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ABSTRACT  

New technologies are emerging every day to improve the productivity of food production to meet rising 

demands. Microgreens have gained popularity nowadays and are known for being nutritious and easy to 

cultivate. Fogponics is one of the emerging technologies that atomizes the nutrient solutions into fine mist, 

improving the oxygenation and reduces water usage that lacks from traditional farming methods. The study 

developed an automated fogponics system for microgreens production using machine learning automation 

and internet of things monitoring systems. The model's evaluation output proves that the system is reliable 

and capable of predicting an appropriate direction given the datasets acquired from temperature and humidity 

while the plants are thriving over time. The system has successfully reduced the temperature fluctuation 

ranging from 26°-33°C to 27°-30°C and stabilized humidity levels from 75-100% to 90-96%. As a result, the 

performance of the model effectively yielded the microgreens to flourish in its environmental parameters by 

incorporating machine learning automation and IoT-based monitoring systems. This study strengthened the 

importance of contributing a promising alternative for sustainable microgreens production. This prototype 

represents its significant advancement in agricultural strategies for indoor microgreens cultivation, offering a 

potential alternative for efficient and scalable production. 

 

ABSTRAK  

Araw-araw may mga makabagong pamamaraan sa pagtatanim ang umuusbong upang mapabuti ang 

produksyon ng pagkain para matugunan ang tumataas na pangangailangan nito. Ang microgreens ay nagiging 

popular ngayon dahil sa taglay na sustansya at madaling paraan ng pagtatanim. Ang fogponics ay isa sa mga 

umuusbong na teknolohiya na mekanismong pagkontrol para sa awtomasyon ng nutrient solution sa 

pamamagitan ng usok, ito ay nakakatulong upang mapabuti sa oxygenation at mababang pagkonsumo ng 

tubig na kulangan sa mga tradisyunal na pamamaraan ng pagsasaka. Ang layunin ng pananaliksik na ito ay 

bumuo ng automated fogponics system para sa produksyon ng microgreens, gamit ang machine learning 

automation at internet of things monitoring systems. Ang resulta sa pagsusuri ng modelo ay napatunayan na 

ang sistema ay may kakayahan upang malaman ang angkop na direksyon batay sa mga datos na nakalap 

mula sa temperatura at halumigmig habang ang mga halaman ay simisibol. Ang sistema ay matagumpay na 

napanatili ang pagbabagu-bago ng temperatura mula 26°C-33°C naging 27°C-30°C at napanatili ang antas 

ng halumigmig mula 75%-100% naging 90%-96%. Bilang resulta, ang prototype ay epektibong nakapag-ani 

ng microgreens na yumabong sa pamamagitan  ng pagsasama ng machine learning automation at IoT-based 

monitoring systems. Ang prototype na ito ay kumakatawan sa makabuluhang pag-aambag sa pag-unlad ng 

mga estratehiya sa agrikultura para sa indoor microgreens cultivation, may potensyal bilang alternatibong 

pamamaraan para sa mahusay at pangmalakihang  produksyon.  
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INTRODUCTION  

 In 2017, the Food and Agriculture Organization (FAO) projected that the global population could reach 

10 billion by 2050, representing a 34% increase from where it is now. Consequently, global food production 

must increase by 70% by 2050 to meet this demand. While population growth undeniably contributes to the 

rising demand for food, its impact is further intensified by shifts in consumption patterns. This connection 

between emerging food demands highlights the necessity for innovative approaches to agricultural production, 

particularly in addressing both the quantity and quality of the food supply. To address this growing need for 

more and better food, it is crucial to intensify and industrialize agricultural practices while also maximizing the 

efficiency of water and other resources. 

 Microgreens are gaining popularity nowadays due to their nutraceutical potential, ease of cultivation, 

year-round availability, and culinary versatility (Jambor et al., 2022). These young plants provide higher 

nutraceutical benefits than their mature counterparts due to their delicate texture, distinctive tastes, and 

excellent quantity of different nutrients (Xiao et al., 2012). Microgreens are cultivated and harvested before 

their true leaves emerge; they are usually harvested when they reach the height of 1 – 3 inches or between 5 

– 21 days after germination.  It should not be confused with sprouts and baby greens. Unlike sprouts, which 

are grown without light and harvested earlier, or baby greens, which are harvested between 20 – 40 days, 

microgreens offer unique advantages (Partap et al., 2023).  

 Various cultivation systems and growing media have been studied for microgreens farming, including 

soil and soilless cultivation systems and alternative growing medium (Eswaranpillai et al., 2023; Gunjal et al., 

2024). Understanding of the most commonly used cultivation system for microgreen farming is gained from 

the work of Paglialunga et al. (2023), who shed light on the significance of soil-less or hydroponics cultivation 

system. Although the hydroponics cultivation system has advantages in growing microgreens, it also has 

drawbacks such as mold and yeast development due to overexposure of seeds to the nutrient solution and 

inadequate air circulation (Li et al., 2021; Ocho Bernal et al., 2023). These issues can be mitigated by using 

an aeroponics cultivation system, which enhances oxygenation and water efficiency by spraying nutrient 

solutions directly onto the seeds or roots. It expedites the delivery of nutrients up to 135% for emitting droplets 

compared to the latter (Eka Putri et al., 2023). 

 On the other hand, a gentler nutrient delivery mechanism is imperative to cultivate microgreens to yield 

its optimal growth. The ultrasonic aeroponics or simply fogponics cultivation system manages these matters 

by atomizing the nutrient solution into a fine fog. It rests on the notion that the maximum particle capacity for a 

plant's nutrient absorption is between 1 – 25 micrometers in size (Gandham et al., 2022) whereas, this process 

fosters improved growth of the plants as it robust absorption of nutrients through its roots (Gao et al., 2016; 

Lakhiar et al., 2018). Thereby, fogponics cultivation system was found to significantly minimizes consumption 

of water up to 50% (Al-Kodmany, 2018). 

 In spite of the existing advantages, various factors can affect the ability of the plant to thrive through 

its process (Abbasi et al., 2024). This method also poses challenges for the need to maintain adequate nutrient 

absorption and manage root zone temperature as well. Thus, appropriate management of nutrient solution and 

parameters such as light intensity, temperature, and humidity is essential for a successful cultivation especially 

when conducting the fogponics cultivation system (Lakhiar et al., 2018).  

 Managing laborious tasks in agriculture is evident in the possibilities for enhancement made by 

integrating emerging technologies like machine learning-based automation and IoT monitoring systems. 

Furthermore, to yield the ideal growth of the plant, algorithms of machine learning optimize actuator settings. 

The work of Ardiansah et al. (2023) provides valuable insights into IoT monitoring systems, in which it facilitates 

real-time monitoring by overseeing its sensors, environmental conditions, and transmitting the data straight to 

the cloud. It also enables users to access the recorded readings of sensors through the application or the 

internet (Ardiansah et al., 2022). In the study of Sarmphim et al. (2022), the researchers use Blynk application 

as an IoT for accessing sensor data and as an automation. Blynk application is an IoT platform that is user-

friendly that can be access via smartphones. 

 This study aims to develop a prototype fogponics system design to establish productive indoor 

cultivation of microgreens by leveraging machine learning automation to optimize environmental conditions 

and resource usage, and IoT monitoring system to provide real-time data. Given the expressed significance to 

address the challenges encountered in traditional farming such as resource inefficiency and limited scalability, 

it is pertinent to explore such factors to contribute to a more sustainable and productive agricultural practices. 
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MATERIALS AND METHODS 

 In the development of automated fogponics system for microgreens, the researchers split the 

methodology into data gathering phase and training and validation phase. Data gathering phase is where the 

system is built and the data is collected for the training of the machine learning model. On the other hand, the 

training and validation phase is where the model is trained and subsequently the fogponics system is tested 

to assess the model’s effectiveness. 

 

Main setup 

 The automated fogponics system for microgreens consists of two containers namely nutrient tank and 

the growing box, along with a mainframe, LED lights, a power supply, and a control system (see Fig. 1). The 

nutrient tank, constructed from a plastic container, includes an ultrasonic fogger, blower fan, and water level 

sensor. It creates and transfers the atomized nutrient solution to the growing box. The growing box contains a 

seedling tray for holding seeds and the nutrient solution. The mainframe is built from PVC pipes and fittings. It 

supports the LED light, control system, and power supply. Meanwhile, the control system features a 

microcontroller that operates actuators and gathers sensor data, while the microprocessor interprets this data 

to predict actuator combinations; the Blynk application enables real-time monitoring, data logging, and machine 

learning model development. 

 
Fig. 1 - Fogponics system setup 

1 - nutrient tank, 2 - seedling box, 3 - main frame, 4 - fan, 5 - ultrasonic fogger,  
6 - LED light, 7 - control system, 8 - power supply 

Circuit Diagram 

 Fig. 2 provides the comprehensive control and power circuit diagram of the study powered by 

ESP32 microcontroller. The ESP32 receives the data from the water level sensor, light sensor, and 

temperature and humidity sensor. The microcontroller ensures the interaction between various sensors 

and actuators. It uses a relay module to control the fogger and blower and uses PWM for adjusting the 

brightness of LED light. The buck converter provides needed voltages for the control system.  

 
Fig. 2 - Control and power circuit diagram 

Control System Diagram 

 In Fig.3A, the control system acquires data from actuators and sensors while the fogponics system 

operates, turning actuators on and off based on a researcher-set frequency.  
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 A microcontroller, interfaced with various sensors and actuators, manipulates environmental conditions 

effectively. The Blynk application offers a user interface for monitoring, controlling the system, visualizing data, 

and logging data for machine learning model training.  

 Meanwhile, Fig.3B illustrates system automation, integrating both the microprocessor and 

microcontroller. The microcontroller, connected to sensors like temperature, humidity, light, and water level, 

gathers real-time data, relayed to the microprocessor for processing and decision-making. The microcontroller 

also controls actuators such as the blower, ultrasonic fogger, and LED lights. Additionally, the Blynk application 

provides a user interface for data visualization and manual system control. 

  
Fig. 3 - Control system diagram 

System Flow Diagram 

 The Fig. 4A illustrates the phase 1 system flow diagram, starting with system initialization. The system 

includes the Blynk application which allows manual control of actuators, real-time data visualization, data 

logging, and simple automation. The microcontroller manages the actuator control and sensor data.  

 On the other hand, Fig. 4B depicts the phase 2 system flow diagram for automated fogponics systems, 

integrating both automated and manual controls. This phase is divided into microprocessor, microcontroller, 

and Blynk application subsystems. The process begins with component initialization. The microprocessor 

requests data from Blynk, processes it, and predicts necessary actions for the system. These actions are then 

communicated to the microcontroller, which controls the actuators and sensor reading. The application 

provides manual override capabilities, data visualization, and logging for real-time monitoring of system 

performance and environmental conditions. 

  
Fig. 4 - System flow diagram 

Machine Learning Model 

 After gathering data in phase 1, it undergoes cleaning and processing using Python. K-means clustering 

algorithm is used to categorize environmental data and set controls for the fogponics system. Normalization is 

performed by subtracting the mean and dividing by the standard deviation of each feature, ensuring equal 

feature contribution to the clustering process. The model is then fitted with the normalized data, assigning each 

data point to one of two clusters: 1 for system "ON" or 0 for system "OFF." The processed data is saved to a 

CSV file for training the automation model.  

A                              B  

A                              B 
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 The next step is the model training, where the random forest regression is used as a machine learning 

algorithm. During the training phase, it generates many decision trees. In order to measure a random subset 

of characteristics in each partition, a random subset of the data set is used to construct each tree. The 

combination of multiple decision trees makes it a stable and accurate prediction model. 

 

Model Validation  

 The validation of accuracy and performance of the model is requisite to ensure the effectiveness of the 

model in predicting the values derived from the datasets. Thus, different methods are used to validate the 

model. Whereas, the data is split into 80% training data and 20% test data of the whole datasets. The training 

data is used to train the model while the test data is used to validate the model. The accuracy of the model is 

validated using metrics such as Precision, Recall, and F1-Score. On the other hand, the reliability of the model 

is validated using Root Mean Squared Error (RMSE) and R-squared (R²). 

Root Mean Squared Error (RMSE) 

Prediction error metrics like Root Mean Squared Error (RSME), is the square root of MSE. It 

gives an approximation of the average variations between the predicted and actual results in the 

dataset. 

𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1          (1) 

where: 

 𝑛 denotes number of observation, 𝑦𝑖 represents the actual value of ith observation, and 𝑦�̂� 

implies the predicted value of the ith observation.   

 R-squared (R2) 

 R-squared (R2) measures how well the model explains how much variation of a dependent 

variable is explained by an independent variable in a regression model. Values closer to 1 means 

better model fit. 

   𝑅2 = 1 −
𝑅𝑆𝑆

𝑅𝑆𝑆
      (2) 

where: 

 𝑅2  =  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 denotes the coeffiecient of determination, 𝑅𝑆𝑆 represent 

the sum of squares of residuals, and 𝑇𝑆𝑆 stands for total sum of squares.  

 Precision 

 Accuracy metrics like Precision evaluate the accuracy of the ratio of true positive predictions 

to the total of predicted positives. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
     (3) 

Recall 

 Recall is measuring the model’s ability to recognize the positive instances. It is solved as the 

ratio of true positive predictions to the total actual positives. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    (4) 

F1 Score 

 F1-Score on the other hand, is the harmonic mean of precision and recall. It is solved using 

this formula. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
     (5) 

 

RESULTS 

Data Distribution 

The Fig. 5A illustrates the data distribution of the state of temperature and humidity data during the 

data gathering phase of the study. Most of the temperature data clusters toward the middle range, with most 

values being around 28°C. The normal distribution of the temperature data is beneficial in training the machine 

learning model, this data helps the algorithm to process and learn the data efficiently. The baseline for 

predicting the average temperature conditions is due to the  concentration of temperature at 28°C. While the 

humidity data is showing a heavily skewed distribution towards higher values. The data of humidity depicts 

values ranging from 75 to 100%, with 100% being the most frequent. This skewed distribution can influence 

the prediction accuracy of the model in humidity. 
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 Consequently, Fig. 5B presents the distribution of temperature and humidity data when the machine 

learning model was applied to the system. The temperature histogram displays a more uniform distribution, 

with values ranging from 26.5°C to 30°C and a recurring value of 27.5°C. The temperature data reveals a 

steadier distribution, having a periodic value of 27.5°C. It shows the notable disparity in temperature compared 

to the initial data. Meanwhile, the humidity histogram shows a broader range from 84% to 98%, with the most 

frequent value around 94%. The humidity graph has shown a significant change in the distribution of data. The 

humidity data is showing a much stable distribution, with values ranging from 84% to 98%. 

The shown data indicates the effectiveness of implementation of machine learning models in the 

system. In addition, the system has successfully reduced the frequency of extreme values of environmental 

factors, effectively regulated the environmental conditions within the favorable range that contributes to plant 

growth. 

  
Fig. 5 - Temperature and Humidity histogram 

 

Data Over Time 

 The graph depicted in Fig. 6 shows the data log from the Blynk application before implementing the 

machine learning model. The first graph illustrates the temperature variations over time, showing fluctuations 

of highs and lows. The temperature values are ranging from 26°C to 33°C in general. Thus, there is a notable 

rise in temperature as time progresses, suggesting a warming trend over the observed period. 

  On the other hand, the second graph illustrates the humidity levels over time. In the first part, the 

humidity stays close to 100% but it suddenly drops around 75%. After this, it demonstrates a more variability 

in values that range around 75% to 100%. 

    
Fig. 6 - Phase 1: Temperature and Humidity over time data 

  

 The graph illustrated in Fig. 7 shows the data log of using machine learning in the fogponics system. 

The temperature graph shows that the fluctuation of temperature is between 27°C to 30°C. The graph also 

suggests that temperature peaks consistently around midday, while declining during the night. There is also a 

slight downward shift of temperature at the end of the period. Alternatively, the graph of humidity over time 

period remains relatively in the range of 90% to 96%, with a slight variation in the early part of the graph ranging 

from 84% to 98%. 

A                             B 

A                              B 
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Fig. 7 - Phase 2: Temperature and Humidity over time data 

 

 The performance of the fogponics system with machine learning automation is assessed by comparing 

the temperature and humidity before and during the implementation of the machine learning model. The 

temperature fluctuation has decreased from 26°C to 33°C. The temperature is more consistent and exhibits a 

more stable pattern.  

 Meanwhile, this indicates the model’s effectiveness in regulating the environmental conditions. This 

wider range, seen in first phase, suggests that the machine learning model is actively controlling the humidity 

levels more dynamically, making sure they stay within a range that is favorable for plant growth. The humidity 

had a significant change in fluctuation from values that range around 75%-100% respectively 90%-96%. 

Whereas, the humidity level is more consistent and less erratic. Plants need at least 90% relative humidity for 

it to be enough, but root zone temperature will be increased as atomization time increases which will result in 

abnormal plant growth. Thus, the improvement suggests that the implementation of the machine learning 

model was effective in upholding a more regulated and balanced environment. 

 

Machine Learning Model Evaluation 

Table 1  

Result of machine learning model evaluation 

Root Mean 

Squared Error 
R-squared (R2) Precision Recall F1 Score 

0.0362 0.9884 0.9917 0.9983 0.9950 

 

 

 The table presents the performance evaluation of the random forest regression algorithms which is 

implemented in the study for automating the fogponics system. Through the combination of multiple decision 

trees, it establishes the model’s precise prediction. Thus, the metrics above provides an overview of the 

machine learning model performance. 

 For the first metric of machine learning model evaluation, which is Root Mean Squared Error (RMSE) 

that calculates the average deviation of predicted values from the actual values. An RMSE of 0.0362 suggests 

that, on average, the prediction of the model has a deviation of 0.0362. This implies the model’s capability to 

predict environmental parameters such as humidity and temperature with high accuracy. Following this is the 

R-squared (R2) where its value indicates how much variation of dependent variables is explained by an 

independent variable in the machine learning model. An 0.9884 R-squared value means 98.84% of the 

variance in the outcome can be explained by the model. It measures the model’s ratio of true positive 

predictions out of all positive predictions. An 0.9917 precision indicates that 99.17% of the positive predictions 

of the model were correct. The other metric is Recall. It assesses how the model can correctly identify the true 

positive from all the actual positive data. A recall of 0.9983 implies that 99.83% of all actual positives are 

correctly identified. The final metric of machine learning model evaluation is the F1 Score, which indicates the 

balance ratio of precision and recall. An F1 score of 0.9950 means that the model's overall performance is 

exceptionally good. 

 

A                             B 
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 As has been demonstrated, the analysis of the result of machine learning model evaluation reveals 

that the model is highly effective in predicting the appropriate action of the fogponics system based on the 

temperature and humidity data. The high value of precision (0.9917), recall (0.9983), and F1 score (0.9950) 

reflects its reliability in making correct predictions. It further confirms by having low RMSE (0.0362) and high 

R-Squared value (0.9884) the significant predictive accuracy of the model. 

 

Microgreen Growth Stage 

 The pictures shown in Fig. 8 illustrate the growth progression of microgreens before implementing the 

machine learning model. The growth of microgreen is somewhat uneven and less robust. The lack of uniform 

growth and the sparse density of the microgreens suggest that the environmental conditions are not optimal. 

 

 
Fig. 8 - Phase 1: Gathering of training data 

  

 The pictures shown in Fig. 9 illustrate the growth of microgreens under the implementation of machine 

learning automation of the fogponics system. The microgreens are more uniform and appear healthier. This 

indicates that the environmental factors needed by the microgreens are met. The machine learning model is 

effective in producing microgreens in this kind of setup. 

 

 
Fig. 9 - Phase 2: Machine Learning Implementation 

 

 

Before and during the implementation of the machine learning model, it is shown that the microgreens 

have grown after 15 days of cultivation. In Fig. 8, although the microgreens have developed further, the growth 

is somewhat uneven. The uneven growth of plants may be due to the overwatering of the system.  In contrast, 

in Fig. 9, the microgreens appear more uniform, denser and healthier. It indicates that the system has 

effectively cultivated microgreens indoors and significantly improved the control of the environmental 

parameters by incorporating machine learning automation and IoT-based monitoring systems. 

Despite the fact that the machine learning model used in automating the fogponics system in this study 

is effective, further studies should be implemented to improve and assess the system's effectiveness. It is 

recommended to utilize image recognition to greatly enhance the capability of the system to recognize patterns 

and automate the system.  In addition, implementing the system to a larger scale and different microgreens 

will evaluate the extent of the automated fogponics system. 
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CONCLUSIONS 

 The automated fogponics system for cultivating microgreens was developed to introduce potential 

alternatives for sustainable agricultural production. The use of the internet of things through Blynk application 

as a monitoring system has provided the ease of visualizing the different environmental parameters, and made 

the systems parts such as sensors and actuators interconnected. Whereas, the automation model of the 

system is trained using the random forest regression algorithm which maintains the parameters needed by 

microgreens to thrive. Based on the result of this study, using machine learning and internet of things in 

fogponics systems for microgreens production have been proven to be effective. The purpose of this study to 

develop an automated fogponics system for microgreens using machine learning automation and internet of 

things monitoring system has been accomplished. This study will introduce the potential alternative method of 

producing microgreens. 
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