
Vol. 74, No. 3 / 2024  INMATEH - Agricultural Engineering 

 

 571  

OBSTACLE AVOIDANCE PATH OF WHEELED AGRICULTURAL HANDLING ROBOTS 
IN WAREHOUSE BASED ON IMPROVED ACO-DWA ALGORITHM 

/ 

基于改进 ACO-DWA算法的轮式农业机器人仓库搬运避障路径研究 
 

Kan ZHANG*) 

School of Computer Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi / China 

Tel: +8613834246680; E-mail: zk321672024@126.com 

Corresponding author: Kan Zhang 

DOI: https://doi.org/10.35633/inmateh-74-51 

 

 

Keywords: Artificial potential field; Ant colony algorithm; Agricultural robot; Path optimization; Obstacle 
avoidance 

 
 

ABSTRACT 

The existing obstacle avoidance control algorithms for wheeled agricultural warehouse handling robots are 

prone to the local optimal solution in the process of path optimization and collision can easily occur during 

multi-robot simultaneous operation. Given this, the obstacle avoidance of wheeled agricultural warehouse 

handling robots was explored in this study, and an obstacle avoidance path planning algorithm for wheeled 

agricultural handling robots in warehouse based on improved ACO-DWA algorithm was proposed. Then, the 

moving trajectory of agricultural warehouse handling robots during handling process was studied, and their 

spatial kinematics equation was given. Next, the real-time pose of agricultural warehouse handling robots was 

detected, and their motion path was planned considering the real-time position of obstacles and the target 

locations of handling. In addition, the obstacle avoidance controlling quantity of agricultural warehouse 

handling robots was calculated according to the deviation between the pose of robots and the planned path. 

Supported by a controller, the obstacle avoidance control work of agricultural warehouse handling robots was 

realized. It was concluded through the effect experiment that compared with the traditional method, the 

improved ACO-DWA algorithm designed in this study significantly reduced the number of collisions between 

agricultural robots, and through practical application, the proposed algorithm can meet the needs of improving 

warehouse logistics management efficiency. 

 

摘要 

针对现有轮式农业机器人仓储搬运避障控制算法存在的路径寻优易陷入局部最优解，及多机器人同时作业易发

生碰撞等问题，对轮式农业机器人的仓库避障控制进行了研究，并提出提出了一种基于改进 ACO-DWA算法的

轮式农业机器人仓库搬运避障路径规划算法；对农业机器人仓储机器人搬运过程中的移动轨迹进行了研究，给

出了机器人空间运动学方程。检测农业农业机器人仓储搬运实时位姿，考虑障碍物实时位置和搬运目标地点，

规划机器人移动路径。根据农业机器人位姿与规划路径之间的偏差，计算农业机器人仓储搬运避障控制量，在

控制器的支持下，实现农业机器人仓储搬运避障控制工作。通过效果测试实验得出结论：与传统方法相比，本

文所设计的改进 ACO-DWA算法，农业机器人之间发生碰撞的次数也显著少于传统避障控制算法，经实际应用

能够满足提升仓储物流管理效率的需求。 

 

 

INTRODUCTION 

 Agricultural warehouse handling robots capable of automatic navigation, intelligent identification and 

efficient cargo handling have been increasingly widely applied to the fields of agricultural products warehousing 

and agricultural logistics, helping enterprises to realize automatic, intelligent and efficient agricultural 

warehouse management (Hao et al., 2022). In dynamic and complicated warehouse environments, the 

autonomous navigation and obstacle avoidance of agricultural warehouse handling robots are the key to 

ensuring efficient and safe operations. When it comes to the obstacle avoidance of agricultural warehouse 

handling robots, they perceive the surrounding environment and identify obstacles in a real-time manner 

through sensors and plan a collision-free path according to a certain algorithm, so as to successfully evade 

obstacles and reach the destination (Guo et al., 2022).  
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 Obstacle avoidance control methods for agricultural warehouse handling robots have been proposed 

in order to ensure the obstacle avoidance effect and enhance the safety of robots during movement to the 

greatest extent on the premise of ensuring the handling work quality. Agricultural handling robots, which 

integrate various key technologies, such as deep visual sensor positioning, obstacle detection & path planning, 

energy consumption and thermal management and system integration & optimization, have experienced rapid 

development and application in the military and civilian field (Dang, 2021). Especially with the modernization, 

informatization and intelligent development of agricultural production, plant protection robots that can operate 

autonomously in fields and on edges of fields possess broad development prospects, which, on the one hand, 

reduce the labor intensity of agricultural production, and on the other hand, improve working performance and 

quality (Zheng et al., 2021). 

 Agricultural handling robots have gradually replaced manual labor to conduct such logistics operations 

as handling and sorting in real production, promoting the intelligent upgrading of agricultural warehouses and 

driving them to develop towards intelligent and unmanned directions. The research on the obstacle avoidance 

path of agricultural warehouse handling robots has been successively carried out, but the order of task 

allocation, the path planning of robots, and multi-robot collaborative handling remain to be deeply explored to 

ensure the practical application and popularization of handling robots (Li et al., 2021). Meanwhile, the current 

research difficulty lies in how to coordinate handling robots with other automation equipment in the warehouse 

and how to conduct path planning for handling robots under the interference of other movable automation 

equipment to ensure the most efficient operation of the warehouse. 

 Path planning, a key issue in the technical field of agricultural warehouse handling robots, determines 

how robots travel to the designated target, involving the perception and calculation of environmental 

information. At present, the algorithms used in path node search mainly include intelligent algorithms (ant 

colony optimization (ACO) algorithm (Rosemann et al., 2012), genetic algorithm (Sarkar et al., 2012), 

algorithms based on graph search (A*(Ornek et al., 2022), Hybrid A*(Zhai et al., 2022)). A* algorithm has been 

widely used, but when searching in complex unstructured scenes, it is characterized by a large calculated 

quantity, serious memory consumption and narrow channels, which will easily generate oscillation. Aiming at 

the slow operation speed of A* algorithm, Qian et al. (2019) designed a tracking controller with global 

convergence by following the idea of backstepping, which can avoid the local stability problem caused by the 

linearization method when handling nonlinearity problems. Ji et al. (2021) reduced the number of inflection 

points using the differential method, which, however, increased the calculated quantity. Ding et al. (2022) 

proposed the jump point search method, but this method failed to guarantee the global optimal path in complex 

irregular maps. Hossain et al. (2022) used the fourth-order Bezier curve to express the trajectory shape, whose 

plasticity, however, was restricted by the limitations of the Bezier curve, making it inapplicable to the complex 

road surface. During the actual operation process in orchard environments, the kinematical constraints of 

robots should be ensured in addition to obstacle avoidance constraints and distance cost. Therefore, the 

methods combining path planning and trajectory optimization have been proposed by some scholars, and the 

planned paths have been subjected to trajectory optimization. 

 Kobayashi and Motoi (2022) applied the differential flatness technique to the controller design, and 

expressed the state variables and input variables with the output and its derivatives of the system. By selecting 

reasonable output variables, the system can be effectively reduced in dimension, which is convenient for the 

design and solution of the controller. Wang et al. (2022) successfully designed a trajectory tracking controller 

for nonholonomic systems with the help of the input-output feedback local linearization method together with 

the dynamic expansion method, and achieved a good trajectory tracking effect by means of simulation. 

 The existing control algorithms of warehouse logistics robots correct travel paths and evade obstacles 

on the paths based on high-definition cameras, radar sensors, and distance sensors. For example, Zohaib et 

al. (2014) proposed an Automated Guided Vehicle (AGV), which can realize autonomous navigation and 

obstacle avoidance on the basis of manually setting the control program. However, AGV robots have some 

problems in global path optimization, and they are prone to local optimum so as to select noneconomical paths 

(Zohaib et al., 2014). Hichri et al. (2022) put forward a path optimization algorithm based on Q-learning on the 

basis of neural network model and machine learning algorithm. According to the instructions, the existing 

economical control algorithms for warehouse logistics robots have been selected, and the correction of travel 

paths and the obstacle avoidance along the paths have been realized mostly based on high-definition cameras, 

radar sensors and distance sensing. For example, Tan et al. (2022) used the backstepping method to construct 

two kinds of motion controllers from two situations: local minor error and global arbitrary error, which 
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successfully solved the trajectory tracking problem of mobile robots and extended them to nonholonomic 

systems with simple dynamic models.  

 Wang et al. (2022) proposed an Automated Guided Vehicle (AGV), which can realize autonomous 

navigation and obstacle avoidance on the basis of manually setting the control program. However, AGV robots 

have some problems in global path optimization, and they are prone to local optimum so as to select 

noneconomical paths (Wang et al., 2022). Zhou et al. (2022) proposed a path optimization algorithm based on 

Q-learning on the basis of neural network model and machine learning algorithm, which can select a more 

economical path according to instructions and avoid obstacles along the path. Zhang et al. (2021) divided 

different priority sequences for handling robots according to different handling tasks, and low-priority robots 

should proactively give way to high-priority robots under this sequence condition. 

 Based on the above analysis, an obstacle avoidance path planning algorithm for wheeled agricultural 

warehouse handling robots based on improved ACO-DWA algorithm was put forward in this study. Under 

dynamic environments, image acquisition and preprocessing were performed, dynamic obstacles in the video 

were positioned according to feature recognition, and the obstacle avoidance path of agricultural warehouse 

handling robots was planned based on obstacle positioning results. Then, the travel cost of agricultural robots 

was fused into the objective function of search nodes using the improved ACO-DWA algorithm, path planning 

was conducted online according to the environmental map, and the acquired path planning effect was evidently 

better than that obtained by the traditional DWA algorithm in path length, obstacle avoidance ability and 

calculation time. 

 

MATERIALS AND METHODS 

 The basic principle for optimally designing the obstacle avoidance control method of agricultural 

warehouse handling robots is described as follows: the dynamic obstacles in the agricultural warehouse were 

identified and positioned through image acquisition, image preprocessing, feature extraction and feature 

recognition. Then, the obstacle avoidance path of agricultural warehouse handling robots was planned 

according to obstacle positioning results. Next, the controlled quantity of obstacle avoidance was calculated 

considering the current handling position of agricultural robots, and the agricultural robot’s task of obstacle 

avoidance control was completed under the support of a controller. 

 

Determination of obstacle position in the environment via visual positioning technology 

 (1) Generation of dynamic environmental images during handling in warehouse 

 In the optimally designed obstacle avoidance control method for agricultural warehouse handling 

robots, the dynamic environment of agricultural warehouse handling robots was acquired through a single 

visual sensor, and the generation result of obstacle images at any moment is displayed as follows: 
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 Where 

c
k  is the imaging coefficient of the single visual sensor; f  represents the focal length;   

stands for the imaging angle of an obstacle, i.e., the included angle between the obstacle and the built-in 

sensor in the agricultural warehouse handling robot (Dang, 2021). To follow the rule of “everything looks small 

in the distance and big on the contrary” in the obstacle image, the distance between the imaging sensor and 

the obstacle should be measured as follows: 
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 In Formula (2), H and h represent the height of the imaging equipment and the height of the imaging 

plane, respectively; 1
k  is the constant coefficient whose value depends on the work parameters of the single 

visual sensor. Using the above method, the generation result of dynamic obstacle images can be obtained. 

Since the optimally designed obstacle avoidance control method operates under dynamic environments, the 

acquisition frequency of dynamic obstacle images should be set. Controlled by the drive program, obstacle 

images are continuously acquired, completing the task of image acquisition. 

 (2) Environmental image preprocessing 

 In order to provide effective reference for the obstacle avoidance work of agricultural warehouse 

handling robots, the initial obstacle image was taken as the processing object, and the preprocessing work of 

the initial obstacle image was completed through image filtering, image enhancement, image correction, 
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obstacle target extraction, etc. Image filtering aimed to filter out the noise information in the obstacle image. 

Median filtering and mean filtering were combined to ensure the denoising effect on the image. The principle 

of median filtering is to replace the value of each pixel in the image with the median value of the pixel in the 

neighborhood. Mean filtering can facilitate the image pixel to change more smoothly, belonging to a linear 

filtering method. The filtering results of the initially acquired obstacle image in the warehouse environment of 

agricultural handling robots are exhibited as follows: 

1

2

( , ) med{ ( , 1),( , )}

1
( , ) ( , )

g x y I x k y k l U

g x y I x y
m

= − − 



=


                                     (3)

 
 Where U is the 2D template of the image; m represents the number of pixel points contained in the 

initial image; g1(x,y) and g2(x,y) correspond to the median and mean filtering results, respectively. Under the 

irradiation of natural light, an object will generate a shade at the bottom or on the surface of another object. 

The shades of two objects may be overlapped if they are close to each other, leading to the failure to 

independently extract the image of the obstacle with shade crossing and making it necessary to eliminate the 

shaded area of the image and complete the image enhancement. The processing results are depicted as 

below: 

( ) ( )zg (x,y ) R i, j G i, j=                                                     (4) 

 Where ( )R i, j  and ( )G i, j  are the pixel value in the initial image and the grey level histogram, 

respectively. G(i,j) is calculated as per the following formula: 
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 Where ()

sum
f  is the sum function. Image calibration mainly aims at the deviation of light to improve the 

light distribution of the image so that the image can be more uniform and natural. This technology is applicable 

to such scenarios as images with rich details in the shaded part, backlighting scenarios and images with color 

deviations. The light calibration process of images can be quantitatively expressed as below: 
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 Where c
k  is the constant coefficient and gamma

k  denotes the Gamma coefficient. On this basis, the 

obstacle objects in the initially acquired image were extracted by means of background subtraction. 

Background subtraction is a preprocessing method that performs the differential operation on the image to be 

processed and the background reference image by taking the background of one frame in the image sequence 

as the reference and obtains the binarized image of the object through threshold division. This method can 

effectively extract objects from the background. The extraction results of obstacle objects are as follows: 
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where ( , )B x y  is the visual image generation background of agricultural warehouse handling robots;   

represents the background difference threshold. Repeating the above operation, the preprocessing results for 

the obstacle images of agricultural warehouse handling robots can be obtained. 

 (3) Identification of obstacles in dynamic environment 

 Whether any obstacle exists in the dynamic environment corresponding to the current visual field of 

the agricultural warehouse handling robot is judged by means of feature matching. In the process of obstacle 

identification, the corresponding matching standard, marked as B
 , should be set first according to the features 

of possible obstacles in the warehouse environment. Then, the matching result between the extracted 

environmental image feature and the feature standard is: 
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where ( )B
i  is the edge feature standard of the i-th type of obstacles. The relevant data are substituted into 

Formula 10. If the calculated feature matching degree is higher than the threshold 0
 , i-th type of obstacles 

exist in the current dynamic environment, or otherwise, such obstacles do not exist (Ornek et al., 2022). The 

specific value of variable i is adjusted according to the above method and the operation is repeated until 

completing the obstacle identification in the dynamic environment. 
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Obstacle avoidance path planning of agricultural warehouse handling robots 

 When the real-time position of dynamic obstacles in the dynamic warehouse handling environment, 

the motion path of robots is planned, ensuring that the planned path will not be overlapped with the obstacle 

at the same moment. The real-time pose detection result of the agricultural warehouse handling robot is taken 

as the initial position. Considering the target location of the warehouse handling task, the initial motion path is 

generated, expressed as follows: 
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                                                                  (9) 

 In Formula 9, ( , )
m m

x y stands for the coordinates of the final target position for the agricultural 

warehouse handling robot to execute the handling task, and the initially generated motion path is a straight 

path. According to the movement speed of the robot, its actual node position at any moment can be acquired 

and compared with the visual positioning information of the dynamic obstacle at the corresponding moment, 

and then the relationship between their distance and the threshold is judged. If the calculated distance is higher 

than the threshold, there is no collision risk between the robot and the obstacle, making it unnecessary to 

adjust the position of this path node, or otherwise, this path node should be adjusted through the following 

method: 
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where x  and y  are the adjustment quantities of the agricultural warehouse handling robot in horizontal and 

vertical directions, respectively. Each node on the initially generated motion path of the robot is adjusted 

according to the above method and connected with two continuous front and real nodes, the adjusted path is 

subjected to smoothing, and thus the path planning of the robot is completed. Since both the robot and obstacle 

are under dynamic changes, it is necessary to dynamically update the planned path according to the pose 

detection result of the robot and the visual positioning result of the obstacle. 

 

ALGORITHM DESIGN 

ACO algorithm 

 (1) State transfer rate. At time t, the state transfer state of the ant from the state node i to the adjacent 

state node j can be defined as below: 
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where ( )m

ijP t  is the state transfer probability of the m-th ant from the state node i to the state node j at time t; 

( )ij t  is the pheromone concentration the path (i,j), in which α is the information heuristic factor, reflecting the 

influence of pheromone on the path selection of ants; ( )ij t represents the heuristic function for the m-th ant 

to choose the adjacent state node j at the state node i, in which β is the expected heuristic factor, indicating 

the importance of heuristic information in guiding the search process of the ant colony; mU  denotes the set of 

next nodes not accessed by the ant; s is the set of selectable nodes adjacent to the current position; ( )
is

t  is 

the pheromone concentration of the m-th ant between the current state node i and each adjacent state node; 

( )
is

t  is the heuristic function of the m-th ant between the current node i and each adjacent state node. 

 

 The heuristic function ij
( )t

 
can be expressed as below: 

ij
( ) 1/

ij
t D =                                                                           (12) 

where ij
D  is the distance between the state nodes i and j. 

 (2) Pheromone concentration updating model 

 The currently common pheromone concentration updating models include ant-density system (ADS), 

ant-quantity system (AQS) and ant-cycle system (ACS). ADS and AQS models adopt the local updating 

strategy while ACS model applies the global updating strategy. Considering the algorithm solving speed and 
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obstacle avoidance ability, AQS model was taken as the prototype in this study. Assuming that the set of state 

nodes on the path (i, j) passed by the m-th ant in the current cycle is ( ) , 1,2,..., ; 1,2,...,|X i j i n j n= = , then: 

m
,if( , )

( )
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ijij

Q
i j X
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
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 = 



                                                                    (13) 

where m( )ij t  is the pheromone concentration increment on the path of the m-th ant moving from the state 

node i to the adjacent state node j at time t; Q is the pheromone intensity, which is a constant greater than 0. 

 

Improved DWA algorithm design 

 The classical DWA algorithm converts the position control of robots into speed control and describes 

the obstacle avoidance problem into the optimization problem of robot speed space with constraints, including 

speed, heading direction and surrounding environmental obstacles’ position constraints. The speed set that 

depends on the physical constraints of obstacles around the robot’s moving trajectory nodes and is composed 

of the robot’s longitudinal speed and yaw rate limitations must meet the following formula: 

, max maxmax
{( ) | 0 }

S a r a r r ra
U u u u   =   −                                                       (14)

 
 It can be considered that the robot’s traveling trajectory is composed of n broken line segments with n 

time frames, and it is believed that the connection point between broken line segments is close to the obstacle 

position to the greatest extent on the premise of meeting the expansion size limitation of the obstacle. To 

protect the robot from colliding with any obstacle during the movement, it can be obtained the speed set after 

time dt must meet the following formula according to the limitation of kinematic conditions: 
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a a r a a r a r a r r
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where ( , )
a r

dist u   is the straight-line distance between the robot and the obstacle at the next moment. 

 Assuming that the speed set of the robot at the present moment is 
maxacurr a

u + , then the speed set 

Ud at the next moment must satisfy the following condition: 
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 The final speed set U can be expressed as below: 

S a d
U U U U=                                                                 (17) 

 The speed set at the next moment is predicted through the objective function. The objective function 

defined in this study comprehensively considers the movement speed, driving direction and collision safety, 

as follows: 

max
( , ) ( , )

ad rd a r a
G u l m dist u n u  =  +  +                                                     (18) 

where   represents the included angle between the robot’s driving direction and the target line; ( , )
a r

dist u 

indicates the shortest distance between the robot position and the obstacle; l, m, and n are the angle, distance 

and vehicle speed weight coefficients, respectively.  

 A greater value of the objective function indicates the greater excellence of the speed set. During the 

path planning process, the robot needs to acquire position and speed information from multiple sensors, while 

these signals are usually not always continuous, and the evaluation result may have a specific error. To reduce 

the error, the above 3 weight coefficients are generally normalized into a number within [0, 1]. 

 Out of the above considerations, an improved ACO-DWA algorithm was proposed in this study based 

on the advantages of the ACO algorithm in global optimization and continuous convergence of search process. 

The weight coefficient of the objective function was made self-adaptive by the ACO algorithm. This algorithm 

significantly reduces the bypassing distance and path planning time of the robot and improves the through 

capacity and safety in scenarios with dense obstacles. Hereby the specific dynamic updating process of the 

above weight coefficients according to the ACO algorithm will be detailed. 

DAW algorithm improvement fusing ACO algorithm 

 It is assumed that at time t, there are obstacles of a certain density in the area of the robot’s driving 

direction. If the number of obstacles in this area is K, the shortest distance between the robot and the i-th 

obstacle is Di  and the azimuth angle is i
 . When M is greater than the threshold, this area is distributed with 

dense obstacles. The shortest distance Dij
 
between the i-th obstacle and the j-th obstacle is defined as follows: 
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2 2

ij cos( ),i j i j i j i jD D D D D    = + − −                                           (19)
 

 Considering the safety and maneuverability of the robot when passing through obstacles and in order 

to measure the through capacity of the robot between two obstacles, the number of its pass-through functions 

DS   is defined as below: 

max max
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where 

maxr
 is the maximum value in 

r
 ; 

max
  is the maximum value in  ; coefficient a reflects the influence 

of the robot’s deviation in direction on the through capacity and it is taken as 0.6 according to the modeling 

experience of grid maps. Coefficient b indicates the influence of the robot’s speed on the through capacity, 

and it is taken as 0.4 according to the modeling experience of grid maps, too. 

 

 Introducing the expansion radius σ of obstacles, the condition for the robot to pass through two 

obstacles safely is: 

ij

s

D
D


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where σ is set to 0.3 according to the modeling experience of grid maps. The updating model for dynamic 

pheromone is as follows: 
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where max min
D D = − , in which e  is the acceptable error in the n-th iteration, being a constant; Dmax refers 

to the maximum number of pass-through functions of the robot when moving between any two obstacles after 

traveling to the local obstacle avoidance area; Dmin is the minimum number of pass-through functions of the 

robot when moving between any two obstacles after traveling to the local obstacle avoidance area. 

 

Algorithm flow 

 Step 1: The starting point and target point of the robot’s movement are positioned after acquiring the 

environmental map information through a laser radar; the information of all state nodes in space are acquired 

and the adjacency matrix and heuristic information matrix are calculated; 

 Step 2: Parameter initialization. The number of iterations is initialized as N, the ant colony scale as M, 

the information heuristic factor as  , the expected heuristic factor as  , pheromone evaporation coefficient 

as  , and the pheromone concentration as  ; 

 Step 3: The density of obstacles, the actual distance between the robot and each obstacle and their 

orientations are calculated in a real-time manner; 

 Step 4: Path selection and updating. The adjacency matrix is inquired, the feasible node set for the 

robot to move from the current node i to the next node is acquired, and the probability for the m-th ant to select 

adjacent nodes is solved. Whether the ant enters an area with dense obstacles is judged with such information 

as the density of obstacles, the actual distance between the robot and each obstacle and their orientations 

according to the captured map information during node updating; if yes, turn to Steps 5-7; if not, all weight 

coefficients in Step 5 are made constant; 

 Step 5: The node set greater than the threshold ( , )
a r

dist u   is eliminated from the planned global path 

nodes, the ant number is updated, the distance between obstacles and the number of the robot’s pass-through 

functions DS are calculated via the vehicle-mounted processor, the values of Dmax and Dmin are acquired, the 

pheromone is calculated and updated, and the dynamically updated weight coefficients l, m and n are obtained; 

 Step 6: The alternative speed space ( , )
a r

U u   is solved, and the 3 weight coefficients are respectively 

normalized to obtain the optimal speed set of the robot at time t+1; 

 Step 7: This speed is executed, and whether the target point is reached is judged; if yes, end the 

iteration process; if not, return to Step 1. 
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RESULTS 

Experimental environment and parameter settings 

 A square area (side length: 30m×30m) was chosen as the experiment site for the agricultural 

warehouse handling robot, which was subjected to grid partitioning. The layout of shelves and the scene 

picture are displayed in Fig. 1. 

 
Fig. 1 - Warehouse site diagram based on grid method arrangement 

 

 In Fig. 2, the yellow cube indicates the immovable shelf, and the blue area is the passage. The length, 

width and height of the agricultural handling robot used in the experiment are 0.7, 0.5 and 0.4 m respectively, 

and the warehouse logistics handling robot itself has the telescopic lifting function, with the maximum bearing 

capacity of 100 kg.  

 At the same time, the robot is also equipped with a set of sensor suites, including a wireless 

communication module and a visual radar system, which are used to receive the background instruction 

information, deal with emergencies and avoid collisions. And the best travel path was chosen using the 

improved ACO-DWA algorithm from the global perspective. The speed and angular velocity of the agricultural 

handling robot are 2 m/s and 2.5 rad/s, respectively, the maximum number of iterations of the improved ACO-

DWA algorithm is 800, and the value range for the core parameter of the policy gradient algorithm is 0.7-2.2. 

The obstacle avoidance path for the wheeled agricultural warehouse handling robot acquired through the 

improved ACO-DWA algorithm is exhibited in Fig. 2. 

 

 
Fig. 2 - The travel path selected improved by ACO-DWA algorithm 

 

 In Fig. 3, the improved ACO-DWA algorithm proposed in this study planned the travel path from the 

perspectives of global planning and collision avoidance of moving obstacles, and chose a more economical 

path; the number of iterations of the improved ACO-DWA algorithm in global optimization was analyzed, and 

the algorithm iteration efficiency was higher under general circumstances, proving that the algorithm 

possesses stronger data training ability. If the number of algorithm iterations was too great and even exceeded 

the maximum number of iterations, the algorithm would be easily stuck in local optimum, failing to realize the 
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optimization within a global scope. In the process of path optimization, the maximum number of iterations of 

each algorithm was set to 800, the improved ACO-DWA algorithm gained the optimal result, and the 

agricultural handling robot turned for 10 times in the warehouse, with a driving distance of 42 m. 

 
Fig. 3 - The travel path selected by each algorithm 

 

Comparison of experimental data 

 To verify the improved ACO-DWA algorithm proposed in this study, path planning was performed from 

two angles: global planning and collision avoidance of moving obstacles, and a relatively economical path was 

chosen; as for the traditional ACO algorithm and genetic algorithm, turning occurred for 9 and 16 times, 

respectively, for the sake of avoiding other warehouse handling robots, which affected the overall travel speed. 

The paths obtained by the 3 algorithms for completing this handling task are exhibited in Figure 3. 

 Since the improved ACO-DWA algorithm selected a near path and can perceive and judge other 

moving obstacles around based on policy gradient and plan a new local path in advance, it spent the shortest 

time; for the other two traditional path planning algorithms, retracing occurred for avoiding obstacles, which 

influenced the final time consumption. 

 From the convergence speed of the algorithm, the convergence time of the improved ACO-DWA 

algorithm returned to zero after the 413th iteration, while the ACO algorithm and genetic algorithm completed 

the convergence only after approaching the maximum number of iterations, being 726 and 755, respectively. 

The iterative performance of the algorithm determines the efficiency of the algorithm and also has an important 

impact on the obstacle avoidance ability of the algorithm for selecting the optimal travel path. The experimental 

data showed that when a relatively complicated agricultural warehouse handling scenario, turning took place 

for 9 and 16 times, respectively, under obstacle avoidance planning based on the traditional ACO algorithm 

and genetic algorithm; under the control of the improved ACO-DWA algorithm, the policy gradient-based 

algorithm effectively avoided collisions during the simultaneous operation of multiple warehouse handling 

robots, and turning only occurred for 10 times. Besides, the policy gradient-based algorithm would adjust the 

direction of motion and speed of the robot timely according to the local obstacle distribution on site, which not 

only ensured traveling according to the path planned by the improved ACO-DWA algorithm as a whole but 

also effectively realized the avoidance of local moving obstacles. 

 

CONCLUSIONS 

 In the dynamic warehouse environment, the obstacle avoidance control method of agricultural 

warehouse handling robots based on visual positioning and dynamic rectification is an efficient, accurate and 

highly adaptable method, which is of great practical significance for strengthening warehousing operation 

efficiency and safety. Visual positioning technology enables the robot to acquire and process environmental 

information in real time, and avoid obstacles through the real-time rectification of the robot’s trajectory. With 

the increasing complexity of the working environment for warehouse handling robots, robots should not only 
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avoid static obstacles but also evade other robots on the path, that is, multiple robots working simultaneously 

are dynamic obstacles. In the path planning of logistics robots, the overall path of robots should be planned 

first, and the dynamic obstacles in local areas should be avoided by dynamic real-time rectification, which 

proposes higher requirements for the real-time communication of robots and the real-time selection of local 

paths. Therefore, the dynamic real-time rectification and obstacle avoidance based on the spatial coordinate 

transformation of robots will become one of the main development trends of warehouse logistics robots in the future. 

 In this study, a path planning method for wheeled agricultural warehouse handling robots was proposed. 

The improved DWA algorithm integrating the ACO algorithm can effectively improve the operation efficiency 

of the algorithm, reduce the bypassing distance around obstacles, shorten the path planning time and enhance 

the driving safety. The effectiveness and universality of the improved ACO-DWA algorithm were verified 

through simulation tests. This method evidently accelerates the optimization and convergence rate of the 

global path for agricultural warehouse handling robots. The applicability of the algorithm under scenarios with 

dynamic obstacles will be further explored on this basis. 
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