yamaha 
Fazer R 

Hylio AG-
122 

EAVision 
EAV-10 

Walkera 
VITUS 
AG 18 

Agribotix 
Hornet 

Payload 
Capacity 

30L 40L 16L 20L 20L 10L 18L 10L 

Spray 
Efficiency 

40 ha/day 
16 

acres/hour 
Moderate High Moderate Low Low Moderate 

Power Source Electric Electric Electric Gas Electric Electric Electric Electric 

Battery Life ~25 min ~20 min ~20 min 
1-2 hours 
(gas tank) 

~22 min ~25 min 
~15-20 

min 
~25 min 

Spraying 
System 

High-
precision, 

variable-rate 
spraying 

Smart 
modular 
system 

Smart 
flow 

control 

Customizable 
nozzles 

Autonomous 
sprayer 

Target-
specific 
sprayer 

Targeted 
sprayer 

Multi-
purpose 
system 

Navigation 
System 

RTK GPS + AI 
mapping 

RTK GPS 
+ Wind 

Resistance 
RTK GPS 

Standard 
GPS 

Fully 
autonomous 

GPS 

Binocular 
vision + 

GPS 
GPS GPS 

Obstacle 
Avoidance 

Advanced (AI 
sensors) 

Moderate Basic None Moderate 
Terrain 
sensing 

Basic Basic 

Durability 
Rugged and 

durable 

Rugged 
and 

modular 
Medium 

High (gas-
powered) 

Medium 
Designed 
for slopes 

Compact Medium 

Ease of Use User-friendly 
Modular 

and flexible 
Simple 

interface 

More 
complex to 

operate 

Very user-
friendly 

Plug-and-
play 

design 

Easy to 
operate 

Easy to 
configure 
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Feature 
DJI Agras 

T30 
XAG P100 

Pro 
TTA M6E 

Yamaha 
Fazer R 

Hylio AG-
122 

EAVision 
EAV-10 

Walkera 
VITUS 
AG 18 

Agribotix 
Hornet 

Cost approx. High High Medium High 
Medium-

high 
Medium Low Medium 

 

Observations: 

 Agricultural drones vary in payload, efficiency, durability, ease of use, specialization, and precision, 

catering to different farming needs. High-payload models like the XAG P100 Pro and DJI Agras T30 excel in 

large-scale operations, while specialized options such as the EAVision EAV-10 and Walkera VITUS AG 1 

handle unique terrains, gas-powered drones like the Yamaha Fazer R ensure endurance, user-friendly models 

like Hylio AG-122 suit small farmers, GPS + RTK-equipped drones like Hylio AG-130 offer precision, and 

ground-based alternatives like the XAG R150 serve specific terrains, all optimizing fertilizer application, 

reducing waste, and enhancing efficiency. 

Tabel 4 

Versatility of drones in spreading solid fertilizers 

Feature 
DJI 

Agras 
T30 

DJI 
Agras 

T40 

XAG 
P100 

XAG 
R150 

Kisan 
Drone 

Hylio AG-
130 

HSE 
Enduranc

e 

Yamaha 
RMAX 

Krishna 
Drone 

Drone 
AG 

Spreader 

Payload 
Capacity 

(Kg) 
30 40 60 60 10 25 20 28 15 10 

Flight Time 
(Minutes) 

20-25 25-30 30 
Ground
-based 

15-20 25 30 90 15 20 

Application 
Width (m) 

7-9 10 10-12 
Ground
-based 

5-8 8 7-8 6 5 6-8 

Navigation 
System 

GPS + 
RTK 

GPS + 
RTK 

GPS + 
RTK 

GPS GPS 
GPS + 
RTK 

GPS + 
RTK 

GPS 
GPS + 
Manual 

GPS 

Battery 
Type 

Lithium
-ion 

Lithium-
ion 

Lithium-
ion 

Lithium
-ion 

Lithium-
ion 

Lithium-
polymer 

Lithium-
ion 

Combusti
on 

Lithium-
ion 

Lithium-
ion 

Cost (USD) 
~18,00

0 
~20,000 ~25,000 

~30,00
0 

~12,000 ~18,000 ~20,000 ~80,000 ~10,000 ~15,000 

 

 

CONCLUSIONS 

 The use of drones in smart agriculture for fertilization represents a significant advancement in 

agricultural technology, revolutionizing how farmers approach resource management. Drones equipped with 

advanced sensors and precision tools allow for the accurate application of fertilizers, ensuring that the right 

amount of nutrients is delivered to crops at the right time and place. This precision not only leads to higher 

crop yields but also helps reduce the overuse of fertilizers, minimizing environmental damage such as nutrient 

runoff and soil degradation. 

 This paper considers that the integration of drones in fertilization is a game-changer for modern 

agriculture, offering unparalleled precision and efficiency. The ability to monitor crop health and soil conditions 

in real time allows for targeted fertilizer application, reducing waste and maximizing productivity. From our 

perspective, this data-driven approach not only optimizes resource allocation but also improves farm 

profitability, making it a valuable tool for farmers of all scales. 

 Drones provide a practical and scalable solution for both small and large farming operations. Their 

autonomous capabilities reduce labor costs and enhance efficiency, while their adaptability to different 

crops and terrains makes them a versatile asset in agriculture. In our experience analyzing agricultural 

innovations, drones stand out as one of the most effective ways to modernize and streamline fertilization 

practices. 

 Furthermore, drone technology is seen as a key contributor to sustainable agriculture. By 

minimizing over-fertilization and reducing the environmental footprint of traditional methods, drones promote 

more eco-friendly and responsible farming. As technology continues to advance, drones will become even 

more essential in shaping the future of efficient, sustainable, and environmentally conscious agriculture. 
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