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ABSTRACT  

The robot's operation in a grape orchard environment is often disrupted by obstacles such as vines and leaves, 

resulting in low fruit picking efficiency. To achieve stable obstacle avoidance, an improved RRT algorithm 

based on global adaptive step size and target-biased sampling was developed. First, the kinematic equations 

of the grape-picking robotic arm were established using the PoE method, and both forward and inverse 

kinematics calculations were performed to determine the robot's workspace. Then, to address the issues of 

lack of target orientation and other shortcomings in the traditional RRT algorithm when planning collision-free 

paths, dynamic updating and global adaptive step size strategies were proposed. Simulation experiments 

conducted using MATLAB software demonstrated that our improved RRT algorithm, compared to the RRT, 

RRT_informed, and RRT_star algorithms, offered advantages in terms of lower planning time, fewer sampling 

points, and shorter path lengths in both 2D and 3D map scenarios. Finally, grape-picking experiments were 

conducted in both a laboratory setting and a real orchard. The results demonstrated that the average path 

planning time using the proposed algorithm was shorter compared to baseline algorithms, effectively validating 

the efficiency and practicality of the algorithm. 

 

 

摘要  

机器人在葡萄果园环境中作业会受到藤枝叶等障碍物的干扰，导致果实采摘效率低。为实现稳定避障，研究出

一种基于全局自适应步长与目标偏置采样的改进型 RRT 算法。首先，通过 PoE 法建立了葡萄采摘机械臂运动学

方程，进行了正、逆运动学计算，并计算出了机械臂工作空间。然后，针对传统 RRT 算法在规划无碰撞路径时

缺乏目标导向性等问题，提出了动态更新和全局自适应步长策略，应用 MATLAB 软件进行了仿真实验，验证了

我们改进后的 RRT 算法相对于 RRT 算法、RRT_informed 算法和 RRT_star 算法在二维和三维地图场景中，具有

规划耗时低、采样点个数少以及路径长度短的优点。最后，分别在实验室和真实果园进行了葡萄采摘试验，路

径规划的平均时间相较于基线算法更短，有效验证了算法的高效性。 

 

INTRODUCTION 

 Robotic technology has rapidly advanced, providing robotic arms with significant application prospects 

in agricultural harvesting (Zhang et al., 2022). For harvesting robotic arms, the performance of the path 

planning algorithm directly impacts the efficiency and accuracy of the harvesting process (Yang et al., 2023). 

In harvesting environments, immature fruits, vegetables, and grapevines are often randomly distributed around 

ripe fruits (Yu et al., 2022), increasing the difficulty of harvesting operations. Therefore, efficiently planning a 

high-quality obstacle-avoidance path for harvesting robotic arms is critical. 

 Among path planning algorithms for robotic arms, the Rapidly-exploring Random Tree (RRT) algorithm 

(LaValle S. et al., 1998) demonstrated superior exploration capabilities in high-dimensional spaces compared 

to algorithms such as A* (Hart P.E. et al., 1968), Ant Colony Optimization (Dorigo M. et al., 1996), and Artificial 

Potential Field (Khatib O. et al., 1986), including RRT-Connect (Kuffner J.J. et al., 2000), RRT* (Karaman S. 

et al., 2011), Informed RRT* (Gammell J.D. et al., 2014), and RRT*-Smart (Islam F. et al., 2012). These 

variants significantly enhanced search efficiency and path quality, driving continuous progress in the field of 

path planning. In the realm of RRT algorithm improvements, Gao et al. (2023), developed a path planning 

algorithm, BP-RRT*, based on backpropagation neural networks and an improved RRT* algorithm.  

 833  

mailto:qinjianjun@bucea.edu.cn


Vol. 74, No. 3 / 2024  INMATEH - Agricultural Engineering 

 

This algorithm introduced a distributed sampling method, transitioning from global search to local search in 

stages. A neural network model predicts the number of nodes required at each stage, improving the efficiency 

of path optimization. Pohan et al., (2023), proposed a novel path re-planning method, RRT-ACS+RT, based 

on the Rapidly-exploring Random Tree Star (RRT-ACS) algorithm and Ant Colony System. This method 

incorporated a rule-template set based on the mobile robot in dynamic environmental scenarios during the 

path re-planning process. Through extensive experiments, the authors demonstrated that the proposed 

method outperforms other algorithms. Shi et al., (2022), introduced a dual-arm robotic obstacle-avoidance path 

planning method, GA_RRT, based on target probability bias and cost functions. During random state 

generation, the algorithm calculated cost functions and selected the point with the lowest cost as a sub-node. 

For collision detection, the primary arm performed obstacle-avoidance path planning against static obstacles, 

while the secondary arm considered both static and dynamic obstacles, treating the primary arm as a dynamic 

reference point. Mohammed et al. (2020) proposed an improved RRT*N algorithm, which used a probabilistic 

distribution strategy to generate new nodes. Nodes closer to the target had a higher generation probability, 

forming a more focused tree structure along the robot-to-target connection. Simulations and experiments 

verified the effectiveness and robustness of the RRTN algorithm, demonstrating its potential in complex 

environments. Cao et al. (2023) proposed an enhanced RRT algorithm combining goal bias strategies and the 

Artificial Potential Field method, achieving significant improvements in iteration counts, planning speed, path 

length, and path smoothness. Jia et al. (2023) developed a collision-free bidirectional RRT algorithm (CGB-

RRT) and a flexible obstacle-avoidance path planning strategy based on the RRT algorithm, successfully 

addressing obstacle-avoidance challenges in complex environments. Alam et al. (2023) proposed the FC-

RRT* algorithm for energy-efficient motion planning in industrial robots, especially for pick-and-place tasks. 

The algorithm optimized motion trajectories by generating nodes along predefined directions and calculating 

energy consumption using a circular-point approach. By applying the work-energy principle to the rotational 

axes of a 6DOF industrial robot, energy consumption was reduced by 1.6% to 16.5% compared to kinematic 

solutions and the traditional RRT* algorithm. In addition, the intelligent fuzzy adaptive RRTN path planning 

method (FA-RRTN) was proposed by Khattab et al. (2023), the waypoint simplification and smoothing RRT 

method (WSS-RRT) proposed by Gültekin et al. (2023), and the algorithm combining the metaheuristic Salp 

Swarm Algorithm (SSA) with the RRT algorithm (IRRT-SSA) proposed by Muhsen et al. (2024) had all provided 

valuable insights for this paper. 

 When addressing complex obstacles, existing studies still face challenges in maintaining high 

harvesting efficiency. To further improve efficiency, an enhanced RRT algorithm for harvesting robotic arms 

was proposed. By introducing dynamic update strategies for the sampling area and a global adaptive step size 

strategy, the algorithm's performance was significantly improved. The effectiveness of the enhanced RRT 

algorithm was validated in both simulated orchard environments and real-world orchard experiments. 

 

MATERIALS AND METHODS 

Background 

 Standardized vineyards are primarily categorized into two types: trellis systems and pergola systems. 

As shown in Figure 1, trellis systems are typically constructed with one or two rows of vertical posts aligned 

along the grapevine rows. The distance between posts is generally 30–60 cm, with the trellis height ranging 

from 150 to 180 cm. The width between trellis rows usually measures 150–300 cm. The grape cluster picking 

points are typically located at a height of 80–150 cm from the ground. Currently, the grape-picking robot 

developed is designed for vineyards using trellis systems. In the future, an electric telescopic mechanism will 

be incorporated to meet the harvesting requirements of vineyards utilizing pergola systems. 

 
Fig. 1 - Standardized Vineyard - Trellis Structure 
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Forward kinematic analysis 

 To meet the requirements of grape harvesting, this study employed the Universal Robots UR3 robotic 

arm. The UR3 is a collaborative robotic arm with a payload capacity of 3 kg, a self-weight of 11 kg, a reach of 

500 mm, and a repeatability of 0.1 mm. These performance parameters adequately satisfy the demands for 

flexibility and precision in grape harvesting. 

 For mathematical modeling of the UR3 robotic arm, the Product of Exponentials (PoE) method was 

adopted. Compared to the traditional Denavit-Hartenberg (DH) parameter method, the PoE method eliminated 

the need for complex coordinate frame establishment and instead focuses on the properties of each joint of 

the robotic arm. This made the modeling process more intuitive and concise, particularly well-suited for the 

multi-degree-of-freedom characteristics of the UR3 robotic arm. 

To model using the PoE method, it was necessary to determine the end-effector pose in its initial 

configuration, the screw axes of all joints relative to the base frame (S1, …, Sn), and the joint variables (θ1, 

…, θn). Fig 2(a) illustrates the initial state of the robotic arm, from which the end-effector pose matrix E can be 

derived, as shown in Equation (1). 

                                                           

-1 0 -1 0

0 0 0 -192.8

0 -1 0 691.95

0 0 0 1

E

 
 
 =
 
 
 

                                                      (1) 

 The selection of the base coordinate system and end-effector coordinate system in Figure 2(a) follows 

the right-hand rule. Figure 2(b) illustrates the screw axes of each joint along with the points PPP on each axis, 

where the rotation direction of the screw axes is indicated by arrows. Since joints 1 to 6 are rotational joints, 

the coordinate values of any point on the joint axes are given in the base coordinate system. Typically, points 

with physical significance, such as the intersection of the joint and the link, are selected for this analysis. 

 
（a）Initial state of the robotic arm 

 
（b）Screw axes of each joint and the points P on each axis 

Fig. 2 - PoE modeling method 

Table1 

Parameter table of joints 1 to 6 

n wn Pn vn 

1 (0, 0,1) (0 ,0  ,151.9) (0 ,0  ,0) 

2 (0,-1,0) (0 ,-119.85,151.9) (151.9,0 ,0 ) 

3 (0,-1,0) (0,-119.85,395.55) (395.55,0,0) 

4 (0,-1,0) (0  ,-110.4,608.55) (608.55,0,0) 

5 (0 ,0, 1) (0  ,-110.4,691.95) (-110.4,0,0) 

6 (0,-1,0) (0  ,-192.8,691.95) (691.95,0,0) 
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As shown in Table 1, the parameter table for the PoE method modeling is provided,   3

n R and

 3

nv R represents the angular velocity and linear velocity of joint n. ns denotes the unit vector along the 

positive direction of the joint axis, which represents the rotational axis of joint n relative to the base coordinate 

system. The velocity expression consists of two parts: the left part corresponds to the linear velocity caused 

by rotation, and the right part represents the linear velocity along the rotation axis. n[S ] is the skew-symmetric 

matrix, calculated from nS . As shown in Equation (2), n[S ]  is presented in Equation (3), and the homogeneous 

transformation matrix is given in Equation (4). Once 0

6T  is calculated, the forward kinematic analysis of the 

robotic arm is completed. The solution to the forward kinematics aids in the subsequent determination of the 

robotic arm's workspace. 

n n

n

n n n

w s
S

v s P

   
= =   

−    
                                                             (2) 
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w v
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 
=  
 

                                                              (3) 

1 11 1 [ ] [ ][ ]0

6 ... n n n nS SS
T e e e M

  − −=                                                       (4) 

Inverse Kinematic Analysis 

The inverse kinematics analysis of the robotic arm requires the known position and orientation of the 

robot's end-effector relative to the base coordinate system, in order to determine the six joint angles of the 

robotic arm. Assuming that the pose matrix of the robot's end-effector relative to the base coordinate system 

is given by Equation (5), the six joint angles of the robot can be derived from matrix calculations, as shown in 

Equation (6). The first three columns of the matrix in equation (5) represent the rotational relationship between 

the original coordinate system and the new coordinate system, while the last column of the first three rows 

indicates the translation of the origin of the new coordinate system relative to the original one. The final row 

ensures the matrix is in homogeneous form, enabling the unified representation of both rotation and translation 

transformations. There are a total of 8 solutions, with   1 2 4, , and 6 having unique solutions, and 3 and 5

each having two solutions. In Equation (6), i is ,c  represents  i isin ,cos , ij ijc ,s  represents 

   + +cos( ),sin( )i j i j , ,ijk ijkc s  represents ( ) ( ) +  +   +  + i j k i j kcos ,sin , ia denotes the link lengths, 

and id  represents the link distances. The value of m,n,s, t  is given in Equation (7). The aforementioned 

inverse kinematics calculations lay the foundation for the subsequent trajectory interpolation. 
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Design of the Robot Hardware 

 This study developed an experimental platform for the grape-picking robot. As shown in Figure 3, the 

3D model of the main equipment primarily consists of a wheeled chassis and a robotic arm. The robotic arm 

is equipped with a self-designed end effector, two RealSense D435i depth cameras, and a 16-line LiDAR 

(model: Robosense RS-Helios-16P). The upper computer for the robotic arm is a laptop with 32GB of RAM 

and an RTX 3060 GPU, while the upper computer for the chassis is a Jetson Xavier NX with 64GB of memory. 

 For the task of grape picking, a specific end effector was designed. The end effector consists of an 

electric parallel two-finger gripper and electric scissors. The electric parallel two-finger gripper is the Z-EFG-

20P model from HuiLing Technology, which offers an adjustable gripping force ranging from 30 N to 80 N. The 

electric scissors are self-designed, and their working principle involves a stepper motor driving a lead screw to 

control the opening and closing of the scissors. Additionally, a limit switch is used to fix the maximum and 

minimum opening angles of the scissors. The scissors blades extend 2 cm beyond the electric gripper, 

ensuring that grape clusters can be effectively cut. Both the electric gripper and electric scissors can be 

controlled via I/O, and after connecting them to the control cabinet of the UR3 robotic arm, the end tool can be 

controlled via the robotic arm teach pendant or the ROS2 in the upper-level computer. The 3D model of the 

end effector is shown in Figure 3. The distance from the TCP to the end of the flange is 176.2 mm. This 

distance, referred to as the TCP offset, is used when calculating the workspace of the robotic arm. 

 
Fig. 3 - 3D Model of the Grape Picking Robot. 

1. RGB-D Camera; 2. End Effector; 3. UR3 Robotic Arm; 4. Storage Basket; 5. LiDAR;  6. RGB-D Camera; 

7. Robotic Arm Control Cabinet; 8. Chassis Host Computer; 9. Chassis; 10. Stepper motor; 11. Limit switch; 

 12. Lead screw; 13. Picking scissors;14. Electric parallel gripper; 15. Gripper extension section 

 

Workspace analysis 

 The workspace refers to the set of all spatial points that the robot's end-effector can reach during the 

grape-picking process. Its shape and range are critical factors influencing the robot's operational performance. 

After completing the forward and inverse kinematics analysis of the robotic arm, the Monte Carlo method was 

employed in MATLAB to calculate the workspace of the UR3 robotic arm. The Monte Carlo method randomly 

generates multiple end-effector position coordinates using the forward kinematics equations (Equation 4), and 

then incorporates the TCP offset to obtain the workspace of the grape-picking robot (including the tool), as 

shown in Figure 4. The workspace of the UR3 robotic arm approximates an ellipsoid, with the range in the X 

and Y directions being approximately -600 mm to 600 mm, and the range in the Z direction being approximately 

-500 mm to 800 mm. When planning paths for grape-picking tasks using an improved RRT algorithm, the 

randomly sampled points should be confined within the workspace of the robotic arm. 
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(a) Three-dimensional workspace    (b) XOY Planar projection          (c) XOZ Planar projection               (d) YOZ Planar projection 

Fig. 4 - Workspace of the grape-picking robot 

 

RRT algorithm improvement and simulation experiment 

Improvement Strategies for RRT Algorithm 

The RRT algorithm is a sampling-based path planning algorithm that uses the starting point as the 

root node, increases the number of nodes through random sampling and piling, and connects the nodes to 

generate a random tree. Nodes that do not satisfy the constraint requirements are discarded during the 

generation of subsequent nodes. When the random tree contains the goal point or enters the goal area, a 

route connecting the start point to the endpoint exists. 

This paper proposes two improvement strategies for the traditional RRT algorithm: the sampling region 

dynamic update strategy and the global adaptive step size strategy, aimed at enhancing the algorithm's 

performance. First, the initial improvement strategy involved dynamically updating the sampling region. 

Traditional RRT algorithms often exhibited a lack of goal orientation when planning collision-free paths, 

sometimes growing in the reverse direction. This phenomenon primarily arose from random sampling in 

unsuitable regions, resulting in numerous ineffective branches. To address this shortcoming, a dynamic update 

mechanism for the sampling region was designed. The key to this strategy was to gradually reduce and 

optimize the sampling space as the random tree grows, particularly shifting focus to the region near the target 

point. This approach encouraged the random tree to grow toward the target point, defining positive growth as 

the expansion of random tree nodes toward the area between the current node and the target point. This 

helped continuously reduce the distance to the target point and ensured effective tree expansion. Conversely, 

if the growth was oriented toward the starting point, it is considered to have departed from the target point, 

thereby increasing the distance from it. This type of growth was defined as reverse growth and regarded it as 

a non-ideal form of expansion. Sampling only within the valid region may cause the algorithm to get stuck in a 

local optimum. Therefore, if the current node fails to expand after 30 iterations, it is considered invalid and 

removed from the random tree. 

The second improvement strategy involved global adaptive step size adjustment. Traditional RRT 

algorithms typically utilize a predetermined fixed step size for tree expansion, failing to dynamically adjust this 

parameter based on the information gathered during the search process. This could result in improper selection 

of the step size, either too large or too small, adversely affecting the algorithm's convergence speed and the 

quality of the paths, particularly in narrow or obstacle-intensive regions, where exploration efficiency might be 

significantly diminished. The improved RRT algorithm considers the relationship between environmental 

complexity and obstacle characteristics by calculating factors such as the ratio of obstacle area to total area, 

the average distance between obstacles, and the reciprocal of the number of obstacles. In addition, different 

weighting coefficients were introduced to comprehensively determine the environmental complexity metric 𝑤1. 
This allowed the algorithm to self-calculate an adaptive initial step value to more effectively adapt to 

environmental changes.  

                                                        
 1start sizestep step N w= = 

                                                    (8)
 

Then expand the new node newq  in steps, as shown in Equation (9): 

                                                   

| |

|| ||
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q q
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q q

−
=  +

−                                            
 (9)

 

In Equation (8) Nsize  was the map size, and [Nsize*w1] denotes Nsize*w1  rounded down to the 

calculation results, during the random expansion of the random tree, the strategy continuously acquired 

environmental information, and the improved RRT algorithm could adaptively adjust the step size in the region 

with more obstacles, as shown in Equation (10): 

                                                                2*step step w=
                                                            (10)
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In Equation (10), 𝑤2 was the weight of step size reduction, and w2 was selected according to the 

number of obstacles, in general, 𝑤2 was taken as 0.7 for simple environment, and w2 was taken as 0.3 for 

complex environment, and the initial step size would be restored after the extended tree covered the complex 

obstacle region, in summary the ability to realize the global adaptive step size strategy effectively increased 

the global search capability of the improved RRT algorithm. Below is the pseudocode for the improved RRT 

algorithm. 

 

 

Algorithm:improved_rrt 

Input: q_start, q_goal, M (map) 

Output: Path from q_start to q_goal (if found) 

Initialize random tree with root q_start 

Set initial valid region near q_goal, invalid region elsewhere 

while (random tree has not reached q_goal): 

Update Sampling Region 

        if random tree grows towards q_goal: 

            Shrink valid region toward target 

        else if reverse growth: 

            Expand valid region and remove invalid branches 

        Sample q_rand within valid region 

        Find nearest node q_nearest 

        Calculate step size: 

        if environment is complex:  

            step = step * w2 

        else: 

            step = step * w1 

Steer towards q_rand: 

        q_new = Steer(q_nearest, q_rand, step) 

        Check for collision: 

        if ObstacleFree(q_nearest, q_new): 

            Add q_new to random tree 

            if q_new is near q_goal, return path 

if no path found after max iterations, return failure 

 

 

Two-dimensional scene simulation 

In this study, the traditional RRT algorithm, RRT_star algorithm, RRT_informed algorithm, and the 

improved RRT algorithm were used to plan paths on a two-dimensional map. Parameters such as the number 

of obstacles, the positions of obstacles, and the random seed were modified in MATLAB to test each algorithm 

60 times, in order to validate the performance of the improved RRT algorithm for path planning in two-

dimensional environments. The path-planning capabilities of the four algorithms were evaluated based on 

three indicators: planning time, number of sampling points, and path length. If an algorithm took less time, 

required fewer sampling points, and produced a shorter path, it was considered to have better path-planning 

performance. In the experiments, the two-dimensional map had dimensions of 450 cm by 450 cm, with the 

start point for path planning at (100 cm, 100 cm) and the endpoint at (300 cm, 300 cm). The fixed step size for 

the traditional RRT, RRT_informed, and RRT_star algorithms was set to 30 mm. 

As shown in Figure 5, the hexagonal star shape represents the starting point of the path planning, and 

the pentagonal star shape represents the endpoint. The blue × symbols indicate randomly generated sample 

points, while the yellow circles and black rectangles represent obstacles. If a sample point is randomly 

generated inside an obstacle, it is not used during the path planning process. The black lines represent the 

connections between the sample points during the exploration of the random tree, the red line indicates the 

path before smoothing, and the blue line represents the path after smoothing. 
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(a) RRT algorithm                          (b) RRT_informed algorithm           (c) RRT_star algorithm               (d) improved RRT algorithm 

Fig. 5 - Comparison of four RRT algorithms in two-dimensional maps 

 
Table 2 

Comparison of indicators of four RRT algorithms for two-dimensional scenarios 

Types of algorithms Time consumption/s Sampling points/each Path length/cm 

RRT 13.05 93 547.48 

RRT_star 2.62 54 454.48 

RRT_informed 2.93 45 475.96 

Improved RRT 0.77 29 421.28 

 

The results comparing the planning effects and indicators of the improved RRT algorithm presented in 

this paper with those of the other three RRT algorithms on two-dimensional maps were shown in Fig 5 and 

Table 2. Figure 5 shows that the traditional RRT algorithm generates numerous invalid nodes during path 

planning, resulting in directionless planned paths. The RRT_informed and RRT_star algorithms generate fewer 

nodes; however, the planned paths are more tortuous. Nevertheless, our proposed improved RRT algorithm 

not only significantly reduces the number of invalid sampling points but also efficiently plans smooth paths. 

Table 2 indicates that our improved RRT algorithm, compared to the traditional RRT algorithm, RRT_informed 

algorithm, and RRT_star algorithm, resulted in a 94.1%, 70.61%, and 73.72% decrease in planning elapsed 

time, a 68.82%, 46.3%, and 35.56% reduction in the number of sampling points, and a 23.78%, 7.31%, and 

11.49% decrease in path length, respectively. In summary, compared to the other three RRT algorithms, the 

performance of our improved RRT algorithm has improved. 

 

Three-dimensional scene simulation 

The path planning in the three-dimensional scene of this study is similar to that in the two-dimensional 

scene. The length, width, and height of the three-dimensional map are 450 cm, with the starting point at (100 

cm, 100 cm, 100 cm) and the endpoint at (300 cm, 300 cm, 300 cm). In the three-dimensional simulation scene, 

obstacles have been modified to colorful spheres and rectangular cuboids, while the other settings remain 

similar to those in the two-dimensional simulation scene. Similarly, several parameters were modified and the 

improved RRT algorithm was tested along with the three baseline algorithms in MATLAB, conducting 60 trials. 

The number of sampling points and the time recorded are the average values from the 60 trials, as shown in 

the Table 3. 

 

       
(a) RRT algorithm            (b) RRT_informed algorithm            (c) RRT_star algorithm           (d) improved RRT algorithm 

 

Fig. 6 - Comparison of four RRT algorithms in three-dimensional maps 
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Table 3 

Comparison of indicators of four RRT algorithms for two-dimensional scenarios 

Types of algorithms Time consumption/s Sampling points/each Path length/cm 

RRT 5.88 50 844.80 

RRT_star 3.57 28 586.07 

RRT_informed 0.74 12 555.36 

Improved RRT 0.24 2 365.88 

 

 

The results of the comparison of the planning effects and indicators between the improved RRT 

algorithm in this paper and the remaining three RRT algorithms on three-dimensional maps were shown in 

Figure 6 and in Table 3. Figure 6 and Table 3 indicate that the improved RRT algorithm presented in this paper, 

compared to the traditional RRT algorithm, RRT_informed algorithm, and RRT_star algorithm, results in a 

95.92%, 93.28%, and 67.57% decrease in planning elapsed time, a 96%, 92.9%, and 83.33% reduction in the 

number of sampling points, and a 58.65%, 34.5%, and 34.12% decrease in path lengths, respectively. In 

summary, our improved RRT algorithm demonstrated strong planning capability on three-dimensional maps. 

 

 

RESULTS 

Planning system design 

  he si ulation in MA LAB was  ondu ted to validate the  er or an e o  the i  roved     algorith . In 

real-world ex eri ents, the MoveIt2 so tware in   S2 and the  MPL library were  ri arily utilized to i  le ent 

the     algorith   or  lanning and  ontrol.  he real-world ex eri ents were  ainly divided into three  arts: 

roboti  ar   ath  lanning, target dete tion and lo alization, and the  oordination between the  hassis and the 

roboti  ar . Figure 7(a) showed the hardware design and  o  uni ation ar hite ture o  the gra e- i  ing robot. 

 Path  lanning using the     and its variant algorith s involved  ive  ain  ro esses: initializing the tree, 

rando  sa  ling, tree extension,  ath  he  ing, and  ath o ti ization. In the real-world ex eri ents, the host 

 o  uter o  the robot was  onne ted to the   3 roboti  ar  via an Ethernet  able, and the ar   ould be  ontrolled 

using the MoveIt2 so tware. Various     algorith s were en a sulated in the  MPL library, whi h  rovided 

inter a es  or  ath  lanning.  he  lanned  ath required o ti ization, and MoveIt2 o  ered libraries to a hieve 

traje tory s oothing and inter olation. Cubi  s line inter olation was also used  or traje tory o ti ization, and 

 o  arative results showed that it  rodu ed si ilarly s ooth  aths as those generated by the built-in MoveIt2 

libraries.  he ‘ros2_ ontrol’  ra ewor  had  arsed  lanned traje tory into s e i i  joint  o  ands, whi h were 

then exe uted via hardware inter a es. Meanwhile, the exe ution status o  the roboti  ar  was  ed ba   to MoveIt2 

through relevant   S2 to i s to enable real-ti e status  onitoring and subsequent  lanning adjust ents. Sin e 

 ulti le  oints were generated during traje tory inter olation, the inverse  ine ati s o  the roboti  ar  was 

required to  al ulate the joint angles  or these  oints (Equation (6)), allowing s ooth  ove ent along the 

generated traje tory. In  ost  ases,  ath  lanning  or the roboti  ar  was  ondu ted in the joint s a e, but MoveIt2 

also  rovides inter a es  or  lanning based on the  CP ( ool Center Point) i  required.  he  lanning  ro ess was 

shown in Figure 7(b). 

 As shown in Fig 7( ), the target dete tion and lo alization  ro ess e  loyed the   L v9 algorith  to 

identi y gra es and their  i  ing  oints.  n e a  i  ing  oint was dete ted by the  ealSense D435i  a era, the 

 a era API was  alled to obtain the  enter  osition o  the bounding box o  the gra e, along with its  oordinates 

(x, y, z) in the  a era  oordinate syste .  hrough hand-eye  alibration and  oordinate trans or ation o  the 

roboti  ar , the  oordinates  ould be  onverted  ro  the  a era  oordinate syste  to the end-e  e tor  oordinate 

syste  o  the roboti  ar .  he trans or ed  oordinates were then sent to MoveIt2  or  ath  lanning.  he relevant 

 oordinate syste s o  the roboti  ar  and the  a era were shown in Figure 3. 

  he  oordination between the  hassis and the robot's host  o  uter was a hieved through a CAN bus. 

A ter the roboti  ar   o  leted the  i  ing tas   or all re ognizable gra e  lusters at the  urrent lo ation, the 

robot's host  o  uter sent a signal to the  hassis host  o  uter to  ove the  hassis  orward by 15   .  n e the 

 hassis rea hed the new  osition, the roboti  ar  resu ed the  i  ing tas , ensuring an e  i ient  oordinated 

wor  low, the  ro ess was detailed in Figure 7(b). 
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Fig. 7 - Hardware system of the grape picking robot and the process design of each module 

(a)Picking Robot hardware design; (b) Chassis planning process; 

(c) Object detection and localization process; (d) Robotic arm planning and control process 

 

Indoor experiment 

 The indoor picking experiment was conducted in a laboratory setting in September 2024, as 

shown in Figure 8. At the start of the experiment, 15 artificial grape bunches, each with an average weight 

of 200 g, were placed at varying heights on the vine. During the experiment, the RGB-D camera was first 

used to identify the grape bunches and locate the picking points. Then, the OMPL library in MoveIt2 

invoked the specified algorithms for path planning. After planning, the robotic arm moved at a speed of 1 

m/s to the vicinity of the nearest grape bunch for harvesting. Upon completion of the picking task, the 

upper computer planned a new path to place the grapes into the storage basket. As shown in Fig 8, the 

process of the picking experiment is illustrated. The three-fingered gripper used here was insufficient in 

gripping force, so in subsequent real-world experiments, it was replaced with a specialized gripper (Figure 

3). For the indoor experiments, path planning was conducted within the joint space, and the use of the 

end-effector did not affect the validation of the planning algorithm. 

          
(a) recognizing grapes                        (b) grabbing grapes                      (c) picking grapes                     (d) collecting grapes 

Fig. 8 - Picking process in the laboratory 
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The RRT algorithm, RRT_informed algorithm, RRT_star algorithm, and our improved algorithm were 

utilized for path planning. Each algorithm was tested 16 times, with 8 tests for picking and collecting a single 

grape bunch, and the remaining 8 for picking and collecting multiple bunches (averaging 4–5 bunches per 

experiment). The average time for each planning algorithm was recorded in every test. As shown in Table 4, 

our algorithm demonstrated improved planning efficiency compared to the other three baseline algorithms. 

Table 4 
Average Planning Time of Four Algorithms in Indoor Experiments 

 

Type of 

Algorithms 

Single-bunch grape picking experiment 
Multi-bunch grape picking 

experiment 

Average Planning Time from 

Initial Position to Picking 

Point /s 

Planning Time from 

Picking Point to Storage 

Basket /s 

Total Average Planning Time  

for the Entire Process /s 

RRT 0.42 0.58 5.44 

RRT_informed 0.34 0.41 4.03 

RRT_star 0.39 0.44 4.12 

Ours 0.29 0.40 3.87 

 

Outdoor experiment 

 In October 2024, a real-environment picking test was conducted at a grape picking garden in Fangshan 

District, Beijing, which covers an area of approximately 10 acres and uses a double-row trellis system, as 

shown in Fig 9. Four algorithms were used for the planning experiments, with each algorithm being tested 10 

times for multi-bunch grape picking (averaging 6-7 bunches per test). The average planning time was 

calculated for each algorithm. As shown in Table 5, our improved algorithm still outperformed the other 

algorithms in terms of planning efficiency in the real-world scenario. However, due to the presence of obstacles 

in the real environment, the average path planning time for the robotic arm was longer compared to the indoor 

experiments. 

Table 5 

Average Planning Time of Four Algorithms in Outdoor Experiments 

Types of Algorithm Average Planning Time / s 

RRT 8.53 

RRT_informed 6.98 

RRT_star 7.11 

Ours 6.61 

 

    
(a) recognizing grapes                   (b) grabbing grapes                       (c) picking grapes                       (d) collecting grapes 

Fig. 9 - Picking process in real orchard 

CONCLUSIONS 

 (1) Compared to the traditional RRT algorithm, the improved RRT algorithm presented in this paper 

incorporates a dynamic sampling region update strategy and a global adaptive step size strategy. Simulation 

experiments conducted using MATLAB software demonstrated that the improved RRT algorithm required less 

planning time, utilized fewer sampling nodes, and generated shorter planning paths, thereby highlighting its 

superiority. 

 (2) Grape picking experiments were conducted in both laboratory and real orchard environments. In 

the laboratory setting, the average planning time for consecutive pickings was approximately 3.87 seconds, 

while in the real orchard, the planning time was 6.61 seconds. This increase in planning time in the real orchard 

environment is due to branches, leaves, and other obstacles that complicate the robotic arm's path planning. 

Overall, the path planning time using the improved RRT algorithm was shorter compared to the other three 

baseline algorithms. 
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