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ABSTRACT  

In this paper, the designing and development of a novel mechanical flower thinning equipment, destined to 

increase the fruit production in orchards, is presented. The system integrates a ZED 3D camera with a 

dedicated controller for artificial intelligence running a custom trained YOLO9 algorithm, for real-time flower 

detection and counting. Based on the flower density data, the rotational speed of the thinning rotor is 

automatically adjusted to achieve the desired thinning ratio. Laboratory tests were conducted to evaluate the 

efficiency and adaptability of the YOLO9 algorithm to control the equipment in simulated flower density 

conditions. Results demonstrated potential improvements in thinning accuracy, contributing to optimized fruit 

development, and reduced manual labor. The proposed equipment offers an innovative approach to orchard 

management, ensuring sustainable practices by enhancing flower thinning precision while reducing labor 

costs.  

 

REZUMAT 

În această lucrare se prezintă proiectarea și dezvoltarea unui echipament inovator pentru rărirea mecanică a 

inflorescențelor, destinat creșterii producției de fructe în livezi. Sistemul integrează o cameră 3D ZED cu un 

controler dedicat procesării programelor de inteligență artificială, care rulează un algoritm antrenat special 

YOLO9 pentru detectarea și numărarea în timp real a florilor. Pe baza densității florilor, viteza de rotație a 

rotorului de rărire este reglată automat pentru a obține raportul dorit de rărire. Au fost realizate teste în laborator 

pentru a evalua eficiența și adaptabilitatea algoritmului YOLO9 de a controla echipamentului în condiții 

simulate de densitate florală. Rezultatele au demonstrat îmbunătățiri potențiale în ceea ce privește acuratețea 

răririi, contribuind la optimizarea creșterii fructelor și la reducerea lucrărilor manuale. Echipamentul propus 

oferă o abordare inovatoare pentru gestionarea livezilor, asigurând practici durabile prin creșterea preciziei 

răririi florilor și reducerea costurilor cu forța de muncă.  

 

INTRODUCTION 

  In modern orchard management, mechanical thinning of flowers is essential to optimize fruit production 

ensuring balanced nutrient allocation and reducing competition among fruits (Smith et al., 2015). Thinning is 

essential for increasing fruit quality and yield, and several methods have been developed to address this need, 

including mechanical, manual, and chemical/hormone thinning techniques. Each approach presents distinct 

advantages and limitations, which are important to consider when selecting a thinning strategy for specific 

orchard conditions.  

 Manual thinning is a more traditional approach, often favored for its precision and flexibility. Workers 

can selectively remove flowers or fruitlets, ensuring that most promising fruits receive enough space and 

adequate nutrients. However, manual thinning is highly labor-intensive and subject to human error, resulting 

in inconsistencies and inefficiencies, particularly in large-scale operations (Hernandez et al., 2016). 

Furthermore, as labor shortages continue to affect agricultural industries globally, reliance on manual thinning 

becomes increasingly unsustainable (Gomez and Perry, 2019). 

 Chemical and hormone thinning, using substances like auxins and cytokinins, represents another 

popular technique for managing flower density. This approach is advantageous because it can be applied over 

large areas with relatively low labor requirements (Rodriguez et al., 2017).  
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 However, its efficacy is highly dependent on environmental conditions such as temperature and 

humidity, which could lead to results that are not always as expected (Perez et al., 2018). Besides, the overuse 

of chemical agents could have negative effects on tree health and on the environment (Huang and Lee, 2020), 

raising concerns about this method’s long-term sustainability. 

 Mechanical thinning, including the method discussed in this paper, addresses many of the limitations 

of manual and chemical thinning. By using advanced technologies such as AI-based flower detection and real-

time adjustments, mechanical thinning offers high precision and efficiency (Miller et al., 2018). Unlike chemical 

methods, mechanical thinning does not depend on environmental conditions and avoids the potential 

ecological risks associated with chemical agents (Jensen and Roberts, 2021). Additionally, it significantly 

reduces the labor costs associated with manual thinning while providing more consistent results across large 

orchards (Zhang and Collins, 2019). 

 In summary, traditional manual thinning methods are labor-intensive and subject to inconsistencies, 

especially in large-scale orchard operations (Adam and Brown, 2008). Chemical thinning is less labor-intensive 

but could cause variable results and potential environmental harm. Mechanical thinning methods, particularly 

with AI enhancements, provide high efficiency and precision without the need for chemicals, making them 

promising solutions for modern orchard management. Studies have shown that effective thinning, including 

spatially managed approaches, can optimize crop load distribution, indicating potential benefits of precision 

strategies in orchard management (Manfrini et al., 2009). 

 Over-thickened flower clusters can limit the quality and yield of fruits, because they compete for vital 

resources needed for growth. This fact has driven the demand for automated solutions, which are increasingly 

being adopted for precision agriculture (Lee et al., 2021). 

 Latest advancements in automation, particularly the integration of artificial intelligence (AI) and 

machine learning algorithms, have revolutionized agricultural practices (Kramer et al., 2000). Systems 

equipped with AI technologies offer real-time decision-making capabilities, enabling more precise interventions 

in vegetable crops, especially orchard management (Werner et al., 2005; Matache et al., 2022). Recent 

advancements also illustrate how non-destructive sensing technologies can further improve precision 

agriculture, integrating real-time data to optimize processes like thinning (Biegert and McCormick, 2024). 

Object detection algorithms such as YOLO (You Only Look Once) have been proven effective in real-time 

recognition tasks, including the detection and counting of flowers and fruits (Brown, 2010; Stern and Lars, 

2009; Chen et al., 2024). These algorithms, combined with advanced imaging systems like the ZED 3D 

camera, provide higher accuracy and adaptability in detecting flower clusters under varying conditions 

(Gonzalez and Turner, 2020). 

 The development of AI-controlled mechanical thinning equipment offers several advantages, including 

increased operational efficiency, reduced labor costs, and enhanced precision in thinning flower clusters (Miller 

and Zhang, 2018). These systems ensure optimal thinning, promoting consistent fruit development and 

improved yields by automatically adjusting the rotational speed of the thinning rotor, based on real-time flower 

density detection (Lee et al., 2021). Moreover, they contribute to the orchards sustainability, reducing the need 

for manual labor, which is increasingly scarce in agricultural sectors worldwide (Smith et al., 2015). 

 This paper presents the design and development of an innovative mechanical flower thinning system 

that integrates a ZED 3D camera with a custom-trained YOLO9 AI algorithm on an open source dataset of 

apple flowers. The system was designed to detect and count flowers in real-time, adjusting its thinning action 

dynamically based on flower density. Laboratory tests were conducted to evaluate the system’s accuracy and 

adaptability under controlled conditions. The results demonstrated potential improvements in thinning accuracy 

and operational efficiency, offering a promising solution for modern orchard management. 

 
MATERIALS AND METHODS 

  Technical Equipment for Flower Thinning in Orchards, ERI-0, is designed for the thinning of flower 

clusters on fruit trees in orchards to optimize fruit development and production. The equipment can be used in 

orchard farms by commercial entities engaged in orchard maintenance, manufacturers of technical equipment 

for orchards, dealers, distributors, etc. The technical equipment for flower thinning, symbolized as ERI, 

performs the mechanical thinning of flower clusters on fruit trees, a necessary operation when the productivity 

of orchards is reduced because all nutrients are consumed for vegetative growth rather than fruiting. It also 

aims to reduce the costs of technological operations in plantations. 
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 Figure 1 presents the componence of the experimental model - technical equipment for flower thinning. 
   

 

 

a) 

1. Welded support; 2. Guide assembly; 3. Rotor support; 4. Rotor shaft assembly; 
5. Hydraulic motor; 6. Hydraulic cylinder, 500 mm stroke; 7. Hydraulic 

cylinder, 150 mm stroke; 8. Coupling bolt; Flower detection system – ZED 3D 
camera + controller 

 

b) 

Fig. 1 - Technical Equipment for Flower Thinning in Orchards, ERI-0, 
in aggregate with the working tractor  

a) Component elements; b) ERI-0 experimental model  

 

 The technical equipment for flower thinning in orchards, ERI, operates in combination with agricultural 

tractors with a power of approximately 45 HP. The equipment is mounted at the front of the tractor and is driven 

by its own hydraulic system, which is powered by the tractor’s hydraulic outlets. 

 After coupling the ERI equipment to the tractor, it is transported to the work site. The equipment is 

raised to the maximum position using the tractor’s hydraulic system, and adjustments are made to the rotor's 

inclination (position 4, fig. 1), the working distance of the rotor relative to the tree crown, and the penetration 

depth of the rotor equipped with wires. These adjustments are performed by operating the two hydraulic 

cylinders (positions 6 and 7, fig. 1) of the equipment. 

 Once these adjustments are made, the hydraulic motor that drives the rotor is connected to the tractor's 

hydraulic system, and the tractor transmission is initially set to a lower gear. The tractor-ERI unit is then set in 

motion, performing the flower thinning. Depending on the situation, the speed of movement and the position 

of the ERI equipment relative to the rows of trees can be adjusted. 

 The rotational speed of the thinning rotor is continuously and automatically adjusted, controlled by the 

flower detection system. This system is equipped with an intelligent video camera that records the density of 

the flower clusters, transmits the information to the analysis system, which then sends commands to the 

equipment's proportional distributor, thereby varying the rotor's speed. The rotor speed is programmed based 

on the flower density. 

 During one pass, the equipment thins half of the tree crown, with the other half being thinned on the 

return pass. 

 Main Technical Specifications of the Experimental Model: 

• Purpose: ................................................................................... for flower thinning 

• Type of Equipment: ................................................. mounted, three-point linkage 

• Power Source / Required Power: .......................... minimum 45 HP wheel tractor 

• Maximum Working Height, mm: ................................................................... 3000 

• Height Adjustment, mm: ........................................................................ hydraulic 

• Oblique Rotor Inclination for Adjusting the Working Angle: ............... approx. 18° 

• Equipment Weight, kg: ...................................................................... approx. 120 

• Minimum Width, mm: ...................................................................... approx. 2093 

• Maximum Width, mm: ..................................................................... approx. 2593 
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• Length, mm: ........................................................................................ approx. 875 

• Height, mm: ....................................................................................... approx. 2220 

 

 The logical flow of the application for flower counting and controlling the thinning rotor speed follows a 

continuous cycle, starting from real-time image capture and ending with automatic adjustment of the rotor 

speed based on flower density. 

 The process begins with the ZED 3D camera, which captures images of the flowers in the orchard. 

ZED 3D camera provides enhanced depth perception, allowing for more accurate detection of flower clusters 

in complex environments like orchards. These raw images are then sent for pre-processing. In this stage, the 

application automatically adjusts the orientation of the images to ensure correct alignment, resizes the image 

to 640x640 pixels for compatibility with the YOLO9 model, and applies augmentations such as rotations and 

exposure adjustments. After the images have been pre-processed, they are sent to the YOLO9 model. The 

model analyzes the images to identify and count flower clusters. During this analysis, YOLO9 divides the image 

into grids and makes predictions for each section. If flower clusters are detected, the application proceeds to 

count them, comparing the identified visual characteristics with the reference patterns in the pre-trained model 

to ensure accuracy.  

 Based on the visual analysis results of YOLO model, the application adjusts the rotational speed of 

the thinning rotor in real-time. If the density of flowers is high, the rotor speed is increased to ensure effective 

thinning, while a lower density results in a slower rotor speed. This adaptive control mechanism allows the 

equipment to maintain optimal thinning, promoting balanced fruit development across the orchard. 

 The entire flow of the application operates in a continuous cycle, capturing images, pre-processing 

them, analyzing them to count flowers, and adjusting the rotor speed as needed. This ensures an efficient and 

automated system for managing flower thinning, reducing the need for manual intervention, and optimizing the 

overall process. 

 
Fig. 2 – Flow diagram of the software application for the thinning equipment control 

 

 

In order for the YOLO9 model to detect and count the flowers, it was trained using a dataset with pictures of 

apple flowers (Addineduws, 2024). Training the YOLO9 model involved optimizing the loss function to minimize 

errors in detecting and counting flower clusters. The model was trained using stochastic gradient descent 

(SGD) with an initial learning rate of 0.01, a momentum of 0.937, and a weight decay of 0.0005. The batch 

size was set to 16, and training was conducted for 300 epochs. 

 The performance of the YOLO9 model was evaluated using several metrics: Precision (P), Recall (R), 

mean Average Precision (mAP), inference time, and visual assessment. These comprehensive evaluation 

metrics ensured a thorough assessment of the model’s performance in counting flowers, enabling reliable and 

effective control of the rotor speed based on real-time flower density. The calculation of these metrics 

considered the number of true positive samples (TP), false positive samples (FP), and the total number of 

samples (N). The Average Precision (AP) for each flower cluster category was derived using a specific 

formula, providing detailed insights into the model's accuracy across different categories. 

 For apple flowers on trellis systems, required density after thinning aims to balance the tree's capacity 

to support fruit growth while preventing overloading. Proper thinning typically retains about 5-10 cm of spacing 

between clusters, which effectively reduces the initial flower density by approximately 70-80%. This practice 

ensures that about 20-30% of the flowers are left, promoting optimal fruit quality and size (NIAB, 2024; Valent, 

2024). This enhances light penetration and air circulation, leading to improved fruit quality.  

 Fruits spacing and load reduction also help to mitigate risks such as reduced flowering in the following 

seasons and potential damage to tree limbs (ISHS, 2024).  
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 To correlate the YOLO9 output with the control thresholds for the thinning equipment, an adaptive 

mechanism was implemented to adjust the rotor's speed based on detected flower density. After analyzing the 

images captured by the ZED 3D camera, the YOLO9 model provided a real-time count of flower clusters, which 

was then used to determine the appropriate speed setting for the thinning rotor. 

 The system was designed around three predefined thresholds corresponding to 50%, 75%, and 100% 

of the nominal rotational speed, set at 400 rpm. These thresholds were directly linked to specific density 

ranges, which were set empirically for the purpose of laboratory tests of the equipment: 

1. Low Density: When the YOLO9 model detected a low number of flower clusters (e.g., 0-10 per frame), 

the system activated the rotor at 50% speed, or 200 rpm. This ensured minimal thinning where fewer 

flowers were present. 

2. Medium Density: For a moderate count (e.g., 11-20 clusters per frame), the rotor speed was adjusted 

to 75% (300 rpm), allowing more substantial thinning without full intensity. 

3. High Density: If the model identified a high density of flowers (21 or more per frame), the equipment 

automatically operated at the maximum 400 rpm to ensure effective thinning across dense clusters. 

 This setup allowed for continuous real-time analysis in laboratory conditions, where the YOLO9 model 

was fed with test pictures to monitor the flower density as the equipment simulated the moving along the 

orchard rows. The control system dynamically adjusted the rotor speed based on the model’s output, creating 

a simulated thinning process. This was done through a variable command signal for the hydraulic proportional 

valve which controlled the hydraulic motor.  

 The simulation tests were designed to evaluate how effectively the mechanical flower thinning 

equipment could adapt to different scenarios by using real-time data from the YOLO9 model. The laboratory 

tests aim was to see how well the system adjusted the rotor speed based on varying flower densities detected 

in the orchard.  

 Four distinct scenarios were set up to represent low, medium (usually met in orchards, 2 scenarios), 

and high flower densities, each testing the equipment’s adaptive control mechanism. 

- Scenario 1: Low Density In the first test, the YOLO9 model detected a low number of flower clusters, 

specifically 5 clusters, which was categorized as a low-density situation. Based on this input, the 

control system set the rotor speed to 200 rpm, or 50% of the nominal speed of 400 rpm. This ensured 

minimal thinning, which was appropriate for areas where fewer flowers were present, preventing over-

thinning.  

- Scenario 2: Medium Density The second scenario simulated a moderate density, with the YOLO9 

model identifying 15 flower clusters per frame. This was classified as medium density, prompting the 

system to adjust the rotor to 300 rpm, or 75% of the nominal speed.  

- Scenario 3: High Density In the third test, a high-density scenario was simulated. The YOLO9 model 

detected 25 flower clusters, indicating a dense area that required more intensive thinning. The control 

system responded by setting the rotor to its maximum speed of 400 rpm, ensuring thorough thinning 

across the dense clusters.  

- Scenario 4: Medium Density Revisited The final scenario revisited a medium-density situation, where 

the YOLO9 output showed 18 clusters. As with the earlier medium-density test, the system adjusted 

the rotor speed to 300 rpm, providing a consistent thinning performance.  

 To simulate the presence of flowers on branches, artificial markers representing flower clusters were 

placed in the lab setup, for the 4 scenarios. These included, bright pink and white colored stickers mimicking 

the size and positioning of real flower clusters. The YOLO9 model detected these markers, and the equipment 

responded as if they were actual flowers. After the thinning operation, the remaining markers were counted to 

verify the thinning efficiency. 

 The laboratory tests involved capturing "before" and "after" images during the simulation. By comparing 

the number of markers detected by YOLO9 before the equipment was activated and after the thinning process, 

the percentage of simulated flower clusters removed was calculated. Efficiency was assessed using a simple 

formula:  

𝑇𝐸 (%) =
𝑁𝐵𝑇−𝑁𝐴𝑇

𝑁𝐵𝑇
                            (1) 

where:  

TE – thinning efficiency, NBT- number of detected clusters before thinning,  

NAT – number of detected clusters after thinning. 
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Through this laboratory-based approach, the effectiveness of the thinning equipment was tested even 

in the absence of flowering trees. This method provided a comprehensive evaluation of the system’s 

performance, ensuring it was ready for real-world deployment during the flowering season. 

 

RESULTS 

 The YOLOv9c model was trained on a laptop ASUS ROG Strix SCAR 18, G834JY-N6046X, 18-inch, QHD+ 

16:10 (2560 x 1600, WQXGA), 13th Gen Intel® Core™ i9-13980HX Processor 2.2 GHz (36M Cache, up to 5.6 

GHz, 24 cores: 8 P-cores and 16 E-cores), with NVIDIA® GeForce RTX™ 4090 graphic card and DDR5 64GB 

RAM, on UBUNTU 22.04.4 LTS operating system. The software environment comprised PyTorch 2.0.0, Cuda 

11.8, Cudnn 8.6.0, and Python 3.8.  

 

 In figure 1, the confusion matrix created after model training is presented.  

 
Fig. 3 – Confusion matrix after YOLO9c training 

 

 

 The confusion matrix offered valuable information about the performance of the model across different 

flower-related classes. The dataset included three main classes: bud (Class 0), flower (Class 1), and middle (Class 

2), along with a category for background elements. For the Class 0 – Buds, the model showed a reasonable 

ability to identify buds, correctly classifying 57 instances. However, there were some misclassifications, with 9 buds 

incorrectly labeled as background. This suggests that while the model was able to recognize the features of buds 

effectively, there was still some confusion, likely due to overlapping characteristics or background elements that 

closely resembled buds. Flowers, classified as Class 1, were the most accurately detected, with 302 instances 

correctly identified. This high true positive rate indicates that the model learned to distinguish flowers effectively. 

However, there were still a few misclassifications: 3 were mistaken for buds (Class 0), 2 for the middle section 

(Class 2), and 47 were classified as background. The relatively high number of misclassifications as background 

suggests that, in certain situations, the model might have struggled to differentiate flowers from non-floral elements, 

possibly due to environmental noise or the complexity of the scene. The middle sections of the flower, or Class 2, 

were recognized with moderate success, with 79 instances correctly classified. There were minor 

misclassifications: 1 instance was mistaken for a bud, 2 for flowers, and 10 were labeled as background.  
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 These errors indicate that the model could be facing challenges in distinguishing the middle parts, which 

might require more training data or clearer feature separation from other classes. The background category 

experienced significant misclassifications. Although 34 instances were correctly recognized as background, there 

were considerable errors where background elements were incorrectly labeled: 26 as buds, 128 as flowers, and 

34 as the middle section. The high misclassification rate, particularly with flowers, suggests that the model may 

over-detect objects, interpreting random patterns or elements in the background as flowers. This could point to a 

need for further training to improve background discrimination or to refine the dataset with more diverse 

background examples. In table 1 are presented the metrics obtained after model training. 

Table 1 
Metrics obtained for the trained model 

Metrics YOLOv9c 

Precision – P (%) 0.8306 

Recall – R (%) 0.6861 

F1-score (%)  

mAP50 (%) 0.7803 

mAP50-95 (%) 0.4861 

Inference time 1.1ms preprocess, 64.5ms inference, 0.8 ms 
postprocess per image at shape (1, 3, 512, 640) 

 

 The performance metrics obtained from the YOLOv9c demonstrate strong precision and solid average 

precision, but they also highlight areas for potential improvement. 

 Precision was high at 83.06%, indicating that the model accurately identified buds, flowers, and middle 

sections without many false positives. This level of precision is important for ensuring that the thinning equipment 

responds correctly to actual flower clusters, avoiding unnecessary adjustments based on incorrect detections. 

However, the recall rate, at 68.61%, was a little bit lower, meaning that the model missed some instances that 

should have been detected. Improving recall would help ensure that no significant clusters are overlooked during 

the thinning process. The model’s performance was also reflected in the mean Average Precision (mAP50) score 

of 78.03%, which describe its reliability in detecting and localizing flower components across different conditions. 

A score above 75% indicates that the model has learned to generalize well, effectively recognizing objects even 

in complex scenarios. However, the mAP50-95 score, which was 48.61%, was low. This metric considers a wider 

range of intersection over union (IoU) thresholds, highlighting that the model's localization accuracy could still be 

improved. Still, for our equipment which has a more general approach on the all vertical side of the tree, this metric 

value is acceptable. In terms of inference time, the model demonstrated impressive efficiency, with 1.1 ms for 

preprocessing, 64.5 ms for inference, and 0.8 ms for post-processing per image. These quick processing times 

indicate that the system can operate in near real-time, which is essential for the adaptive control of the thinning 

equipment. This speed allows the equipment to respond dynamically to changes in flower density, ensuring smooth 

and consistent thinning. 

 In figure 4 are presented the results obtained by YOLO9c model after it was fed the test images with various 

instances of apple flowers. The results displayed in the image represented the outcomes of the YOLO model after 

training, showing how effectively the model was able to detect and classify different components of apple flowers. 

The bounding boxes in the images indicated where the model detected instances of each class, providing a visual 

representation of its performance. YOLO model demonstrated a strong capability to identify and differentiate 

between buds, flowers, and middle sections. In many cases, the bounding boxes accurately and tightly surrounded 

the relevant objects, highlighting that the model had learned to localize these features effectively. For example, the 

buds (Class 0) were consistently detected in images showing early-stage flowers, and full blooms were correctly 

identified as flowers (Class 1). This indicated that the model could reliably classify each class across different 

scenarios. The detection was observed to be consistent across multiple environmental conditions, including 

different lighting scenarios and varied backgrounds, proving that the training process, which included data 

augmentation, helped the model generalize well. Even in more complex scenes, where flower clusters were dense, 

the model was able to identify multiple instances of flowers, showing it could handle scenarios with close-packed 

objects. Despite the overall strong performance, there were some instances where the model misclassified objects 

or incorrectly labeled them. For example, in certain images, buds might have been mistakenly classified as middle 

sections, or the bounding boxes overlapped significantly, suggesting the model sometimes struggled to distinguish 

overlapping features. These issues pointed to areas where further fine-tuning could improve accuracy, especially 

in distinguishing subtle differences between classes.  
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Fig. 4 – Identification results after YOLO9c training 

 

 To evaluate the performance and adaptive capabilities of the mechanical flower thinning equipment, a series 

of simulation tests were conducted under controlled laboratory conditions. Given the absence of flowering trees 

during the testing period, the system was tested using bright pink and white colored stickers mimicking the size 

and positioning of real flower clusters. In table 2 are presented the results observed during these tests, 

highlighting the equipment's ability to adapt to different levels of flower density. 

Table 2 

Simulation tests for the system functioning  

Test 
Scenario 

Detected Flower 
Clusters  

(YOLO9 output) 

Density 
Classification 

Rotor Speed 
Setting 
(rpm) 

Thinning 
Efficiency 

(%) 
Comments 

Scenario 1 5 Low density 200 30 
Minimal thinning, suitable 
for low-density sections. 

Scenario 2 15 Medium density 300 60 
Moderate thinning, 

appropriate for medium-
density areas. 

Scenario 
3 

25 High density 400 90 
Maximal thinning, effective 
in dense flower clusters. 

Scenario 
4 

18 Medium density 300 65 
Consistent thinning 

achieved for medium-
density patches. 
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 The simulation tests demonstrated that the adaptive control system of the thinning equipment could 

effectively adjust rotor speeds based on real-time flower density data from the YOLO9 model. The system 

responded appropriately across different scenarios, from low to high-density areas, ensuring that the thinning 

process was efficient and precise. By fine-tuning the rotor speed to match the detected flower density, the 

equipment was able to optimize thinning, promoting uniform fruit development and reducing the need for 

manual intervention. 

 
 

CONCLUSIONS 

 The development and testing of the mechanical flower thinning equipment demonstrated the potential 

of using artificial intelligence to enhance precision and efficiency in orchard management. The integration of a 

ZED 3D camera and the YOLO9 model enabled real-time detection and counting of flower clusters, providing 

accurate data to control the thinning process in an adaptive manner. Laboratory simulations showed that the 

system effectively adjusted rotor speeds based on detected flower densities, ensuring consistent thinning 

across various scenarios. 

 The results indicated that the adaptive control mechanism could reliably manage low, medium, and high-

density flower clusters by setting appropriate rotor speeds, from minimal thinning at 200 rpm to maximum 

thinning at 400 rpm. This feature is mandatory for maintaining optimal flower spacing, promoting uniform fruit 

development, and reducing the need for manual intervention. Furthermore, the YOLO9 model achieved a high 

degree of accuracy in identifying and classifying apple flower components across various conditions. While 

the model performed well, some misclassifications, especially concerning background elements, suggested 

that further refinements could enhance performance. Expanding the dataset to include more diverse 

environmental conditions and refining the model’s ability to differentiate overlapping features would likely 

reduce errors and improve reliability. 

 This study has shown that AI-enhanced mechanical thinning equipment can be a promising solution for 

modern orchard management, offering a balance of precision, adaptability, and efficiency. Future 

developments should focus on real-world field testing during the flowering season to validate laboratory results, 

and fine-tuning the system to address any challenges that arise under natural conditions. This approach will 

help ensure that the technology is ready for practical deployment, enabling sustainable and cost-effective 

orchard practices. 
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