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ABSTRACT  

To address the issue of mutual influence and coupling between the main shaft speed and feeding amount of 

the mobile straw compaction molding machine, which is beneficial for the intelligent operation of the 

compaction molding, this paper designs a PSO-ELM-GPC control model. This model integrates Particle Swarm 

Optimization (PSO) algorithm, Extreme Learning Machine (ELM), and Generalized Predictive Control (GPC). 

It uses the ELM optimized by PSO to predict the output of the main shaft speed and feeding amount, and 

adjusts the input of the GPC controller based on the deviation weight adjustment unit. Field simulation 

experiments show that the maximum dynamic deviation of the speed is 1.72%, and the deviation from the 

target value is 1.52%. The maximum dynamic deviation of the feeding amount is 1.22%, and the deviation 

from the target value is 1.42%. The PSO-ELM-GPC model designed in this paper can promptly correct the 

uncertainties in speed and feeding amount control caused by disturbances.  

 

摘要  

为解决移动式秸秆致密成型机主轴转速与喂入量相互影响相互耦合的问题，以利于致密成型机智能化作业，本

文设计了 PSO-ELM-GPC 控制模型，集粒子群优化、极限状态机、广义预测控制于一体，采用粒子群优化后的极

限状态机对主轴转速与喂入量做出预测输出，依据偏差权重调整单元对 GPC 控制器输入量做出调节。场地模拟

试验表明，转速最大动态偏差为 1.72%，与目标值的偏差为 1.52%；喂入量最大动态偏差为 1.22%，与目标值的

偏差为 1.42%。本文设计的 PSO-ELM-GPC 模型可及时校正干扰引起的转速与喂入量控制引起的不确定问题。

 

 

INTRODUCTION 

 China has abundant straw resources, with a total straw volume reaching 8.56×108 tons in 2023. 

Biomass pellets made from corn straw extrusion are a low-carbon and clean energy source, which is of great 

significance for building an environmentally friendly society and promoting rural revitalization (Gheorghe et al., 

2024). Mobile compaction molding machines integrate straw collection, crushing, dust removal, and pellet 

production in the field, which can greatly reduce production and labor costs, and have become an important 

way to promote the comprehensive utilization of straw. However, there is a coupling issue between the straw 

feeding amount and the main shaft speed during the operation of mobile straw compaction molding machines. 

The mismatch and lack of coordination between the feeding amount and main shaft speed affect the efficiency 

of the compaction molding machine in field operations. 

 To improve the work efficiency of mobile compaction molding machines, scholars at home and abroad 

have conducted extensive research. By analyzing the straw compacting process, the main factors affecting 

work efficiency are identified as straw feeding amount, main shaft speed, and straw moisture content. Rostami 

et al., (2022), studied the mutual influence of combine forward speed, reel index, field capacity, and pre harvest 

loss of a new designed combine harvester. Abbas, (2019), investigated the combine harvester speed, 

threshing cylinder speed and concave clearance on threshing losses and some related parameters during 

harvesting and suggested a strong correlation relationship between these parameters.  
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Choi et al., (2018), fabricated and evaluated the performance of the grain flow sensor suitable to the 

mid-sized full-feed type combine for rice, soybean, and barley, indirectly indicated the relationship between 

grain flow rate and production efficiency. Chansrakoo et al., (2018), investigated the influence of grain moisture 

content, rotor speed, and feed rate to the performance of a short axial-flow soybean unit. Birania et al. (2021) 

studied the relationship between feed rate and output of the small-scale pellet-making machine and specified 

that a satisfactory output could be obtained at a certain feed rate.  Wang Wei et al., (2024) established a work 

speed control model for the compaction molding machine based on a stable feeding amount on mobile 

compaction molding machines. Although the above research has made some progress, the coupling problem 

between feed rate and pressure roller spindle speed has not been considered. The coupling issue between 

the feeding amount and speed requires further in-depth research to further improve the work efficiency of the 

compaction molding machine. 

 Reasonable feeding amount and main shaft speed determine the work efficiency of the compaction 

molding machine. If the feeding amount is too large and the main shaft speed of the roller is low, the granulating 

device of the compaction molding machine is prone to clogging. If the feeding amount is too small and the 

main shaft speed is too high, the energy consumption is high, which affects the work efficiency of the 

compaction molding machine. To solve the coupling characteristics between feed rate and spindle speed and 

improve the efficiency of the molding machine, this paper takes the 560XC straw collection compaction molding 

machine designed by Liaoning Ningyue Agricultural Machinery Equipment Co., Ltd. as the research object. In 

view of the coupling problem between feeding amount and main shaft speed, a new decoupling control method 

is established based on POS and ELM, using GPC technology. The effectiveness and correctness of this 

algorithm are verified through field harvest tests and field trials.  

 

 
MATERIALS AND METHODS 

Structure and working principle of the control system 

Overall structure 

 The control system of the mobile straw compaction molding machine consists of a hydraulic control 

device, a speed sensor, and a pellet molding device, as shown in Fig. 1. During operation, the mobile straw 

compaction molding machine is crushed by the front picking device, then thrown into the spiral conveyor, 

crushed for the second time, and conveyed through the feeding tube, and finally, the straw strands are 

squeezed and formed inside the forming device. The working process is shown in Fig. 2. The main shaft speed 

of the molding device is controlled by the hydraulic device, with the STM32F407 as the main microcontroller. 

The speed sensor gives a feedback to the main shaft speed. The driving speed determines the straw feeding 

amount.  

 

 

 

Fig. 1 - Diagram of the straw compaction molding machine 
1 – Hydraulic control device; 2 – Speed Sensor; 3 – Pellet forming device; 4 – Biomass pellet  
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Fig. 2 - Flow diagram for straw pelletizing process of the molding machine 

 

Composition and Working Principle of the Control System 

The control system of the mobile straw compaction molding machine consists of an industrial computer, 

microcontroller control, driving hydraulic transmission, granulation main shaft hydraulic transmission, 

granulation main shaft speed sensor, and driving speed sensor. The principle of the control system is shown 

in Fig. 3. The microcontroller’s D/A output terminal 1 controls the driving hydraulic transmission mechanism, 

with the driving speed feedback by the driving speed sensor. D/A output terminal 2 controls the granulation 

main shaft hydraulic transmission mechanism, with the main shaft speed feedback by the granulation main 

shaft speed sensor. The industrial computer displays all control and monitoring information. 

 

 
Fig. 3 - Structure of the molding machine control system 

 

PSO-ELM Forecasting Method  

ELM (Extreme Learning Machine) 

ELM is intelligent algorithm that used widely in agriculture (John, 2021). It is a feedforward neural 

network with a single hidden layer, as shown in Fig. 4. During training, the input layer weight matrix and the 

hidden layer matrix of the ELM are randomly selected. By simply providing the number of neurons in the hidden 

layer, the global optimal target value can be obtained. It has the advantages of fast training speed and strong 

generalization ability. 

 
Fig. 4 - Structure of the molding machine control system 

 

The input matrix of n neurons in the input layer is denoted as X = [xi1, xi2, ..., xin]T. The output matrix is 

denoted as Y = [yi1, yi2, ..., yim]T. The M model of the hidden layer activation function g(x) is denoted as: 
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where: 

 βjk is the connection weight between the hidden layer and the output layer neurons; ωij  is the 

connection weight between the input layer and the hidden layer neurons; bi is the threshold of the i-th 

neuron in the hidden layer; yi is the actual output value. 

 The hidden layer output matrix H  can be expressed as: 

1 1 1 1

1 1

( ) ( )

( ) ( )

H

 +  + 
 

=  
  +  + 

L L

N L N L

g w x b g w x b

g w x b g w x b

     (2) 

where: 

wi = [ωi1, ωi2,…,ωiN ]T, represent the weight vector. 

The network output is denoted as: 

' =H Y        (3) 

The weight matrix denoted as w = [ω1, ω2,…,ωN ]T, threshold vector b = [b1, b2,…,bL]T
. When L = N, 

the prediction result is independent of the size of w and b. The network output can approximate the training 

samples. That is: 

1

0
N

j j

j

y t
=

− =       (4) 

min  − H T      (5) 

where:  

 T is the desired network output; ε is the network output error, when N is sufficiently large, ε < 0. 

 The connection weight value calculated by the minimum norm least squares criterion is: 

  +β = H T        (6) 

where:  

 H+ is the pseudo-inverse of H. 

 

Optimization for ELM by PSO 

 Due to the strong nonlinear characteristics between the main shaft speed and feeding amount of 

the compaction molding machine, the ELM is used for its simple structure, fast training speed, and strong 

nonlinear characterization ability to predict the main shaft speed and feeding amount. However, the 

random initialization of w and b in ELM can lead to the generation of useless neurons during operation, 

which affects the prediction accuracy. To reduce the error, this paper adopts the PSO (Particle Swarm 

Optimization) algorithm (Naveed, 2024; Chen, 2023) to optimize w and b, establishing a PSO-ELM (Swarm 

Optimization Algorithm-Extreme Learning Machine) forecasting model. 

 A population consisting of n particles is represented as X = [x1, x2, … xn], which searches for the 

optimal value within this space. The parameters of particle i consists: velocity Vi = [vi1, vi2, …, viD]T, 

position Xi=[xi1, xi2,…xiD]T, individual extreme value Pi = [Pi1, Pi2, …, PiD]T; global extreme value Pg = [Pg1, 

Pg2, …, PgD]T.  

 During the iteration process, the particles continuously search for the optimal velocity and position 

based on Pi and Pg, updating as: 

1

1 1 2 2( ) ( )k k k k k k

id id id id gd idV V c r P X c r P X+ = + − + −     (7) 

1 1k k k

id id idX X V+ += +        (8) 

where:  

 w is the inertia weight; i = 1, 2, …, n; d = 1, 2, …, D; k is the current iteration number; c1, c2 are 

acceleration factors to be negative constants; r1, r2 are random numbers distributed between [0, 1]. The 

velocity and position are continuously updated according to the particle fitness value to obtain the optimal 

solution. 

 Using the PSO-ELM method to predict the main shaft speed and feeding amount of the compaction 

molding machine, the model's w and b are optimized as particles in PSO to improve their accuracy, as 

shown in the Fig. 5. 
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Fig. 5 - Flowchart of PSO-ELM model 

 

RESULTS 

Generalized Predictive Decoupling Control Based on PSO-ELM Model 

Generalized Predictive Controller Design 

The CARIMA (Controlled Autoregressive Integrated Moving Average) model (Ma, 2022) expression is 
denoted as: 
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During field operations of the compaction molding machine, the environment is complex, which can 

lead to model mismatch and affect control accuracy. By introducing a performance function that minimizes 

multi-step prediction and control increments, a control sequence for future moments can be obtained, 

enhancing the system's stability. The performance index function is expressed as:  

            (10) 

where: E[·] is the variance function; L is the control horizon; λ is the control increment weighting coefficient; 

yM(k + j) is the predicted value at time k + j; P is the control time domain; Δu(k + j) is the control change 

between adjacent sampling times. 
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 After introducing and solving the Diophantine equation (Fernandez B., 2018), the predicted model's 

output value at time k + j is obtained as: 

   ( )Y G U H u Fy=  +  + k                                                      (11) 

where: 
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To ensure a smooth transition of the compaction molding machine’s main shaft speed to the set value 
w, the reference trajectory is in the form of a first-order smoothing model, which is expressed as: 

                                     (12)

 

where:  

a is the softening coefficient, a ∈ [0, 1]; yr(t) is the desired output value of the speed; y(t) is the actual 

output value of the speed; w is the set value of the speed. 

 
Substituting Equation (11) into Equation (10), and taking the derivative of the performance index 

function J with respect to t, the optimal solution expression for J1(k) can be obtained as:  

( ) ( ) ( ) ( )( )
1

1 T Tu t u t y k
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= − + + −  −G G I G W H u F             (13) 

where: I and W are the identity matrix with different size. 

 

Generalized Predictive Control of the Molding Machine Based on the PSO-ELM Model 

 The process control structure diagram of predictive decoupling control method based on the PSO-

ELM model for the main shaft speed and feeding amount of the molding machine is shown in Fig. 6.  
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Monitoring the output values of the main shaft speed and the feeding amount entering the compaction 

molding machine, denoted as y = {y1, y2}, calculate the deviation e = {e1, e2} of the output values from the 

reference values ω = {ω1, ω2}, and use this deviation as the input of the decoupling controller. The decoupling 

controller adaptively adjusts its strategy based on the deviation to improve decoupling performance. After 

optimization by the controller, the control amount u = {u1, u2} adjusts the main shaft speed and feeding amount, 

thereby improving the production efficiency of the biomass pellets produced by the compaction molding 

machine. 

 
Fig. 6 - Process control structure of the molding machine based on the PSO-ELM model 

 
In the decoupling controller, the deviation weight is decoupled based on the deviation between the 

predicted output value and the reference trajectory. When a certain deviation occurs between the predicted 

output value y of the main shaft speed loop and the reference value ω, the deviation weight αi(k+t) of the 

feeding amount loop is adjusted to increase the output error weight of the feed rate loop, thereby increasing 

the control increment at the next moment and reducing the impact of the output change of the main shaft speed 

loop on the feeding amount loop, achieving the purpose of suppressing loop coupling. Similarly, the coupling 

effect of feed rate on speed can be eliminated according to this principle. The calculation formula for αi(k+t) is 

expressed as:  
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22
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where: αi(0) is the initial value of αi(k+t); θip is the amplification coefficient.  

 Transfer function models for speed control and feed rate control are established through experiments. 

They are expressed as equation (15) and equation (16) respectively. 
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Experiments and analysis 

 To verify the effectiveness of the generalized predictive decoupling control system proposed in this 

paper, a simulation harvest test was conducted on March 20, 2024, at Liaoning Ningyue Agricultural Machinery 

Equipment Co., Ltd. in Heishan County, Liaoning Province.  

A 560XC straw compaction molding machine was selected for the experiments. A rectangular straw 

bed measuring 60 meters in length and 2 meters in width was laid out in the experiment site, as shown in Fig.7.  
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The main test equipment included an industrial computer (ZPC150-T112 model), a feed rate sensor 

(NY-DF01), and a speed sensor (SC12-20K). The industrial computer processor was Intel(R) Core(TM) i5-

3337U CPU@1.8Hz, with a 64-bit Windows 10 operating system and 16GB of memory.  

 

 

Fig. 7 - Granulation experiment 

 

 

The performance comparison of the field granulation experiment controllers is shown in Table 1. In the 

PSO-ELM-GPC controller, the adjustment time of the speed of the main shaft is shortened by 8.1% and 32.7% 

compared to the GPC and PID controllers (Savaniu et al., 2023; Hajiahmadi et al., 2024), with the smallest 

speed overshoot of 8.42%. The adjustment time of the feed rate is shortened by 19.9% and 34.7% compared 

to the GPC and PID controllers, with the smallest feed rate overshoot of 8.97%. 

The speed error curve and the feed rate error change curve are shown in Fig. 8 and Fig. 9, respectively. 

Under the control of the PSO-ELM-GPC model, the maximum dynamic deviation of the speed is 1.72%, with 

a deviation of 1.52% from the target value; the maximum dynamic deviation of the feed rate is 1.22%, with a 

deviation of 1.42% from the target value. 

 
Table 1  

Controller performance parameters 

Control algorithm  

main shaft speed feeding amount 

Regulation Overshoot Regulation Overshoot 

[s] [%] [s] [%] 

PID 11.62 10.35 14.34 12.46 

GPC 8.51 9.32 11.69 10.82 

PSO-ELM-GPC 7.82 8.42 9.36 8.97 
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Fig. 8 - Error curve of main shaft speed 

 

 
Fig. 9 - Error curve of feeding amount 

 
 

CONCLUSIONS 

 (1) A PSO-ELM-GPC decoupling controller model was designed to eliminate the mutual influence 

between the main shaft speed and feeding amount of the mobile densification molding machine. 

 (2) In the PSO-ELM-GPC decoupling controller model, PSO was used to optimize the parameters in 

ELM, which predicts the main shaft speed and feeding amount. The input deviation weight adjustment unit 

adjusts the input of the GPC controller. 

 (3) Field simulation experiments showed that the maximum dynamic deviation of the speed was 

1.72%, with a deviation of 1.52% from the target value; the maximum dynamic deviation of the feed rate was 

1.22%, with a deviation of 1.42% from the target value. The PSO-ELM-GPC model designed in this paper can 

meet the on-site operation requirements of the mobile straw compaction molding machine. 
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