
Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

PATH PLANNING RESEARCH ON GRAPE PICKING ROBOTIC ARM BASED ON
IMPROVED RRT ALGORITHM

/
基于改进 RRT算法的葡萄采摘机械臂路径规划研究

Yifan HU1,2), Jianjun QIN1,2*), Luyang WANG1,2*), Xifu CHEN1,2), Yue ZHAO1,2)

1) Beijing University of Civil Engineering and Architecture, School of Mechanical-electronic and Vehicle Engineering, Beijing/China
2) Beijing Engineering Research Center for Building Safety Monitoring, Beijing / China;

Tel: +86 18855174840; E-mail: qinjianjun@bucea.edu.cn

DOI: https://doi.org/10.35633/inmateh-74-73

Keywords: grape picking; improved RRT algorithm; robotic arm; path planning

ABSTRACT

The robot's operation in a grape orchard environment is often disrupted by obstacles such as vines and leaves,

resulting in low fruit picking efficiency. To achieve stable obstacle avoidance, an improved RRT algorithm

based on global adaptive step size and target-biased sampling was developed. First, the kinematic equations

of the grape-picking robotic arm were established using the PoE method, and both forward and inverse

kinematics calculations were performed to determine the robot's workspace. Then, to address the issues of

lack of target orientation and other shortcomings in the traditional RRT algorithm when planning collision-free

paths, dynamic updating and global adaptive step size strategies were proposed. Simulation experiments

conducted using MATLAB software demonstrated that our improved RRT algorithm, compared to the RRT,

RRT_informed, and RRT_star algorithms, offered advantages in terms of lower planning time, fewer sampling

points, and shorter path lengths in both 2D and 3D map scenarios. Finally, grape-picking experiments were

conducted in both a laboratory setting and a real orchard. The results demonstrated that the average path

planning time using the proposed algorithm was shorter compared to baseline algorithms, effectively validating

the efficiency and practicality of the algorithm.

摘要

机器人在葡萄果园环境中作业会受到藤枝叶等障碍物的干扰，导致果实采摘效率低。为实现稳定避障，研究出

一种基于全局自适应步长与目标偏置采样的改进型 RRT 算法。首先，通过 PoE 法建立了葡萄采摘机械臂运动学

方程，进行了正、逆运动学计算，并计算出了机械臂工作空间。然后，针对传统 RRT 算法在规划无碰撞路径时

缺乏目标导向性等问题，提出了动态更新和全局自适应步长策略，应用 MATLAB 软件进行了仿真实验，验证了

我们改进后的 RRT 算法相对于 RRT 算法、RRT_informed 算法和 RRT_star 算法在二维和三维地图场景中，具有

规划耗时低、采样点个数少以及路径长度短的优点。最后，分别在实验室和真实果园进行了葡萄采摘试验，路

径规划的平均时间相较于基线算法更短，有效验证了算法的高效性。

INTRODUCTION

 Robotic technology has rapidly advanced, providing robotic arms with significant application prospects

in agricultural harvesting (Zhang et al., 2022). For harvesting robotic arms, the performance of the path

planning algorithm directly impacts the efficiency and accuracy of the harvesting process (Yang et al., 2023).

In harvesting environments, immature fruits, vegetables, and grapevines are often randomly distributed around

ripe fruits (Yu et al., 2022), increasing the difficulty of harvesting operations. Therefore, efficiently planning a

high-quality obstacle-avoidance path for harvesting robotic arms is critical.

 Among path planning algorithms for robotic arms, the Rapidly-exploring Random Tree (RRT) algorithm

(LaValle S. et al., 1998) demonstrated superior exploration capabilities in high-dimensional spaces compared

to algorithms such as A* (Hart P.E. et al., 1968), Ant Colony Optimization (Dorigo M. et al., 1996), and Artificial

Potential Field (Khatib O. et al., 1986), including RRT-Connect (Kuffner J.J. et al., 2000), RRT* (Karaman S.

et al., 2011), Informed RRT* (Gammell J.D. et al., 2014), and RRT*-Smart (Islam F. et al., 2012). These

variants significantly enhanced search efficiency and path quality, driving continuous progress in the field of

path planning. In the realm of RRT algorithm improvements, Gao et al. (2023), developed a path planning

algorithm, BP-RRT*, based on backpropagation neural networks and an improved RRT* algorithm.

 833

mailto:qinjianjun@bucea.edu.cn

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

This algorithm introduced a distributed sampling method, transitioning from global search to local search in

stages. A neural network model predicts the number of nodes required at each stage, improving the efficiency

of path optimization. Pohan et al., (2023), proposed a novel path re-planning method, RRT-ACS+RT, based

on the Rapidly-exploring Random Tree Star (RRT-ACS) algorithm and Ant Colony System. This method

incorporated a rule-template set based on the mobile robot in dynamic environmental scenarios during the

path re-planning process. Through extensive experiments, the authors demonstrated that the proposed

method outperforms other algorithms. Shi et al., (2022), introduced a dual-arm robotic obstacle-avoidance path

planning method, GA_RRT, based on target probability bias and cost functions. During random state

generation, the algorithm calculated cost functions and selected the point with the lowest cost as a sub-node.

For collision detection, the primary arm performed obstacle-avoidance path planning against static obstacles,

while the secondary arm considered both static and dynamic obstacles, treating the primary arm as a dynamic

reference point. Mohammed et al. (2020) proposed an improved RRT*N algorithm, which used a probabilistic

distribution strategy to generate new nodes. Nodes closer to the target had a higher generation probability,

forming a more focused tree structure along the robot-to-target connection. Simulations and experiments

verified the effectiveness and robustness of the RRTN algorithm, demonstrating its potential in complex

environments. Cao et al. (2023) proposed an enhanced RRT algorithm combining goal bias strategies and the

Artificial Potential Field method, achieving significant improvements in iteration counts, planning speed, path

length, and path smoothness. Jia et al. (2023) developed a collision-free bidirectional RRT algorithm (CGB-

RRT) and a flexible obstacle-avoidance path planning strategy based on the RRT algorithm, successfully

addressing obstacle-avoidance challenges in complex environments. Alam et al. (2023) proposed the FC-

RRT* algorithm for energy-efficient motion planning in industrial robots, especially for pick-and-place tasks.

The algorithm optimized motion trajectories by generating nodes along predefined directions and calculating

energy consumption using a circular-point approach. By applying the work-energy principle to the rotational

axes of a 6DOF industrial robot, energy consumption was reduced by 1.6% to 16.5% compared to kinematic

solutions and the traditional RRT* algorithm. In addition, the intelligent fuzzy adaptive RRTN path planning

method (FA-RRTN) was proposed by Khattab et al. (2023), the waypoint simplification and smoothing RRT

method (WSS-RRT) proposed by Gültekin et al. (2023), and the algorithm combining the metaheuristic Salp

Swarm Algorithm (SSA) with the RRT algorithm (IRRT-SSA) proposed by Muhsen et al. (2024) had all provided

valuable insights for this paper.

 When addressing complex obstacles, existing studies still face challenges in maintaining high

harvesting efficiency. To further improve efficiency, an enhanced RRT algorithm for harvesting robotic arms

was proposed. By introducing dynamic update strategies for the sampling area and a global adaptive step size

strategy, the algorithm's performance was significantly improved. The effectiveness of the enhanced RRT

algorithm was validated in both simulated orchard environments and real-world orchard experiments.

MATERIALS AND METHODS

Background

 Standardized vineyards are primarily categorized into two types: trellis systems and pergola systems.

As shown in Figure 1, trellis systems are typically constructed with one or two rows of vertical posts aligned

along the grapevine rows. The distance between posts is generally 30–60 cm, with the trellis height ranging

from 150 to 180 cm. The width between trellis rows usually measures 150–300 cm. The grape cluster picking

points are typically located at a height of 80–150 cm from the ground. Currently, the grape-picking robot

developed is designed for vineyards using trellis systems. In the future, an electric telescopic mechanism will

be incorporated to meet the harvesting requirements of vineyards utilizing pergola systems.

Fig. 1 - Standardized Vineyard - Trellis Structure

 834

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

Forward kinematic analysis

 To meet the requirements of grape harvesting, this study employed the Universal Robots UR3 robotic

arm. The UR3 is a collaborative robotic arm with a payload capacity of 3 kg, a self-weight of 11 kg, a reach of

500 mm, and a repeatability of 0.1 mm. These performance parameters adequately satisfy the demands for

flexibility and precision in grape harvesting.

 For mathematical modeling of the UR3 robotic arm, the Product of Exponentials (PoE) method was

adopted. Compared to the traditional Denavit-Hartenberg (DH) parameter method, the PoE method eliminated

the need for complex coordinate frame establishment and instead focuses on the properties of each joint of

the robotic arm. This made the modeling process more intuitive and concise, particularly well-suited for the

multi-degree-of-freedom characteristics of the UR3 robotic arm.

To model using the PoE method, it was necessary to determine the end-effector pose in its initial

configuration, the screw axes of all joints relative to the base frame (S1, …, Sn), and the joint variables (θ1,

…, θn). Fig 2(a) illustrates the initial state of the robotic arm, from which the end-effector pose matrix E can be

derived, as shown in Equation (1).

-1 0 -1 0

0 0 0 -192.8

0 -1 0 691.95

0 0 0 1

E

 
 
 =
 
 
 

 (1)

 The selection of the base coordinate system and end-effector coordinate system in Figure 2(a) follows

the right-hand rule. Figure 2(b) illustrates the screw axes of each joint along with the points PPP on each axis,

where the rotation direction of the screw axes is indicated by arrows. Since joints 1 to 6 are rotational joints,

the coordinate values of any point on the joint axes are given in the base coordinate system. Typically, points

with physical significance, such as the intersection of the joint and the link, are selected for this analysis.

（a）Initial state of the robotic arm

（b）Screw axes of each joint and the points P on each axis

Fig. 2 - PoE modeling method

Table1

Parameter table of joints 1 to 6

n wn Pn vn

1 (0, 0,1) (0 ,0 ,151.9) (0 ,0 ,0)

2 (0,-1,0) (0 ,-119.85,151.9) (151.9,0 ,0)

3 (0,-1,0) (0,-119.85,395.55) (395.55,0,0)

4 (0,-1,0) (0 ,-110.4,608.55) (608.55,0,0)

5 (0 ,0, 1) (0 ,-110.4,691.95) (-110.4,0,0)

6 (0,-1,0) (0 ,-192.8,691.95) (691.95,0,0)

 835

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

As shown in Table 1, the parameter table for the PoE method modeling is provided,   3

n R and

 3

nv R represents the angular velocity and linear velocity of joint n. ns denotes the unit vector along the

positive direction of the joint axis, which represents the rotational axis of joint n relative to the base coordinate

system. The velocity expression consists of two parts: the left part corresponds to the linear velocity caused

by rotation, and the right part represents the linear velocity along the rotation axis. n[S] is the skew-symmetric

matrix, calculated from nS . As shown in Equation (2), n[S] is presented in Equation (3), and the homogeneous

transformation matrix is given in Equation (4). Once 0

6T is calculated, the forward kinematic analysis of the

robotic arm is completed. The solution to the forward kinematics aids in the subsequent determination of the

robotic arm's workspace.

n n

n

n n n

w s
S

v s P

   
= =   

−    
 (2)

[]
[]

0 0

n n

n

w v
S

 
=  
 

 (3)

1 11 1 [] [][]0

6 ... n n n nS SS
T e e e M

  − −= (4)

Inverse Kinematic Analysis

The inverse kinematics analysis of the robotic arm requires the known position and orientation of the

robot's end-effector relative to the base coordinate system, in order to determine the six joint angles of the

robotic arm. Assuming that the pose matrix of the robot's end-effector relative to the base coordinate system

is given by Equation (5), the six joint angles of the robot can be derived from matrix calculations, as shown in

Equation (6). The first three columns of the matrix in equation (5) represent the rotational relationship between

the original coordinate system and the new coordinate system, while the last column of the first three rows

indicates the translation of the origin of the new coordinate system relative to the original one. The final row

ensures the matrix is in homogeneous form, enabling the unified representation of both rotation and translation

transformations. There are a total of 8 solutions, with   1 2 4, , and 6 having unique solutions, and 3 and 5

each having two solutions. In Equation (6), i is ,c represents  i isin ,cos , ij ijc ,s represents

   + +cos(),sin()i j i j , ,ijk ijkc s represents () () +  +   +  + i j k i j kcos ,sin , ia denotes the link lengths,

and id represents the link distances. The value of m,n,s, t is given in Equation (7). The aforementioned

inverse kinematics calculations lay the foundation for the subsequent trajectory interpolation.

 0

6

0 0 0 1

x x x x

y y y y

z z z z

n o a p
n o a p

T
n o a p

 
 

=  
 
 

 (5)

()

()

1

2 4

22 2

2 4

2 2 2

2 2 2 2

14 34 3 2

3

2 3

4 234 234 2 3

5 1 1

6 5

= tan 2(,)

tan 2(,

)

tan 2(,)

arccos()
2

= tan 2(,)

arccos()

tan 2 , tan 2(,0)

x y

A m n

A d d

m n d d

A s c

r r a a

a a

A s c

s a c a

A s t A s







  





−


− −


 + − +
 =

 + − −

= 

 − −


=  −


= − −

 (6)

 836

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

6

6

1 1

1 1

y y

x x

y x

y x

m p a d

n p a d

s c n s n

t c o s o

= −


= −


= −
 = −

 (7)

Design of the Robot Hardware

 This study developed an experimental platform for the grape-picking robot. As shown in Figure 3, the

3D model of the main equipment primarily consists of a wheeled chassis and a robotic arm. The robotic arm

is equipped with a self-designed end effector, two RealSense D435i depth cameras, and a 16-line LiDAR

(model: Robosense RS-Helios-16P). The upper computer for the robotic arm is a laptop with 32GB of RAM

and an RTX 3060 GPU, while the upper computer for the chassis is a Jetson Xavier NX with 64GB of memory.

 For the task of grape picking, a specific end effector was designed. The end effector consists of an

electric parallel two-finger gripper and electric scissors. The electric parallel two-finger gripper is the Z-EFG-

20P model from HuiLing Technology, which offers an adjustable gripping force ranging from 30 N to 80 N. The

electric scissors are self-designed, and their working principle involves a stepper motor driving a lead screw to

control the opening and closing of the scissors. Additionally, a limit switch is used to fix the maximum and

minimum opening angles of the scissors. The scissors blades extend 2 cm beyond the electric gripper,

ensuring that grape clusters can be effectively cut. Both the electric gripper and electric scissors can be

controlled via I/O, and after connecting them to the control cabinet of the UR3 robotic arm, the end tool can be

controlled via the robotic arm teach pendant or the ROS2 in the upper-level computer. The 3D model of the

end effector is shown in Figure 3. The distance from the TCP to the end of the flange is 176.2 mm. This

distance, referred to as the TCP offset, is used when calculating the workspace of the robotic arm.

Fig. 3 - 3D Model of the Grape Picking Robot.

1. RGB-D Camera; 2. End Effector; 3. UR3 Robotic Arm; 4. Storage Basket; 5. LiDAR; 6. RGB-D Camera;

7. Robotic Arm Control Cabinet; 8. Chassis Host Computer; 9. Chassis; 10. Stepper motor; 11. Limit switch;

 12. Lead screw; 13. Picking scissors;14. Electric parallel gripper; 15. Gripper extension section

Workspace analysis

 The workspace refers to the set of all spatial points that the robot's end-effector can reach during the

grape-picking process. Its shape and range are critical factors influencing the robot's operational performance.

After completing the forward and inverse kinematics analysis of the robotic arm, the Monte Carlo method was

employed in MATLAB to calculate the workspace of the UR3 robotic arm. The Monte Carlo method randomly

generates multiple end-effector position coordinates using the forward kinematics equations (Equation 4), and

then incorporates the TCP offset to obtain the workspace of the grape-picking robot (including the tool), as

shown in Figure 4. The workspace of the UR3 robotic arm approximates an ellipsoid, with the range in the X

and Y directions being approximately -600 mm to 600 mm, and the range in the Z direction being approximately

-500 mm to 800 mm. When planning paths for grape-picking tasks using an improved RRT algorithm, the

randomly sampled points should be confined within the workspace of the robotic arm.

 837

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

(a) Three-dimensional workspace (b) XOY Planar projection (c) XOZ Planar projection (d) YOZ Planar projection

Fig. 4 - Workspace of the grape-picking robot

RRT algorithm improvement and simulation experiment

Improvement Strategies for RRT Algorithm

The RRT algorithm is a sampling-based path planning algorithm that uses the starting point as the

root node, increases the number of nodes through random sampling and piling, and connects the nodes to

generate a random tree. Nodes that do not satisfy the constraint requirements are discarded during the

generation of subsequent nodes. When the random tree contains the goal point or enters the goal area, a

route connecting the start point to the endpoint exists.

This paper proposes two improvement strategies for the traditional RRT algorithm: the sampling region

dynamic update strategy and the global adaptive step size strategy, aimed at enhancing the algorithm's

performance. First, the initial improvement strategy involved dynamically updating the sampling region.

Traditional RRT algorithms often exhibited a lack of goal orientation when planning collision-free paths,

sometimes growing in the reverse direction. This phenomenon primarily arose from random sampling in

unsuitable regions, resulting in numerous ineffective branches. To address this shortcoming, a dynamic update

mechanism for the sampling region was designed. The key to this strategy was to gradually reduce and

optimize the sampling space as the random tree grows, particularly shifting focus to the region near the target

point. This approach encouraged the random tree to grow toward the target point, defining positive growth as

the expansion of random tree nodes toward the area between the current node and the target point. This

helped continuously reduce the distance to the target point and ensured effective tree expansion. Conversely,

if the growth was oriented toward the starting point, it is considered to have departed from the target point,

thereby increasing the distance from it. This type of growth was defined as reverse growth and regarded it as

a non-ideal form of expansion. Sampling only within the valid region may cause the algorithm to get stuck in a

local optimum. Therefore, if the current node fails to expand after 30 iterations, it is considered invalid and

removed from the random tree.

The second improvement strategy involved global adaptive step size adjustment. Traditional RRT

algorithms typically utilize a predetermined fixed step size for tree expansion, failing to dynamically adjust this

parameter based on the information gathered during the search process. This could result in improper selection

of the step size, either too large or too small, adversely affecting the algorithm's convergence speed and the

quality of the paths, particularly in narrow or obstacle-intensive regions, where exploration efficiency might be

significantly diminished. The improved RRT algorithm considers the relationship between environmental

complexity and obstacle characteristics by calculating factors such as the ratio of obstacle area to total area,

the average distance between obstacles, and the reciprocal of the number of obstacles. In addition, different

weighting coefficients were introduced to comprehensively determine the environmental complexity metric 𝑤1.
This allowed the algorithm to self-calculate an adaptive initial step value to more effectively adapt to

environmental changes.

 1start sizestep step N w= = 

 (8)

Then expand the new node newq in steps, as shown in Equation (9):

| |

|| ||

nearest rand

new nearest

nearest rand

q q
q step q

q q

−
=  +

−
 (9)

In Equation (8) Nsize was the map size, and [Nsize*w1] denotes Nsize*w1 rounded down to the

calculation results, during the random expansion of the random tree, the strategy continuously acquired

environmental information, and the improved RRT algorithm could adaptively adjust the step size in the region

with more obstacles, as shown in Equation (10):

 2*step step w=
 (10)

-800 -600 -400 -200 0 200 400 600 800

 ()

-600

-400

-200

0

200

400

600

 (

)

 he wor s a e o the 3 roboti ar in the lane

-800 -600 -400 -200 0 200 400 600 800

 ()

-400

-200

0

200

400

600

800

 (

)

 he wor s a e o the 3 roboti ar in the lane

-800 -600 -400 -200 0 200 400 600 800

 ()

-400

-200

0

200

400

600

800

 (

)

 he wor s a e o the 3 roboti ar in the lane

 838

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

In Equation (10), 𝑤2 was the weight of step size reduction, and w2 was selected according to the

number of obstacles, in general, 𝑤2 was taken as 0.7 for simple environment, and w2 was taken as 0.3 for

complex environment, and the initial step size would be restored after the extended tree covered the complex

obstacle region, in summary the ability to realize the global adaptive step size strategy effectively increased

the global search capability of the improved RRT algorithm. Below is the pseudocode for the improved RRT

algorithm.

Algorithm:improved_rrt

Input: q_start, q_goal, M (map)

Output: Path from q_start to q_goal (if found)

Initialize random tree with root q_start

Set initial valid region near q_goal, invalid region elsewhere

while (random tree has not reached q_goal):

Update Sampling Region

 if random tree grows towards q_goal:

 Shrink valid region toward target

 else if reverse growth:

 Expand valid region and remove invalid branches

 Sample q_rand within valid region

 Find nearest node q_nearest

 Calculate step size:

 if environment is complex:

 step = step * w2

 else:

 step = step * w1

Steer towards q_rand:

 q_new = Steer(q_nearest, q_rand, step)

 Check for collision:

 if ObstacleFree(q_nearest, q_new):

 Add q_new to random tree

 if q_new is near q_goal, return path

if no path found after max iterations, return failure

Two-dimensional scene simulation

In this study, the traditional RRT algorithm, RRT_star algorithm, RRT_informed algorithm, and the

improved RRT algorithm were used to plan paths on a two-dimensional map. Parameters such as the number

of obstacles, the positions of obstacles, and the random seed were modified in MATLAB to test each algorithm

60 times, in order to validate the performance of the improved RRT algorithm for path planning in two-

dimensional environments. The path-planning capabilities of the four algorithms were evaluated based on

three indicators: planning time, number of sampling points, and path length. If an algorithm took less time,

required fewer sampling points, and produced a shorter path, it was considered to have better path-planning

performance. In the experiments, the two-dimensional map had dimensions of 450 cm by 450 cm, with the

start point for path planning at (100 cm, 100 cm) and the endpoint at (300 cm, 300 cm). The fixed step size for

the traditional RRT, RRT_informed, and RRT_star algorithms was set to 30 mm.

As shown in Figure 5, the hexagonal star shape represents the starting point of the path planning, and

the pentagonal star shape represents the endpoint. The blue × symbols indicate randomly generated sample

points, while the yellow circles and black rectangles represent obstacles. If a sample point is randomly

generated inside an obstacle, it is not used during the path planning process. The black lines represent the

connections between the sample points during the exploration of the random tree, the red line indicates the

path before smoothing, and the blue line represents the path after smoothing.

 839

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

(a) RRT algorithm (b) RRT_informed algorithm (c) RRT_star algorithm (d) improved RRT algorithm

Fig. 5 - Comparison of four RRT algorithms in two-dimensional maps

Table 2

Comparison of indicators of four RRT algorithms for two-dimensional scenarios

Types of algorithms Time consumption/s Sampling points/each Path length/cm

RRT 13.05 93 547.48

RRT_star 2.62 54 454.48

RRT_informed 2.93 45 475.96

Improved RRT 0.77 29 421.28

The results comparing the planning effects and indicators of the improved RRT algorithm presented in

this paper with those of the other three RRT algorithms on two-dimensional maps were shown in Fig 5 and

Table 2. Figure 5 shows that the traditional RRT algorithm generates numerous invalid nodes during path

planning, resulting in directionless planned paths. The RRT_informed and RRT_star algorithms generate fewer

nodes; however, the planned paths are more tortuous. Nevertheless, our proposed improved RRT algorithm

not only significantly reduces the number of invalid sampling points but also efficiently plans smooth paths.

Table 2 indicates that our improved RRT algorithm, compared to the traditional RRT algorithm, RRT_informed

algorithm, and RRT_star algorithm, resulted in a 94.1%, 70.61%, and 73.72% decrease in planning elapsed

time, a 68.82%, 46.3%, and 35.56% reduction in the number of sampling points, and a 23.78%, 7.31%, and

11.49% decrease in path length, respectively. In summary, compared to the other three RRT algorithms, the

performance of our improved RRT algorithm has improved.

Three-dimensional scene simulation

The path planning in the three-dimensional scene of this study is similar to that in the two-dimensional

scene. The length, width, and height of the three-dimensional map are 450 cm, with the starting point at (100

cm, 100 cm, 100 cm) and the endpoint at (300 cm, 300 cm, 300 cm). In the three-dimensional simulation scene,

obstacles have been modified to colorful spheres and rectangular cuboids, while the other settings remain

similar to those in the two-dimensional simulation scene. Similarly, several parameters were modified and the

improved RRT algorithm was tested along with the three baseline algorithms in MATLAB, conducting 60 trials.

The number of sampling points and the time recorded are the average values from the 60 trials, as shown in

the Table 3.

(a) RRT algorithm (b) RRT_informed algorithm (c) RRT_star algorithm (d) improved RRT algorithm

Fig. 6 - Comparison of four RRT algorithms in three-dimensional maps

 840

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

Table 3

Comparison of indicators of four RRT algorithms for two-dimensional scenarios

Types of algorithms Time consumption/s Sampling points/each Path length/cm

RRT 5.88 50 844.80

RRT_star 3.57 28 586.07

RRT_informed 0.74 12 555.36

Improved RRT 0.24 2 365.88

The results of the comparison of the planning effects and indicators between the improved RRT

algorithm in this paper and the remaining three RRT algorithms on three-dimensional maps were shown in

Figure 6 and in Table 3. Figure 6 and Table 3 indicate that the improved RRT algorithm presented in this paper,

compared to the traditional RRT algorithm, RRT_informed algorithm, and RRT_star algorithm, results in a

95.92%, 93.28%, and 67.57% decrease in planning elapsed time, a 96%, 92.9%, and 83.33% reduction in the

number of sampling points, and a 58.65%, 34.5%, and 34.12% decrease in path lengths, respectively. In

summary, our improved RRT algorithm demonstrated strong planning capability on three-dimensional maps.

RESULTS

Planning system design

 he si ulation in MA LAB was ondu ted to validate the er or an e o the i roved algorith . In

real-world ex eri ents, the MoveIt2 so tware in S2 and the MPL library were ri arily utilized to i le ent

the algorith or lanning and ontrol. he real-world ex eri ents were ainly divided into three arts:

roboti ar ath lanning, target dete tion and lo alization, and the oordination between the hassis and the

roboti ar . Figure 7(a) showed the hardware design and o uni ation ar hite ture o the gra e- i ing robot.

 Path lanning using the and its variant algorith s involved ive ain ro esses: initializing the tree,

rando sa ling, tree extension, ath he ing, and ath o ti ization. In the real-world ex eri ents, the host

 o uter o the robot was onne ted to the 3 roboti ar via an Ethernet able, and the ar ould be ontrolled

using the MoveIt2 so tware. Various algorith s were en a sulated in the MPL library, whi h rovided

inter a es or ath lanning. he lanned ath required o ti ization, and MoveIt2 o ered libraries to a hieve

traje tory s oothing and inter olation. Cubi s line inter olation was also used or traje tory o ti ization, and

 o arative results showed that it rodu ed si ilarly s ooth aths as those generated by the built-in MoveIt2

libraries. he ‘ros2_ ontrol’ ra ewor had arsed lanned traje tory into s e i i joint o ands, whi h were

then exe uted via hardware inter a es. Meanwhile, the exe ution status o the roboti ar was ed ba to MoveIt2

through relevant S2 to i s to enable real-ti e status onitoring and subsequent lanning adjust ents. Sin e

 ulti le oints were generated during traje tory inter olation, the inverse ine ati s o the roboti ar was

required to al ulate the joint angles or these oints (Equation (6)), allowing s ooth ove ent along the

generated traje tory. In ost ases, ath lanning or the roboti ar was ondu ted in the joint s a e, but MoveIt2

also rovides inter a es or lanning based on the CP (ool Center Point) i required. he lanning ro ess was

shown in Figure 7(b).

 As shown in Fig 7(), the target dete tion and lo alization ro ess e loyed the L v9 algorith to

identi y gra es and their i ing oints. n e a i ing oint was dete ted by the ealSense D435i a era, the

 a era API was alled to obtain the enter osition o the bounding box o the gra e, along with its oordinates

(x, y, z) in the a era oordinate syste . hrough hand-eye alibration and oordinate trans or ation o the

roboti ar , the oordinates ould be onverted ro the a era oordinate syste to the end-e e tor oordinate

syste o the roboti ar . he trans or ed oordinates were then sent to MoveIt2 or ath lanning. he relevant

 oordinate syste s o the roboti ar and the a era were shown in Figure 3.

 he oordination between the hassis and the robot's host o uter was a hieved through a CAN bus.

A ter the roboti ar o leted the i ing tas or all re ognizable gra e lusters at the urrent lo ation, the

robot's host o uter sent a signal to the hassis host o uter to ove the hassis orward by 15 . n e the

 hassis rea hed the new osition, the roboti ar resu ed the i ing tas , ensuring an e i ient oordinated

wor low, the ro ess was detailed in Figure 7(b).

 841

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

Fig. 7 - Hardware system of the grape picking robot and the process design of each module

(a)Picking Robot hardware design; (b) Chassis planning process;

(c) Object detection and localization process; (d) Robotic arm planning and control process

Indoor experiment

 The indoor picking experiment was conducted in a laboratory setting in September 2024, as

shown in Figure 8. At the start of the experiment, 15 artificial grape bunches, each with an average weight

of 200 g, were placed at varying heights on the vine. During the experiment, the RGB-D camera was first

used to identify the grape bunches and locate the picking points. Then, the OMPL library in MoveIt2

invoked the specified algorithms for path planning. After planning, the robotic arm moved at a speed of 1

m/s to the vicinity of the nearest grape bunch for harvesting. Upon completion of the picking task, the

upper computer planned a new path to place the grapes into the storage basket. As shown in Fig 8, the

process of the picking experiment is illustrated. The three-fingered gripper used here was insufficient in

gripping force, so in subsequent real-world experiments, it was replaced with a specialized gripper (Figure

3). For the indoor experiments, path planning was conducted within the joint space, and the use of the

end-effector did not affect the validation of the planning algorithm.

(a) recognizing grapes (b) grabbing grapes (c) picking grapes (d) collecting grapes

Fig. 8 - Picking process in the laboratory

 842

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

The RRT algorithm, RRT_informed algorithm, RRT_star algorithm, and our improved algorithm were

utilized for path planning. Each algorithm was tested 16 times, with 8 tests for picking and collecting a single

grape bunch, and the remaining 8 for picking and collecting multiple bunches (averaging 4–5 bunches per

experiment). The average time for each planning algorithm was recorded in every test. As shown in Table 4,

our algorithm demonstrated improved planning efficiency compared to the other three baseline algorithms.

Table 4
Average Planning Time of Four Algorithms in Indoor Experiments

Type of

Algorithms

Single-bunch grape picking experiment
Multi-bunch grape picking

experiment

Average Planning Time from

Initial Position to Picking

Point /s

Planning Time from

Picking Point to Storage

Basket /s

Total Average Planning Time

for the Entire Process /s

RRT 0.42 0.58 5.44

RRT_informed 0.34 0.41 4.03

RRT_star 0.39 0.44 4.12

Ours 0.29 0.40 3.87

Outdoor experiment

 In October 2024, a real-environment picking test was conducted at a grape picking garden in Fangshan

District, Beijing, which covers an area of approximately 10 acres and uses a double-row trellis system, as

shown in Fig 9. Four algorithms were used for the planning experiments, with each algorithm being tested 10

times for multi-bunch grape picking (averaging 6-7 bunches per test). The average planning time was

calculated for each algorithm. As shown in Table 5, our improved algorithm still outperformed the other

algorithms in terms of planning efficiency in the real-world scenario. However, due to the presence of obstacles

in the real environment, the average path planning time for the robotic arm was longer compared to the indoor

experiments.

Table 5

Average Planning Time of Four Algorithms in Outdoor Experiments

Types of Algorithm Average Planning Time / s

RRT 8.53

RRT_informed 6.98

RRT_star 7.11

Ours 6.61

(a) recognizing grapes (b) grabbing grapes (c) picking grapes (d) collecting grapes

Fig. 9 - Picking process in real orchard

CONCLUSIONS

 (1) Compared to the traditional RRT algorithm, the improved RRT algorithm presented in this paper

incorporates a dynamic sampling region update strategy and a global adaptive step size strategy. Simulation

experiments conducted using MATLAB software demonstrated that the improved RRT algorithm required less

planning time, utilized fewer sampling nodes, and generated shorter planning paths, thereby highlighting its

superiority.

 (2) Grape picking experiments were conducted in both laboratory and real orchard environments. In

the laboratory setting, the average planning time for consecutive pickings was approximately 3.87 seconds,

while in the real orchard, the planning time was 6.61 seconds. This increase in planning time in the real orchard

environment is due to branches, leaves, and other obstacles that complicate the robotic arm's path planning.

Overall, the path planning time using the improved RRT algorithm was shorter compared to the other three

baseline algorithms.

 843

Vol. 74, No. 3 / 2024 INMATEH - Agricultural Engineering

ACKNOWLEDGEMENT

This paper was funded by the Special Funds Program for Basic Research Operating Expenses of

Universities under Beijing Municipality (Grant No.X20060), Research Fund Project of Beijing Building Safety

Monitoring Engineering Technology Research Center (Grant No.BJC2020K012) and Research on Intelligent

Motion Control Design of Quadruped Robot (Grant No.PG2024139).

REFERENCES

[1] Alam, M. M., Nishi, T., Liu, Z., et al. (2023). A Novel Sampling-Based Optimal Motion Planning Algorithm

for Energy-Efficient Robotic Pick and Place. Energies, 16(19), 6910.

[2] Cao, M., Zhou, X., & Ju, Y. (2023). Robot motion planning based on improved RRT algorithm and RBF

neural network sliding. IEEE Access, 11, 121295-121305.

[3] Dorigo, M. (1996). The Any System Optimization by a colony of cooperating agents. IEEE Trans. System,

Man & Cybernetics-Part B, 26(1), 1-13.

[4] Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed RRT*: Optimal sampling-based path

planning focused via direct sampling of an admissible ellipsoidal heuristic. 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2997-3004.

[5] Gao, Q., Yuan, Q., Sun, Y., & Xu, L. (2023). Path planning algorithm of robot arm based on improved

RRT* and BP neural network algorithm. Journal of King Saud University-Computer and Information

Sciences, 35(8), 101650.

[6] Gülte in, Ayhan, Sa et Diri, aşar Be eri li. (2023). Simplified and Smoothed Rapidly-Exploring

Random Tree Algorithm for Robot Path Planning Tehnički vjesnik. 30.3 (2023): 891-898.

[7] Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of

minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107.

[8] Islam, F., Nasir, J., Malik, U., Ayaz, Y, Hasan, O. (2012). RRT∗-smart: Rapid convergence

implementation of RRT∗ towards optimal solution. 2012 IEEE International Conference on Mechatronics

and Automation, 1651-1656.

[9] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The

International Journal of Robotics Research, 30(7), 846-894.

[10] Khattab, O., Yasser, A., Jaradat, M., Romdhane, L. (2023). Intelligent Adaptive RRT* Path Planning

Algorithm for Mobile Robots. Advances in Science and Engineering Technology International

Conferences (ASET). IEEE. DOI: 10.1109/ASET56582.2023.10180740

[11] Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International

Journal of Robotics Research, 5(1), 90-98.

[12] Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning.

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and

Automation. Symposia Proceedings, 2, 995-1001.

[13] LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. Research Report 9811.

[14] Mashayekhi, R., Idris, M.Y.I., Anisi, M.H., Ahmedy, I., Ihsan, A. (2020). Informed RRT*-connect: An

asymptotically optimal single-query path planning method. IEEE Access, 8, 19842-19852.

[15] Mohammed, H., Romdhane, L., & Jaradat, M. A. (2021). RRT* N: An efficient approach to path planning

in 3D for Static and Dynamic Environments. Advanced Robotics, 35(3-4), 168-180.

[16] Muhsen, Dena Kadhim, Firas Abdulrazzaq Raheem, and Ahmed T. Sadiq. (2024). Improved rapidly

exploring random tree using salp swarm algorithm. Journal of Intelligent Systems. 33.1: 20230219.

[17] Shi, W., Wang, K., Zhao, C., & Tian, M. (2022). Obstacle avoidance path planning for the dual-arm robot

based on an improved RRT algorithm. Applied Sciences, 12(8), 4087.

[18] Yu, F., Zhou, C., & Yang, X. (2022). Design and Testing of Tomato Picking Robot for Daylight

Greenhouse (日光温室番茄采摘机器人设计与试验). Transactions of the Chinese Society of Agricultural

Machinery, 53(1), 41-49.

[19] Zhang, W., Zhang, B., & Gong, Y. (2022). Fruit and vegetable picking robotic arm research status and

prospects (果蔬采摘机器人机械臂研究现状与展望). Journal of Chinese Agricultural Mechanization,

43(9), 232-237, 244.

[20] Zhang, Y., Wen, Y., & Tu, H. (2023). A method for ship route planning fusing the ant colony algorithm

and the A* search algorithm. IEEE Access, 11, 15109-15118.

 844

