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ABSTRACT  

The distribution of grain sizes in different soil samples is essential for agriculture and geotechnics, providing 

high-resolution soil maps crucial for land use planning. Traditional methods for soil texture analysis are reliable 

but often time-consuming and inconsistent. With that, this study aims to create an efficient predictive model for 

soil texture classification using deep learning techniques. A dataset of 4,556 images was extensively pre-

processed and trained, with a model chosen for validation due to its low MSE value of 1.18. The model's 

performance, evaluated through Precision, Recall, and F1 Score, showed weighted averages of 88%, 78%, 

and 74%, respectively, and an overall accuracy of 94.56%. Validation using 456 images revealed high 

accuracy for Sandy and Clayey Soils but varying results for Loamy and Silty Soils. In Trial 1, the model 

achieved over 91% accuracy for all soil textures, with 100% accuracy for Sandy Soil. However, Trials 2 and 3 

exhibited decreased accuracy for Loamy and Silty Soils, with the lowest accuracies at 61.40% and 65.78%, 

respectively. These results suggest that while the model is effective for certain soil textures, it requires further 

refinement and additional diverse training data to consistently match the reliability of traditional methods. 

 

ABSTRAK 

Ang pagtukoy sa uri ng lupa ay mahalaga sa larangan ng agrikultura at geotechnics. Ito ang nagbibigay ng 

maayos na mapa na siyang kritikal sa pagpaplano ng paggamit ng lupa. Ang mga tradisyunal na pamamaraan 

sa pagtukoy nito ay maaasahan, ngunit kadalasang matagal ang proseso at hindi pare-pareho. Dahil dito, ang 

pagsusuring ito ay naglalayong lumikha ng mabisang modelo para sa klasipikasyon ng uri ng lupa gamit ang 

makabagong teknolohiya na deep learning. Ang dataset na may 4,556 imahe ay sumailalim sa pag-

proproseso, bago ginamit sa paghasa ng iba’t ibang modelo, kung saan ang napili para sa balidasyon ay may 

mababang MSE value na 1.18. Ang bisa ng modelo na sinukat sa pamamagitan ng Precision, Recall, at F1 

Score, ay nagpakita ng mga weighted average na 88%, 78%, at 74%, at may kabuuang accuracy naman na 

94.56%. Sa balidasyon gamit ang 456 imahe, ipinakita ang mataas na accuracy para sa Sandy (Mabuhangin) 

at Clayey (Luwad) na lupa ngunit may iba't ibang resulta para sa Silty (Maalikabok) at Loamy (kumbinasyon 

ng tatlo) na lupa. Sa unang eksperimento, nakamit ng modelo ang 91% accuracy para sa lahat ng uri ng lupa, 

na may 100% accuracy para sa Sandy soil. Gayunpaman, ang ikalawa at ikatlong eksperimento ay nagpakita 

ng pagbaba ng accuracy para sa Loamy (61.40%) at Silty (65.78%) Soils. Ipinahihiwatig nito na habang ang 

modelo ay epektibo sa ilang uri ng lupa, kailangan pa itong mapabuti at dagdagan ng mas magkakaibang 

datos sa pag-hasa upang ganap na maitatag ang pagiging maaasahan nito. 

 
 
INTRODUCTION 

 Soil texture is an important property influencing various physical, chemical, and biological 

characteristics of soils, which are crucial for agricultural productivity and geotechnical applications. It affects 

porosity, which determines properties such as water retention, drainage, nutrient availability, and erodibility, 

thus influencing soil fertility and agricultural productivity (Chakraborty and Mistri, 2015; Bhattacharyya et al., 

2015). This puts us into the importance of understanding the distribution of soil particles categorized into fine 

earth (clay, silt, sand) and coarse fragments (gravels, stones) as it is essential in accurate land use planning 

and soil management. 
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 Up until now, the most practiced method of determining soil texture analysis are the unconventional 

laboratory method which include sieving, hydrometer analysis, and oven drying. Although widely used, these 

processes present significant limitations because they are laborious, time-consuming, and prone to 

inconsistencies. As a result, the entire methods become less efficient in addressing the urgent need for precise 

soil analysis in light of global challenges like soil degradation and declining fertility (Food and Agriculture 

Organization of the United Nations, 2020).  

 The answer lies within the recent advancements in soil classification techniques which highlight the 

growing role of predictive and modelling approaches. Studies have demonstrated the value of statistical 

models, algorithms, and predictive frameworks, including deep learning and computer vision, in enhancing the 

accuracy and efficiency of soil texture analysis (Barman, 2019; Han et al., 2016; Swetha et al., 2020). These 

modern methods were proved to have great potential in overcoming the limitations of traditional techniques by 

enabling fast and consistent assessments of soil properties. 

 With that, this study aims to contribute to these advancements by developing a deep learning-based 

approach for soil texture analysis. The objective is to create a model, which could be incorporated into 

smartphone applications to deliver accurate and timely soil texture assessments. By addressing the 

inefficiencies of conventional methods, this research seeks to support farmers and land managers, particularly 

in regions with limited access to technical expertise and laboratory facilities, hence, promoting sustainable soil 

management and agricultural productivity. 

 

MATERIALS AND METHODS 

Sample Preparation 

 For the training and testing, a similar data set containing pre-determined soil samples from laboratory 

analysis were used. On the other hand, a different dataset for validation was collected in every town of Nueva 

Ecija province in Philippines during the year 2023. It underwent into oven-drying at 105°C (±5°C) for 24 hours, 

before subjected into sieving. 

 A total of 4,556 images were taken for training and testing via random sampling, equally distributed 

under different soil texture categories (Clayey, Silty, Sandy, and Loamy). Since a learning model can generally 

work with 100, 500, or even 10,000 images (Barkved, 2022), the study’s sample size was within the limit.  

 Ideally, a good accuracy in machine learning is anything greater than 70%; and, anything in 70-90% 

accuracy is not only ideal, but is also realistic (Rosenbacher, 2022). However, in soil related studies, the lowest 

accuracy obtained was 58% via Random Forest classifier (Dornik et. al., 2018), and several 100% accuracy 

in some researches (Morais et. al., 2019, Han et. al., 2016). Therefore, this study considered that any result 

as long as it is within the stated range of existing and published studies, would be considered acceptable and 

valid. 

 The soil samples were then taken using a smartphone with 108-megapixel resolution during daylight 

in a landscape camera-orientation and distance of 0.25 m vertically on top to capture the entire soil sample. A 

random splitting of data with ratio of 80:20 was used for training and testing. This is known as the rule of thumb 

in split training and testing of data in python – the language used in training the model.  

 Another randomly selected samples from dataset for validation (accounting to 10% of the total images 

used in training and testing) was used in order to avoid biasness that could happen in using similar set of data 

for validation (Baheti, 2021). There is no specific data split requirement in training, testing, and validation of 

soil classifications involved in machine learning. For example, Anadan et. al. (2021), used different train-test-

validate data split ratio on their two different studies (70-15-15 in 2021 using CNN and 60-20-20 in 2022 using 

hybrid CNN-LMO algorithm), while Han et. al., (2016), used 10% of the total soil samples for their testing. With 

that, the researchers decided to follow the general rules governing data splitting of machine learning methods. 

 

Table 1  

Distribution of dataset for Training, Testing, and Validation 

 

PRE-DETERMINED SOIL (4,556 SOIL SAMPLE IMAGES) 

SOIL GATHERED IN NUEVA ECIJA, PHILIPPINES  

(NOT YET DETERMINED) 

TRAINING  

(80%) 

TESTING  

(20%) 

VALIDATION  

(10% of training and testing) 

3645 912 456 
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Training and Testing 

 The images were placed in separate folders for training and testing (training data, testing data) in order 

to have an organized segmentation of data used in designating labels for training and testing purposes. Each 

soil texture determined through laboratory analysis are also separated by folder. Studio Visual Code was the 

used IDE (Integrated Development Environment) for editing of codes as it supports and allows various usage 

of programming languages without the need to switch for editors. It served as the center and the most crucial 

element of establishing the predictive model for soil texture assessment. 

 The images underwent the process of Augmentation, Pre-processing with Hue, Saturation, and Value 

(HSV) extraction before subjecting to training.  

 To capture the hidden layers, Convolutional Neural Network was used. Structuring the CNN 

architecture of the study include Input Layer, Convolutional Layer, Pooling Layer, Flatten Layer, Fully 

Connected (Dense) Layers, and Output Layer. On the other hand, YOLO is employed for classes identification, 

brightness training, and for utilizing the Open Source Computer Vision Library (OpenCV). 

 

Performance Evaluation and Data Analysis 

 In soil classification, the best matrix that showed the most favorable result was confusion matrix; this 

is both for binary and multiclass (Srivastava et al., 2021). This matrix is represented by rows and columns, 

wherein the actual labels are written in rows, and the predicted labels are in columns – a widely adopted 

convention in field of machine learning and statistics. True positive and true negative means correctly classified 

labels, while false positive and false negative represents the incorrectly classified labels. 

 In a confusion matrix, the performance metrics such as Precision, Recall, Accuracy, and F-measure 

were generated.  Precision measured the fraction of the estimated soil patterns in a positive class that the 

model accurately identified as positive: 

 

𝑝 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
        (1) 

where: 

 p denotes the precision, while tp implies the true positive, and fp represents the false positive. 

 

 Meanwhile, recall defines the ratio between positive soil patterns to the correctly classified soil 

patterns. It can be computed by the following formula: 

 

𝑟 =  
𝑡𝑝

𝑡𝑝+𝑡𝑛
        (2) 

where: 

 r denoted recall, while tp and tn represents true positive and true negative, respectively. 

 

 Accuracy, on the other hand, is the ratio of right prediction made, over the number of examples 

evaluated: 

𝑎𝑐𝑐 =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
       (3) 

where: 

 acc represents the accuracy, while tp and tn defines the true positive and true negative, and fp and fn 

implies the false positive and false negative, respectively. 

 

 Finally, the f-measure represents the harmonic mean between the values of precision and recall. The 

best evaluation for these metrics should be one or closer to one. 

 

𝑓𝑚 =
(2∗𝑝∗𝑟)

𝑝+𝑟
       (4) 

where: 

 fm represents the f-measure, while p and r represent precision and recall. 

 

 During the training stage, the Mean Squared Error (MSE) can be determined which represents the 

difference between estimated solutions and the ones that are preferred. A low value of MSE is required to get 

better training results. 
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 𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑃𝑖 − 𝐴𝑖)

2𝑛
𝑖=1      (5) 

where: 

 MSE means the mean squared error, while Pi is the predicted value, and Ai is the desired value. 

 
Research Design and Statistical Analysis 

 In order to prove the consistency of the developed model when it comes to predicting soil textures, the 

study employed Analysis of Variance (ANOVA) under Complete Randomized Design (CRD) as treatment 

method to the gathered data. The process here is similar to the procedure of t-test. However, t-test can only 

determine differences between the means of two groups, while ANOVA can do with more groups (Ardiansah 

et. al., 2021 & Zhang et. al., 2024). 

Therefore, this method is appropriate to identify the significant differences among three (3) validation 

sets for each independent metrics (accuracy, precision, recall, and F1 score). The conditions were set to reject 

the null hypothesis if p value result is less than 0.05. Since the researches wanted the readings across all 

validations to be consistent, the null hypothesis was set to: there is no significant difference in the performance 

metrics observed across three validations.  

 
RESULTS 

Training of Model 

 The training was commenced using 4,556 images which underwent into several trainings and re-

trainings in order to optimize the result. The final training underwent 100 epochs with 179 steps per epochs 

and Batch size of 30. 

 

 

Fig. 1 – Pre-processed Images 
A – Raw Image; B – Masked Image; C – Background Removed Image 

 

 The image samples underwent to pre-processing procedures and feature extractions (shown in Figure 

1) which include masking, removing of image background, resizing of images into consistent resolutions in 

order to ensure uniformity of data; pixel normalization into 255 pixels; augmentation of data to increase the 

diversity of training data; cropping of images to focus on region of interest; color space conversion; and then 

noise reduction to clean and denoise the images before feeding the datasets to the model training. 

 Several models have been developed throughout the training as a result of utilizing different 

techniques to achieve the highest accuracy possible. In order to determine the predictive model to be chosen, 

the MSE of each model have been determined as shown in Figure 2. 

 

 
Fig. 2 – MSE of Different models developed throughout the course of training 

 

A        B            C 
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  Among the different training models, model B showed the lowest MSE value (1.18), hence it was 

considered to be the final model to be evaluated. 

 
Fig. 3 – Precision, Recall, and F1 Score for each class of the best model 

 

 The different results of evaluation matrices for each class were shown in Figure 3. The weighted 

average of each evaluation matrices during the training of the model was 88% for Precision, 78% for recall, 

and 74% for the F-score. The overall accuracy of the training on the other hand, was 94.56%. 

 The interface of the developed predictive model (Figure 4) was run in an open-source app framework 

called Streamlit. It is a Python framework used in creating visualization for machine learning data. The interface 

was made user-friendly with written instructions on how to operate. 

User will upload an image through the ‘browse’ menu, and click ‘classify’ to obtain results (the predicted soil 

texture and some common suitable crop recommendations). 

 

 
Fig. 4 – Interface of the predictive model in a local host 

 

 

 

Actual Validation 

 For actual validation of data, three (3) validations were done in order to have a comparison of metrics 

gathered (accuracy, precision, recall, and F1 score). The validation images were 10% of the total number of 

images (Baheti, 2021).  

 Since a total of 4,556 images were used in training and testing, 456 images were used for validation 

(114 images for each soil texture categories). Shown in Table 2 is the summary of three validations made to 

determine if there are significant differences among the yielded results. 
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Table 2  

Average Performance Metrics results across three validations 

 ACCURACY PRECISION RECALL F1 SCORE 

VALIDATION 1 0.96 0.96 0.96 0.96 

VALIDATION 2 0.83 0.85 0.83 0.85 

VALIDATION 3 0.79 0.78 0.79 0.79 

 
 
 The study considered four different levels (metrics) such as the Accuracy, F1 Score, Precision, and Recall. 

There are 12 observations in total, all of which were read and used in the analysis. Using Statistical Tool for 

Agricultural Research, the result of analysis was shown in Table 2. 

 

Table 3  

ANOVA Analysis output 

Source Df Sum of 
Squares 

Mean 
Square 

F value Pr(>F) CV (%) Data 
Mean 

Metrics 3 0.0001 0.0000 0.00 0.9996   

Error 8 0.0629 0.0079 
 

   

Total 11 0.0630 
  

 10.28 0.8625 

 

 The results of statistical analysis made revealed that there are no significant differences found among the 

metrics. This is because the p-value = 0.9996 is not less than 0.05, hence, the null hypothesis will not be rejected. 

It suggests that all metrics perform similarly with respect to the response variable. A coefficient of variance (CV) 

value of 10.28% or 0.1028 also suggested that the variation with respect to the mean is relatively low because a 

CV that is less than one is universally considered low variance. This means that the data points of performance 

metrics were relatively close to the mean value, hence, resulting in a smaller variation. 

 The data means (0.8625) for Accuracy, F1 Score, Precision, and Recall, which measures the central 

tendency, or the average value of overall data points, are very close, reinforcing the ANOVA result of no significant 

differences among the metrics. It shows that the data points exhibit relatively low variability around the mean value. 

As a result, there is a consistent level of performance across the different trials, with relatively minor fluctuations. 

 The analysis of the result reveals significant insight towards the performance of model in testing and actual 

validation of data. The testing was initiated with a dataset comprising of 4,556 images that underwent several 

iterations, trainings, and re-trainings to produce the best result. In order to determine which model has the best 

training result, the MSE should be low (Srivasta et. al., 2021) ranging from 1-10 for typical image processing that 

has pixel value range of 255. Since Model B has the lowest MSE value (1.18) as shown in Figure 2, it was the 

model chosen to be subjected into validation. 

 The performance of the final model was assessed using the standard evaluation metrics (Srivasta et. al., 

2021): Precision, Recall, and F-score (Figure 3). The weighted averages for these metrics during training of the 

model were 88% for Precision, 78% for Recall, and 74% for F1 Score. These metrics, along with an overall 

accuracy of 94.56%, demonstrated the developed model's capability in correctly classifying the images. The 

accuracy of this model is inside the range of several studies related to soil image classification which utilized deep 

learning techniques.  

 Yu et. al., (2019), utilized 3D-CNN system that explored configurable liquid crystal filters (LCTF) which 

resulted in 99.59% accuracy. Morais et. al. (2019), achieved an impressive 100% accuracy in classification and 

prediction using Digital Image Processing and MIA classifier. Other studies such as Dornik et. al., (2018), and 

Mengistu & Alemayehu, (2018), resulted in 58% and 89.7 accuracies respectively, which can be noted as much 

lower accuracies compared to the study. 

 For actual validation, 456 images (10% of the total dataset) were used, divided equally across the four soil 

texture categories (Baheti, 2021). Three validation runs were conducted to compare the performance metrics. The 

results showed varying degrees of accuracy, precision, recall, and F1 score across the validations (Table 2). 

Validation 1 exhibited the highest consistency with an accuracy, precision, recall, and F1 score of 0.96, while 

validations 2 and 3 showed lower but still acceptable performance levels. 
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 To show how the developed model performed against the laboratory assessed samples, the number of 

predictions was listed in Table 4 below. 

 

 
Table 4  

Comparison of readings from Developed Predictive Model to the Laboratory Assessed samples 

Laboratory Method Assessment 
Trial 1 

Predictive Model Assessment Trial 1 

Texture No. of Sample Texture No. of Predictions Correct 
Predictions 

Sandy Soil 114 Sandy Soil 114 100% 

Silty Soil 114 Silty Soil 
Clayey Soil  
Loamy Soil 

109 
3 
2 

95.61% 

Clayey Soil 114 Clayey Soil 
Silty Soil 

104 
10 

91.23% 

Loamy Soil 114 Loamy Soil 
Silty Soil 

111 
3 

97.37% 

Laboratory Method Assessment 
Trial 2 

Predictive Model Assessment Trial 2  

Texture No. of Sample Texture No. of Predictions Accuracy 

Sandy Soil 114 Sandy Soil 
Loamy Soil 
Silty Soil 

107 
4 
3 

93.86% 

Silty Soil 114 Silty Soil 
Loamy Soil 
Sandy Soil 

96 
11 
7 

84.21% 

Clayey Soil 114 Clayey Soil 
Silty Soil 

100 
14 

87.72% 

Loamy Soil 114 Loamy Soil 
Sandy Soil 
Silty Soil 

76 
5 

33 

67.67% 

Laboratory Method Assessment 
Trial 3 

Predictive Model Assessment Trial 3  

Texture No. of Sample Texture No. of Predictions Accuracy 

Sandy Soil 114 Sandy Soil 
Loamy Soil 

112 
2 

98.24% 

Silty Soil 114 Silty Soil 
Loamy Soil 
Clayey Soil 
Sandy Soil 

70 
30 
9 
5 

61.40% 

Clayey Soil 114 Clayey Soil 
Silty Soil 

101 
13 

88.60% 

Loamy Soil 114 Loamy Soil 
Silty Soil 

Sandy Soil 

75 
33 
6 

65.78% 

 

 

 The model showed high accuracy for Sandy and Clayey Soils. On the other hand, Loamy and Silty soils 

have greater number of incorrect readings that varied across all soil textures. In Trial 1, the model achieved over 

91% accuracy for all soil textures, with a perfect 100% accuracy for Sandy Soil. In Trial 2, accuracy declined for 

Loamy and Silty Soils, with Silty Soil reaching a low of 67.67%. Trial 3 showed further drops for Loamy and Silty 

Soils, with accuracies of 61.40% and 65.78%, respectively, while maintaining a high accuracy of 98.24% for Sandy 

Soil.  

 These findings indicate that while the developed model performs well in prediction of certain soil textures, it 

still needs refinement and additional data for diverse training in order to achieve a consistent and similar reliability 

reading of traditional methods. 

 
 

 

CONCLUSIONS 

 The analysis of the model's performance reveals both strengths and areas for improvement for the 

study. Trained on a dataset of 4,556 images, the model was chosen for validation due to its lowest MSE value 

of 1.18. During training, the model achieved strong evaluation metrics, including 88% Precision, 78% Recall, 

74% F1 Score, and an overall accuracy of 94.56%, which aligns with other deep learning studies in soil image 
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classification. However, the validation of 456 images in comparison to predetermined soil textures showed 

variable results, especially for Loamy and Silty Soils, with significant accuracy drops in Trials 2 and 3.  

 Despite that, the ANOVA analysis still indicated no significant differences among the evaluation 

metrics, and a coefficient of variation of 10.28% which suggested consistent performance overall. While the 

model demonstrated high accuracy for Sandy and Clayey Soils, its performance for Loamy and Silty Soils was 

inconsistent, indicating the need for further enhancement and more varied training data. In conclusion, the 

model showed strong potential for certain soil textures but still requires additional development to achieve 

consistent and reliable performance comparable to traditional laboratory methods. 
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