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ABSTRACT 

Using hyperspectral imaging technology for rapid, non-destructive detection of soybean grain moisture content 

provides technical support for high-quality soybean harvesting. A total of 90 samples of soybean grains from 

different varieties were collected, with hyperspectral images acquired in the wavelength range of 900–1700 

nm. The moisture content of each soybean grain sample was determined using the direct drying method as 

specified in GB 5009.3-2016. The samples were divided into a calibration set and a prediction set based on a 

4:1 ratio using the sample partitioning method of Joint X-Y Distance. Eight preprocessing methods were 

applied to the raw spectral data, including baseline correction, moving average, Savitzky-Golay filtering, 

normalization, standard normal variate transformation, multiple scatter correction, first derivative, and 

deconvolution. Feature wavelengths were then extracted using the successive projections algorithm and the 

competitive adaptive reweighted sampling algorithm. Finally, a partial least squares regression model for 

predicting the moisture content of soybean grains was developed based on these feature wavelengths. The 

results show that the correlation coefficient and the root mean square error of the optimal model for the 

prediction set were 0.92 and 0.2371, respectively. The moisture spectrum inversion model can precisely and 

rapidly predict the moisture content of soybean grains non-destructively, thereby determining the timing of 

mechanical soybean harvesting and enhancing the quality of soybean harvesting, storage, and processing.   

 

摘要 

采用高光谱成像技术实现大豆籽粒含水率的快速无损检测，为大豆高质量收获提供技术支撑。采集了 90 个不

同品种大豆籽粒样本在 900～1700 nm的高光谱图像，采用 GB 5009.3-2016中的直接干燥法测定每种大豆籽

粒样本的水分含量。基于联合 X-Y距离的样本划分法按照 4:1的比例划分样品，建立校正集和预测集。采用基

线校正、移动平均、Savitzky-Golay 滤波、归一化、标准正态变量变换、多元散射校正法、一阶导数、去卷积

8 种算法方法对原始光谱数据进行预处理，基于连续投影算法和竞争性自适应重加权算法提取特征波长，最后

建立基于特征波长的偏最小二乘回归的大豆籽粒含水率预测模型。结果表明，最优模型预测集相关系数和均方

根误差分别为 0.92 和 0.2371。水分光谱反演模型可以准确快速无损预测大豆籽粒含水率，从而制定大豆机收

时间，提升大豆收获、存储、加工品质。 

 

INTRODUCTION 

 China is one of the world's major producers and consumers of soybeans (Li et al., 2023). The country's 

soybean planting area is approximately 9 to 10 million hectares, with an annual production of around 18 to 20 

million tons (Liu et al., 2022). Soybean cultivation in China is mainly concentrated in the Northeast region and 

the Huang-Huai-Hai Plain. In recent years, there has been a shift in China's soybean production model, moving 

from traditional, small-scale farming to a more large-scale, mechanized, and intelligent approach (Li et al., 

2023). 

 Moisture detection in soybeans is of great significance in mechanized production, as moisture content 

directly affects the efficiency and quality of various stages such as harvesting, transportation, storage, and 

processing. Moisture content is a key factor in determining the optimal harvest time for soybeans (Mo et al., 

2020).  
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 When the moisture content is too high, harvesting machinery may face operational difficulties, which 

can cause machine blockages, reduced harvesting efficiency, and increased risks of grain breakage or 

damage. On the other hand, if the moisture content is too low, soybean pods are more likely to crack, leading 

to increased field losses. By monitoring the moisture content of soybeans in real time, farmers and machine 

operators can select the best harvest time, minimize losses, and improve harvesting efficiency. 

 Traditional methods for detecting soybean moisture content include the drying method and the Karl 

Fischer titration method. These methods are recognized as standard due to their high detection accuracy and 

reliable results. However, they are time-consuming, involve complex procedures, and require specialized 

equipment and laboratory conditions, making them unsuitable for on-site, real-time detection. In recent years, 

with the rapid advancement of sensing technology, online detection techniques for soybean moisture content 

have developed quickly (Zhang et al., 2023). These techniques include methods such as capacitance (Zhang 

et al., 2021), resistance (Zhao et al., 2018), near-infrared spectroscopy (Chen et al., 2023), microwave 

measurement (Song et al., 2023), infrared thermal radiation (Shi et al., 2024), and machine vision and imaging 

technology (Wu et al., 2022). These methods offer advantages like fast detection speed, high accuracy, and 

the ability to perform non-destructive, real-time measurements, making them widely used in modern agriculture. 

A rapid detection method for tomato water stress based on terahertz spectroscopy was proposed, integrating 

three-dimensional terahertz features and using support vector machines for the rapid detection of tomato water 

stress (Zhang et al., 2021). A spectral classification model was developed to distinguish the moisture levels of 

different alfalfa seeds (Yang et al., 2024). A method based on near-infrared spectroscopy and random forest 

variable selection was applied to identify soybean seed cracks, achieving an accuracy rate of 84% (Wang et 

al., 2023). A microwave radar measurement system was employed for fast, non-destructive, and high-precision 

detection of grain moisture content, with standard errors of 0.564% and 0.983% for predicting moisture content 

in soybeans and wheat, respectively (Li et al., 2022). A portable near-infrared and visible light spectrometer, 

combined with multivariate analysis, was used for non-destructive detection of rice moisture content, and the 

root mean square error of the optimal model was 0.388 (Zhang et al., 2023). Additionally, a method based on 

terahertz imaging technology was applied to measure the moisture content of soybean leaves, with a root 

mean square error of 0.0465 (Bu et al., 2018). Most existing technologies focused on a single variety, and the 

model's generalization was weak, making it unable to accurately detect parameters of multiple varieties. Given 

the wide variety of soybean cultivars in China, constructing a robust moisture detection model suitable for 

multiple cultivars is the focus of this study. 

 Therefore, this study focuses on 90 different soybean cultivars and utilizes hyperspectral imaging 

technology combined with chemometric methods to establish and identify the optimal prediction model for 

detecting soybean moisture content in the range of 900–1700 nm. This approach provides a new method for 

monitoring moisture content during soybean harvesting, storage, and processing.  

 

MATERIALS AND METHODS 

Sample Collection for the Experiment 

 In order to improve the generalization of the model, the samples used in the experiment were collected 

from major soybean-producing regions in China, including the Northeast Plain, Huang-Huai Plain, and Yangtze 

River Basin. These samples included 90 different varieties such as Heihe 43, Suinong 28, Zhonghuang 301, 

Wanhuang 506, Zhonghuang 37, Zhongdou 43, Zhongdou 41, Nandou 5, and Xiangchun Bean 26. During the 

soybean harvest season, the samples were mechanically harvested, cleaned to remove impurities, and then 

sealed in bags. They were labeled and brought back to the laboratory for further analysis. 

Determination of Moisture Content in Experimental Samples 

The moisture content of each soybean sample was measured using the direct drying method as outlined 

in GB 5009.3-2016 "National Food Safety Standard for the Determination of Moisture in Foods.", as shown in Fig.1.  

The calculation formula for moisture content is as follows: 

𝑋 =
𝑚1−𝑚2

𝑚1−𝑚3
× 100                                                                                      (1) 

where: X is moisture content in the sample, expressed as g/100 g; 

m1 is mass of the weighing bottle (with sea sand and glass rod) and the sample, in grams (g); 

m2 is mass of the weighing bottle (with sea sand and glass rod) and the sample after drying, in grams (g); 

m3 is mass of the weighing bottle (with sea sand and glass rod), in grams (g); 

100 is conversion factor to express moisture content as a percentage. 
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When the moisture content is ≥1 g/100 g, the result is reported with three significant figures. When the 

moisture content is <1 g/100 g, the result is reported with two significant figures (Zhang et al., 2023). Each 

soybean variety was measured three times, and the average value was used as the moisture content for that 

variety. 

  
a) Sample drying b) Sample weighing 

Fig. 1 – Measurement of moisture content in soybean samples 
 

Spectral Measurement of Experimental Samples 

The hyperspectral data acquisition system for soybean samples consists of three main components: a 

near-infrared hyperspectral imaging system, a halogen lamp light source, and a motion control system, as 

illustrated in Figure 2. This system uses the Pika NIR-320 Hyperspectral Imaging Camera from Resonon Inc., 

USA. It features a spectral range of 900–1700 nm, a spectral resolution of 8.8 nm, a spectral bandwidth of 4.8 

nm, and 168 spectral channels. The system employs a halogen lamp to provide the necessary illumination for 

hyperspectral imaging across the full wavelength range. It includes a finned heat dissipation structure, 

complemented by a high-performance cooling fan, and is equipped with a voltage and current stabilizer to 

enhance the stability and reliability of the light source. This system integrates the light source and sensor into 

a single unit, allowing for high-precision synchronization between the sensor and the linear light source. It also 

facilitates easy adjustment of the camera's relative position to the target sample, accommodating the needs of 

capturing diverse and complex samples. This setup ensures comprehensive and accurate hyperspectral 

imaging by providing stable illumination, precise spectral measurements, and flexible positioning for various 

sample types. 

 

Fig. 2 – Hyperspectral data acquisition system 
 

To minimize the impact of dark current and uneven light source intensity on hyperspectral images, black 

and white calibration of the hyperspectral images is required (Jin et al., 2022; Guo et al., 2023). Place a white 

reference board with a reflectance of 0.99 in the sample acquisition area (Chen et al., 2019). Capture an image 

of this white board to obtain the white calibration image (Chen et al., 2019), denoted as Iw. Cover the 

hyperspectral camera lens and capture an image to obtain the black calibration image, denoted as Id. 

The calibration formula for correcting hyperspectral images can be expressed as follows: 

𝐼𝑡 =
𝐼−𝐼𝑑

𝐼𝑤−𝐼𝑑
                                                                           (2) 

where, It is calibrated hyperspectral image，I is raw hyperspectral image of the sample. 

 During the sample scanning process, the exposure time was set to 7.3 ms, and the movement speed of 

the displacement platform was 3.512 cm/s. The hyperspectral data were analyzed using the SpectrononPro 

software that comes with the Pika NIR-320 hyperspectral imaging system. 



Vol. 74, No. 3 / 2024  INMATEH - Agricultural Engineering 

565 

 For each hyperspectral image, a region of interest (ROI) with a side length of 200 pixels was selected. 

The average spectrum of this ROI was extracted and used as the spectral information for the soybean sample. 

This approach ensures that the spectral data accurately represent the sample within the defined area of interest. 

Spectral Data Preprocessing 

 During the spectral data acquisition with the Pika NIR-320 hyperspectral imaging system, due to 

differences in particle size and absorbance of the sample, variations occur during the diffuse reflection process, 

resulting in decreased spectral repeatability. Derivative is the most commonly used method to eliminate 

additive effects. Standard normal variate transformation (SNV) and multiple scatter correction (MSC) are 

commonly used methods to eliminate multiplication effects, which can to some extent reduce the impact of 

solid particle size or scattering effects on spectral data. Orthogonal signal correction (OSC) and net analyte 

signal (NAS) are non-independent methods of response variables, mainly used to remove spectral variations 

that are unrelated to the response variable, with the aim of simplifying the analysis model and improving its 

predictive ability. Therefore, baseline correction (BC), moving average, Savitzky-Golay filtering, normalization, 

SNV, MSC, first derivative, and deconvolution methods were used to preprocess the raw spectral data and 

remove irrelevant information. 

Moisture Content Estimation Based on Spectral Information 

 Using the sample set partitioning based on joint X-Y distance (SPXY) method, the soybean samples 

were divided into a calibration set and a prediction set in a 4:1 ratio. 

 The raw spectral data contain a large amount of redundant and useless spectral information as well 

as various noises, which can reduce computation speed and affect the accuracy and precision of the model 

predictions. Therefore, the continuous projection algorithm (SPA) and competitive adaptive reweighted 

sampling (CARS) were used for dimensionality reduction and to select feature wavelengths. 

 Partial least squares regression (PLSR) was employed to establish the mathematical relationship 

between spectral information and soybean moisture content. PLSR constructs a linear regression model that 

indirectly describes the relationship between independent and dependent variables, effectively addressing the 

issue of high linear correlation among spectral variables. 

 The performance of the soybean moisture content PLSR model was evaluated using the coefficient of 

determination (𝑅𝑐
2 , 𝑅𝑐𝑣

2  and 𝑅𝑝
2) and the root mean square error (Rmsec , Rmsecv  and Rmsep) for the calibration set, 

cross-validation set, and prediction set. Generally, a well-performing model should have a high coefficient of 

determination and a low root mean square error. 

Data analysis 

 The results were processed by Microsoft Office Excel (version 2021, Microsoft Corp., USA) and Matlab 

(version 2021a, MathWorks Corp., USA). Single factor analysis of variance (ANOVA) was carried out with IBM 

SPSS Statistics (version 24, IBM Corp., USA).  

RESULTS 

Spectral Feature Analysis of Soybean Samples with Different Moisture Contents 

 Figure 3 shows the spectral reflectance curves of soybean samples. The distinct reflectance dip near 

1210 nm is attributed to the second overtone vibration band of C-H bonds in organic compounds.  

 

Fig. 3 – Original spectral curves of near infrared of 90 soybean samples 
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 The reflectance dip at 1450 nm is related to the overtone vibration of O-H bonds, both of which are 

characteristic spectral bands for moisture content. The raw spectrum contains background information and 

noise, and the spectral data before 950 nm and after 1650 nm do not provide useful sample information. 

Therefore, spectral bands from 950 to 1650 nm, totaling 145 bands, are retained for modeling. 

Sample Set Partitioning 

 The SPXY method divided the 90 samples into calibration and prediction sets in a 4:1 ratio, resulting in 

72 samples for calibration and 18 samples for prediction. The moisture content range in the soybean samples 

is shown in Table 1. The calibration set covers the full range of moisture content present in the prediction set, 

indicating that the sample set partitioning is scientific and reasonable. 

Table 1 

Statistical data of soybean water content in sample set divided by SPXY method 

Sample Set Number of Samples 
Moisture Content 

Maximum Value Minimum Value Average Value Standard Deviation 

Calibration Set 72 12.114 6.124 8.451 1.619 

Prediction Set 18 10.952 6.344 8.237 1.652 

 

Spectral Data Preprocessing 

 In this experiment, quantitative analysis of soybean moisture content was performed by establishing 

PLSR models based on both the raw spectra and spectra preprocessed using eight different methods. The 

results are shown in Table 2. 

 From Table 2, it can be observed that the PLSR model based on the raw near-infrared spectra has the 

𝑅𝑝
2 of 0.7995 and the Rmsep of 0.4205, indicating good stability of the model. After preprocessing with baseline 

correction, standard normal variate transformation, multiple scatter correction, and first derivative, the models 

exhibited the 𝑅𝑝
2 values higher than those of the raw spectrum-based model and the Rmsep values lower than 

0.4205. The performance of the models improved with these four preprocessing methods, and the stability of 

the cross-validation set was better. 

 The three preprocessing methods with the best performance (BC, SNV and MSC) were selected for 

further model processing. 

Table 2 

PLSR model based on different pretreatment methods 

Preprocessing Methods PCs 
Calibration Set Cross-Validation Set Prediction Set 

𝑹𝒄
𝟐 Rmsec 𝑹𝒄𝒗

𝟐  Rmsecv 𝑹𝒑
𝟐 Rmsep 

Raw spectral 9 0.8181 0.5072 0.6916 0.8598 0.7995 0.4205 

Baseline Correction 14 0.8780 0.3267 0.5906 1.0961 0.8535 0.3612 

Moving Average 9 0.8080 0.5353 0.6922 0.8581 0.7876 0.4454 

Savitzky-Golay filtering 9 0.8095 0.5311 0.6889 0.8675 0.7799 0.4617 

Normalization 10 0.8215 0.4640 0.7093 0.7557 0.8515 0.4230 

Standard Normal Variate 9 0.8347 0.4329 0.6734 0.8555 0.8929 0.2838 

Multiplicative Scatter Correction 9 0.8312 0.4393 0.6754 0.8447 0.9052 0.2646 

Derivative Spectroscopy 6 0.8369 0.4525 0.7186 0.7809 0.8100 0.4051 

Deconvolution 9 0.8157 0.5139 0.6919 0.8590 0.7935 0.4331 

 

Selection of Feature Wavelengths 

 Among the 145 retained spectral bands, there is still a significant amount of redundant information. To 

improve modeling speed and model robustness, feature wavelengths need to be extracted from the spectral 

data. This study applied the continuous projection algorithm and competitive adaptive reweighted sampling  

algorithm to extract feature wavelengths from spectral data preprocessed by baseline correction, standard 

normal variate transformation, and multiple scatter correction. 

 Figure 4 illustrates the process of extracting feature wavelengths from the spectral data preprocessed 

with multiple scatter correction using the continuous projection algorithm. The selection process is determined 

by the size of the root mean square error, with smaller values indicating better model performance. The Rmsep 

varies with the number of relevant wavelengths.  
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 As shown in Figure 3(a), when the minimum Rmsep is 0.4786, the number of extracted feature 

wavelengths is 7. The corresponding wavelengths in the original data are shown in Figure 3(b), with the 7 

feature wavelengths being 966.15, 1301.8, 1142.68, 1085.21, 1418.51, 1214.81, and 951.93 nm, accounting 

for 4.83% of the total wavelengths. 
 

  
a) RMSECV of variable: b) Sequence number of selected characteristic wavelength 

Fig.4 Process of SPA algorithm in screening characteristic wavelength of soybean water content 

 

 Similarly, for the spectral data preprocessed by standard normal variate transformation, 2 feature 

wavelengths were extracted when the minimum Rmsep is 0.5601. These 2 feature wavelengths are 1496.77 and 

951.93 nm, accounting for 1.38% of the total wavelengths. 

 For the spectral data preprocessed by baseline correction, 5 feature wavelengths were extracted when 

the minimum Rmsep is 0.9474. These 5 feature wavelengths are 1330.9, 1457.59, 1219.63, 1142.68, and 

1418.51 nm, accounting for 3.45% of the total wavelengths. 

 Figure 5 shows the results of extracting feature wavelengths from spectral data preprocessed using the 

competitive adaptive reweighted sampling  algorithm after baseline correction, standard normal variate 

transformation, and multiple scatter correction. 

  
a) SNV spectral data b) BC spectral data 

Fig. 5 - Result of CARS algorithm in screening characteristic wavelength of soybean water content 

 

 For the spectral data preprocessed by multiple scatter correction, 19 feature wavelengths were extracted. 

These wavelengths are 1085.21, 1089.99, 1133.09, 1137.89, 1176.3, 1306.64, 1311.49, 1316.34, 1369.78, 

1374.64, 1389.25, 1394.12, 1399.00, 1413.63, 1496.77, 1501.68, 1570.49, 1580.34, and 1624.75 nm, 

accounting for 13.10% of the total wavelengths. 

 For the spectral data preprocessed by standard normal variate transformation, 11 feature wavelengths 

were extracted. These wavelengths are 1094.78, 1137.89, 1171.5, 1316.34, 1369.78, 1394.12, 1399.00, 

1408.75, 1501.68, 1565.56, and 1624.75 nm, accounting for 7.59% of the total wavelengths. 

 For the spectral data preprocessed by baseline correction, 12 feature wavelengths were extracted. 

These wavelengths are 970.9, 1089.99, 1137.89, 1171.5, 1360.05, 1364.91, 1389.25, 1394.12, 1399.00, 

1418.51, 1496.77, and 1565.56 nm, accounting for 8.28% of the total wavelengths. 

 

Model Optimization 

 PLSR models for predicting soybean moisture content were established using the original spectral data 

from the 950–1650 nm wavelength range, as well as spectral data preprocessed by baseline correction, 

standard normal variate transformation, and multiple scatter correction.  
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 The root mean square error of prediction  for the prediction set was used as the metric to evaluate model 

performance, with lower Rmsep values indicating better prediction accuracy. As shown in Table 3, the MSC-

PLSR model has the lowest Rmsep value of 0.2646, indicating that the PLSR model based on the 950–1650 nm 

wavelength spectra with MSC preprocessing has good prediction performance and stability. 

 To improve modeling speed and model robustness, SPA and CARS algorithms were used to select 

feature wavelengths for building soybean moisture content prediction models. These include SPA-BC-PLSR, 

SPA-MSC-PLSR, SPA-SNV-PLSR, CARS-BC-PLSR, CARS-MSC-PLSR, and CARS-SNV-PLSR. As shown 

in Table 3, compared to the SPA and full-band models, the PLSR models using feature wavelengths selected 

by the CARS algorithm had lower Rmsep values. Among the models based on feature wavelengths, CARS-

MSC-PLSR and CARS-SNV-PLSR had the lowest Rmsep values of 0.2401 and 0.2371, respectively. This 

suggests that the models using feature wavelengths selected by the CARS algorithm performed better, likely 

due to CARS's effectiveness in reducing spectral collinearity. 

Table 3 

PLSR model based on different pretreatment methods 

NO Models 
Number of 

Wavelengths 

Calibration Set Cross-Validation Set Prediction Set 

𝑹𝒄
𝟐 Rmsec 𝑹𝒄𝒗

𝟐  Rmsecv 𝑹𝒑
𝟐 Rmsep 

1 PLSR 145 0.8181 0.5072 0.6916 0.8598 0.7995 0.4205 

2 BC- PLSR 145 0.8780 0.3267 0.5906 1.0961 0.8535 0.3612 

3 MSC- PLSR 145 0.8312 0.4393 0.6754 0.8447 0.9052 0.2646 

4 SNV- PLSR 145 0.8347 0.4329 0.6734 0.8555 0.8929 0.2838 

5 SPA-BC- PLSR 5 0.6673 0.9014 0.6222 1.0236 0.837 0.3683 

6 SPA-MSC- PLSR 7 0.6797 0.8543 0.6231 1.0053 0.8191 0.4497 

7 SPA-SNV- PLSR 2 0.5804 1.1109 0.5454 1.2034 0.7098 0.5601 

8 CARS -BC- PLSR 12 0.811 0.503 0.7289 0.7214 0.8771 0.3053 

9 CARS -MSC- PLSR 19 0.8547 0.3826 0.786 0.5638 0.9105 0.2401 

10 CARS -SNV- PLSR 11 0.845 0.3984 0.7877 0.5459 0.92 0.2371 

 

 

DISCUSSION 

 Moisture content is a critical factor influencing the quality of soybean grains. However, determining the 

moisture content of soybean seeds is both time-consuming and expensive. Therefore, a rapid and non-

destructive method for determining the moisture content in soybean seeds is essential. Guo Zhen applied 

visible near-infrared hyperspectral imaging technology (400–1000 nm) in conjunction with a wavelength 

selection algorithm to determine the moisture content of soybean seeds. They found that the combination of 

the interval variable iterative space shrinkage approach and the successive projections algorithm, based on 

the original spectra, was the most suitable model for determining the moisture content of soybean seeds (Guo 

et al., 2023). Jin Chengqian employed near-infrared hyperspectral imaging technology for rapid and non-

destructive detection of soybean moisture content. They found that the SPA algorithm provided better 

predictive performance for feature wavelength modeling, and selected the Normalize-SPA-PCR model, which 

demonstrated good stability and predictability, allowing for accurate prediction of soybean moisture content 

(Jin et al., 2022). These findings suggest that the moisture inversion model constructed using spectral imaging 

technology can enable rapid detection of soybean moisture. This method provides a new approach for soybean 

moisture detection. 

 Furthermore, the CARS algorithm utilizes adaptive reweighted sampling technology to quickly identify 

variables that are most sensitive to moisture changes, thereby obtaining the optimal variable combination and 

reducing the consumption of computational resources. SNV enhances the stability of spectral data by 

performing a standard normal variate transformation, making the data more closely align with a normal 

distribution. Therefore, the combination of SNV and CARS algorithms for processing soybean spectral data 

can yield reliable prediction results. 
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CONCLUSIONS 

 (1) Eight preprocessing methods were used to develop a PLSR model for the spectral data in the 900–

1700 nm range. The model with the highest 𝑅𝑐
2 value and lowest Rmsep value was achieved after applying MSC, 

indicating that MSC performed best in full-band modeling and prediction. 

 (2) Two methods, SPA and CARS, were used to extract characteristic wavelengths, effectively reducing 

the spectral dimensionality. The characteristic wavelengths extracted by SPA accounted for 4.83%, 1.38%, 

and 3.45% of the spectral data, while those extracted by CARS accounted for 13.10%, 7.59%, and 8.28%. 

 (3) By combining preprocessing methods, feature wavelength extraction methods, and modeling 

methods, the effectiveness of 10 models was compared, and the CARS-SNV-PLSR model was selected as 

the optimal one. The CARS-SNV-PLSR model showed a high 𝑅𝑐
2 value of 0.92 and a low Rmsep value of only 

0.2371, indicating good stability and prediction performance. This model enables rapid, accurate, and non-

destructive detection of soybean moisture content. 
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