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ABSTRACT 

The quality detection of eggs based on deep learning faced many problems, such as similar feature colors and 

low computational efficiency, which resulted in an increased probability of false detection or missed detection. 

To effectively solve these problems, this paper proposed an egg quality detection method based on YOLOv8n, 

which integrated the ContextGuideFusionModule, EfficientHead, and SIOU loss functions by improving the 

backbone network. The recognition rate from the field test was 88.4%, indicating that the algorithm could meet 

the real-time monitoring requirements, effectively identify the quality status of eggs, and provide support for 

intelligent poultry house management. 

 

摘要 

基于深度学习的鸡蛋的品质检测面临特征颜色相近，计算效率低等诸多问题，导致误检或漏检的概率增加。为

有效解决这些问题，本文提出了一种基于 YOLOv8n ，通过改进骨干网络，集成 ContextGuideFusionModule、

EfficientHead和 SIOU损失函数的鸡蛋品质检测方法。现场试验识别率为 88.4%，表明该算法能满足实时监测，

有效的识别鸡蛋的品质状态，为智能化禽舍管理提供支持。 

 

 

INTRODUCTION 

 Eggs, as one of the main foods for humans, are rich in protein, fat, and other important nutrients. With 

the improvement of food safety awareness, the quality of eggs is getting more and more attention. The 

appearance of eggs is one of the important indexes to evaluate their quality, which is usually negatively 

correlated with egg age (Eddin et al., 2019; Hisasaga et al., 2020; Malfatti et al., 2021). Traditional methods 

for assessing egg appearance utilized the Haugh unit (HU) to evaluate quality by measuring the weight and 

protein height of the eggs. However, this approach was often destructive and applicable only to sampling, 

failing to meet the demands of modern agriculture for large-scale production. Such losses were unacceptable 

to hatcheries, the food processing industry, and consumers (Guanjun et al., 2019). Currently, non-destructive 

testing of egg defects primarily relied on transmission techniques, which typically required observing the eggs 

under a light source. For instance, Omid et al. extracted features of crack regions through spatial 

transformations of the HSV color space of images, constructing a corresponding discriminant system with an 

accuracy rate of 94.5% (Omid et al., 2013). Cruz-Tirado et al. combined near-infrared spectroscopy with a 

PLS-DA model to identify fresh and unfresh eggs, achieving an accuracy of 87% (Cruz-Tirado et al., 2021). 

Dong et al. developed a method based on VIS-NIR spectroscopy that established a quantitative model for the 

freshness of different egg varieties through global updates, direct standardization, and slope/deviation 

correction (Dong et al., 2020). However, this method proved inefficient in practical applications, with poor 

sanitation conditions and a propensity for errors. Therefore, there was an urgent need for a rapid and non-

invasive technique to evaluate egg quality. 

 Research indicated that abnormal eggs exhibited noticeable color differences compared to normal 

eggs, which can be identified by taking multiple sets of egg surface images to extract abnormal features. For 

example, Yao et al. employed hyperspectral imaging (HSI) technology to assess both the internal and external 

quality of eggs, achieving an overall accuracy rate of 93.33% (Yao et al., 2022). Luo et al. constructed an egg 

collection system to obtain images of severely damaged eggs and applied an improved YOLOv5 algorithm for 

their identification, ultimately achieving an accuracy of 92.4% (Luo et al., 2023).  
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 Narushin et al., (2023), and Sehirli et al., (2022), conducted a comparative analysis of various non-

destructive detection methods based on existing studies. In recent years, with the continuous improvement of 

computing power, many researchers have begun to use deep learning technology to quickly and accurately 

judge the quality and grade of agricultural products, thereby improving their added value and market 

competitiveness (Okinda et al., 2020; Turkoglu et al., 2021; Zhao et al., 2023). Du et al., (2024), realized the 

effective identification of young apples by improving the YoLOV5 algorithm, with an average accuracy of 

82.2%. Liang et al. (2024), realized the effective identification of maize pests and diseases by improving the 

YoLOV8 n algorithm, and the average accuracy reached 94.8 %. Compared to other YOLO models, YOLOv8 

demonstrated higher detection precision and efficiency in object detection tasks, showcasing remarkable 

overall performance (Gevorgyan et al., 2022; Xu et al., 2024; Yang et al., 2023). Consequently, some scholars 

applied the YOLOv8 algorithm to target detection in the livestock industry to enhance production efficiency and 

product quality (Wang et al., 2024; Yang et al., 2023). However, previous studies mainly focused on the 

assessment of single quality parameters, while research on the multi-quality detection of eggs remained 

relatively scarce. Therefore, this paper designs a lightweight model method to accurately identify the quality of 

eggs. This project optimizes the YOLOv8n algorithm, uses the HGNetv2 (Zhao et al., 2024) network to replace 

the original backbone network, and introduces the pyramid network ContextGuideFusionModule (Hu et al., 

2018). The lightweight grouping convolution detection head EfficientHead (Zhang et al., 2019) is used and the 

CIOU loss function is replaced with the SIoU (Gevorgyan et al., 2022) loss function, named HCES-YOLOv8 

algorithm. The algorithm aims to replace the traditional detection methods to achieve effective detection of 

objects in many fields such as animal husbandry production lines, thereby improving the detection effect. 

 The purpose of this study is to use the improved YOLOv8 network to perform multiple quality 

assessments of egg quality, focusing on: 

  (1) The morphological characteristics of egg appearance were extracted to identify different quality 

problems, such as color, breakage and contaminants, etc.;  

  (2) Create a multiple egg quality assessment data set to fill the existing non-destructive quality test 

data and facilitate a more comprehensive assessment of egg quality; 

  (3) The original network of YOLOv8n was improved to establish a model suitable for egg quality 

detection. 

 

MATERIALS AND METHODS 

Image acquisition system 

 An egg image acquisition platform is built in the laboratory, as shown in Fig. 1. The main hardware of 

the system consists of four parts: camera, 15w LED light source, computer and conveyor belt. The industrial 

camera used in this study is a CMOS type, which can capture a 1920×1080 pixel RGB image using a 90° 

distortionless fixed-focus lens. In this study, the LED light source was placed directly above the egg slope to 

illuminate the characteristics of the egg surface and facilitate the observation of the upper surface of the egg. 

This method is easy to install and can meet the image acquisition requirements of light source installation. 

 
Fig. 1 – Egg image acquisition system 

 

Image acquisition 

 In this study, eggs were used as experimental subjects, and the selected egg samples were obtained 

from Kaimeng Farm in Wudi County. In order to improve the experimental results, the obtained images will be 

manually classified. According to the eggshell characteristics, the eggs were divided into white spotted eggs, 

brown spotted eggs, pink skin eggs, white skin eggs, blood-stained eggs, broken shell eggs, dirty eggs and 

normal eggs. A total of 1100 images were taken, and Fig. 2 is the egg category map. The bounding boxes and 

categories of all objects in each image are labelled, and the corresponding annotation files are generated.  
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In order to simulate different conditions and enhance the robustness of the model, data enhancement 

methods such as mirroring, rotation, cropping, and brightness transformation are randomly used, and 

brightness transformation coefficients are randomly generated in the interval to double the number of images. 

After selection, 3300 enhanced egg images constitute an egg quality detection data set, numbered in order. 

Finally, the data set was divided into training set, validation set and test set according to the ratio of 7: 2: 1, 

including 2310, 660 and 330 egg images, respectively.  

 

    
a) b) c) d) 

    
e) f) h) i) 

Fig. 2 – Egg category distinction diagram 
a) White spotted egg; b). Brown spotted egg; c) Pink skin egg; d) White skin eggs; e) Bloody eggs;  

f) Broken egg; h) Dirty egg; i) Normal egg 
 

YOLOv8n model 

 YOLO model is a single-stage target detection algorithm. Its core idea is to divide the image into 

regions and predict them, which has the characteristics of fast and efficient training. The backbone feature 

extraction network of YOLOv8 consists of CBS module, C2f module and SPPF module. The C2f module 

combines the design of the C3 module and the efficient lightweight attention network, which enhances the 

feature fusion ability and speeds up the inference speed. Based on the concept of spatial pyramid pooling, the 

SPPF module has lower parameters and calculation amount, which effectively expands the receptive field of 

the model and improves the recognition accuracy. Compared with YOLOv5, the head part of YOLOv8 has 

been greatly changed. The decoupling head structure is used to separate the classification and detection head, 

and it is changed from Anchor-Based to Anchor-Free, which significantly improves the target detection 

accuracy and alleviates the problem of inaccurate positioning and classification errors in complex scenes. 

  
Fig. 3 –YOLOv8n and HCES-YOLO network structure 
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HCES-YOLO model 

 In this study, the Backbone and Neck parts of YOLOv8 were improved. The lightweight backbone 

network HGNetv2 is used to replace the original YOLOv8 backbone to reduce the computational load and 

model size, and the calculation speed is improved by the optimized Transformer structure. On this basis, the 

ContextGuideFusionModule is introduced, and the channel attention mechanism is used to weight the feature 

map, so as to improve the feature expression ability. The detection head of the original YOLOv8 is also 

optimized and the standard convolution is replaced with grouping convolution to reduce the amount of 

parameters and calculation, and the calculation efficiency is improved. In this study, the SIOU loss function is 

used in the model to comprehensively consider the shape similarity and spatial relationship of the target, so 

as to improve the accuracy of target location. The YOLOv8n model and the improved lightweight HCES-YOLO 

model are shown in Fig. 3. 

 

Lightweight backbone network HGNetv2 

 The latest version of YOLOv8n has improved in accuracy and speed, but its backbone network still 

has limitations, especially in terms of computational complexity. This limits the application of YOLOv8n on 

resource-constrained devices. At the same time, as the depth and width of the network increase, the size of 

the model also increases, resulting in increased storage and transmission costs, which is a significant problem 

for applications that need to be deployed on edge devices. In addition, although YOLOv8n has improved in 

multi-scale feature fusion, it still has room for improvement in dealing with fine-grained features and global 

information. 

 Therefore, HGNetv2 is used to significantly optimize the original DETR network structure, which has 

many advantages. First, it uses a lightweight basic network, which significantly reduces the computational load 

and model size, and is suitable for running on resource-constrained devices. Secondly, through the optimized 

Transformer structure, HGNetv2 improves the calculation speed while maintaining high precision, which is 

especially suitable for real-time target detection tasks. In addition, HGNetv2 abandons the traditional NMS 

processing, so that the network can be optimized together during the training process, thereby improving the 

generalization ability and performance of the model. 

 The network structure of HGNetv2 includes pretreatment Stem layer, HG block, learnable LDS layer 

and GAP layer. The Stem layer is responsible for the initial processing of the input data for subsequent feature 

extraction. The HG block enhances the detection ability of targets of different scales by hierarchically 

processing data. The LDS layer performs downsampling to reduce the computational load and increase the 

receptive field. The GAP layer converts the feature map into a vector, which can improve the robustness to 

spatial transformation. The final classification layer includes a convolutional layer and a fully connected layer 

to complete the classification task. The HGNetv2 structure is shown in Fig.4. 

 
Fig. 4 – HGNetv2 structure 

 

Pyramid Network ContextGuideFusionModule 

 The Concat module of YOLOv8 is widely used in computer vision tasks, which fuses different levels 

of features by stitching feature maps on channel dimensions. Although this method is efficient and has low 

computational cost, its simple splicing fails to consider the correlation between levels, resulting in insufficient 

information fusion. In addition, simple stitching cannot distinguish the importance of each feature map, and all 

features are treated equally. This may lead to the loss of egg image details, resulting in false detection and 

missed detection, and may also be detrimental to the final performance of the egg quality detection model. In 

contrast, ContextGuideFusionModule provides a more advanced and detailed feature fusion method to 

overcome the limitations of simple stitching. Through careful design, CGFM not only simply stitches feature 

maps, but also achieves more effective feature integration through weight adjustment and attention 

mechanism. 
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 The core of ContextGuideFusionModule is Squeeze-and-Excitation Attention (SEAttention). This 

mechanism emphasizes important features and suppresses unimportant channels by weighting the 

importance of each channel. Specifically, SEAttention first uses the global average pooling to compress the 

spatial dimension of each channel into a scalar, representing the global feature of the channel. Then, these 

scalars are nonlinearly transformed through the fully connected layer to generate the weight of each channel. 

Finally, the weighted feature map is obtained by multiplying the original feature map by elements. After 

completing the feature adjustment, ContextGuideFusionModule realizes feature fusion by weighted addition, 

and the structure is shown in Fig. 5. The specific step is to multiply the two input feature maps by their 

corresponding weights, and then add them to form a fused feature map. This method not only retains the 

important information in the input feature map, but also enhances the information complementarity between 

different feature maps through weight adjustment, thereby improving the feature expression ability and model 

performance. 

 
Fig. 5 – ContextGuideFusionModule structure 

 

Lightweight detection head EfficientHead based on grouping convolution 

 Head of YOLOv8n uses independent classification and localization branches. Since the sample 

allocation strategy is task-independent, there is a lack of information interaction between classification and 

localization tasks. This will lead to inaccurate prediction positions with high scores and inaccurate prediction 

scores with accurate positions. At the same time, the classification and positioning are separated, and the 

model calculations are independent of each other, which will cause the Head part to be complicated and the 

calculation amount to be huge. Based on the above shortcomings, this paper designs a new detection head 

EfficientHead with reference to the idea of grouping convolution. 

 As a lightweight convolution operation, group convolution divides the input data and convolution kernel 

into multiple groups, and each group performs convolution operation independently, which greatly reduces the 

amount of parameters and calculations, as shown in Fig. 6. Grouping convolution effectively reduces the 

amount of parameters and calculations by grouping the input feature maps, and improves the computational 

efficiency of the model, which is especially suitable for the training of deep networks and large-scale data sets. 

In order to further reduce the model complexity and computational complexity without affecting the detection 

accuracy, this paper improves the detection head part of YOLOv8.  

 
a）                                                       b） 

Fig. 6 –Comparison of the implementation process of conventional convolution and group convolution 
a）conventional convolution; b）group convolution 

 

 YOLOv8 adopts a decoupling head structure, and two parallel branches extract location features and 

category features respectively. Each layer uses a 1 × 1 convolution to complete the classification and 

positioning tasks. Based on the original YOLOv8 head structure, this paper replaces the standard convolution 

with group convolution, as shown in Fig. 7.  
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 This improved method combines the advantages of group convolution, which can effectively reduce 

the complexity and computational complexity of the model. At the same time, the detection accuracy is 

maintained, so that the model can also perform well in a limited computing resource environment. 

 
Fig. 7 – Lightweight detection head EfficientHead structure diagram 

 

SIoU loss function 

 The loss function is the key to evaluate the performance of the model, especially in deep learning 

target detection. The CIoU loss function adopted by the YOLOv8n network focuses on the position and size of 

the bounding box, but does not consider the directional mismatch between the label box and the prediction 

box. In contrast, the SIoU loss function introduces four parts: angle, distance, shape, and IoU to 

comprehensively evaluate the position, size, and direction of the object. By redefining the distance loss and 

combining the angle loss, SIoU considers the distance and angle between the center of the object and the 

center of the predicted bounding box, enhances the robustness to shape changes, and helps to cope with 

deformation in the image. In addition, SIoU is suitable for multi-class target detection, without additional 

complexity, ensuring the convergence speed of the algorithm, and is insensitive to target size changes to avoid 

excessive errors. Its differentiability enables the model to optimize parameters through back propagation, 

thereby improving the accuracy of small target detection in egg images. 

 

RESULTS 

Experimental environment 

 The computer configuration used for training and testing in this article is CPU model: Intel (R) Core97-

12900H, GPU model: NvidiaGeForceRTX3060. The program compilation environment is: Window11 system, 

Pytorch1.1.0, python3.8, CUDA11.0, OpenCV library, and other parameters use YOLOv8 default parameters. 

 

Performance evaluation index  

 In order to effectively evaluate the performance of the HCES-YOLOv8n model, five indicators—

accuracy, recall rate, mAP, GFLOPs, and parameter quantity—were used to assess the performance of the 

model, as shown in Equations (1) - (4). 

𝑃 =
𝑇𝑝

𝑇𝑝+ 𝐹𝑝
                   (1) 

𝑃 =
𝑇𝑝

𝑇𝑝+ 𝐹𝑛
                   (2) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
0

1
                   (3) 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑛

1

𝑛
                   (4) 

 

 In the formula, Tp was the number of correctly predicted targets, Fp was the number of incorrectly 

predicted targets, and Fn was the number of omitted targets to be predicted. P was the accuracy rate, defined 

as the proportion of samples correctly predicted as the target to the samples predicted as the target. R was 

the recall rate, defined as the proportion of samples correctly predicted as the target to all target samples. AP 

was the average accuracy, and n was the number of detected categories. 

 

Ablation experiment 

 The purpose of this study was to improve the YOLOv8n network and develop a lightweight egg quality 

detection algorithm. To evaluate the impact of various improvements, ablation experiments were conducted 

under the same training environment and hyperparameters, testing a total of 8 schemes. Models 2, 3, and 4 

added the HGNetv2 module and ContextGuideFusionModule to the original model, respectively, and replaced 

the original structure with EfficientHead, all of which were single module changes. Models 5, 6, and 7 added 

ContextGuideFusionModule and EfficientHead one by one based on HGNetv2, and replaced the original loss 

function of YOLOv8 with SIoU. All models detected the same image, and the effect was shown in Fig. 8.  
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From the perspective of detection effect, the improved model reduced missed detections and false 

detections, successfully identifying eggs with small features. The evaluation indexes of the seven models were 

sorted out, as shown in Table 1. 

 Table 1 showed that under the same experimental conditions, after replacing the original backbone 

with HGNetv2, the accuracy, recall, and average accuracy of the model increased by 1.8%, 3%, and 3%, 

respectively, while the floating-point operations and parameter scale were reduced by 1.2G and 0.66M, 

respectively. Using the ContextGuideFusionModule structure, the accuracy, recall, and average accuracy 

increased by 1.8%, 3.1%, and 2.7%, respectively. Using the DetectEfficient structure, the model's performance 

improved while the floating-point operations and parameter scale were reduced by 3.3G and 1.41M, 

respectively. Combined with HGNetv2 and ContextGuideFusionModule, the accuracy, recall, and average 

accuracy increased by 2.9%, 3.7%, and 3.4%, respectively, and the floating-point operations and parameter 

scale decreased by 1.1G and 0.5M, respectively. After improving DetectEfficient based on Model 5, the 

floating-point operations and parameter scale were reduced by 2.4G and 0.58M, respectively, while the 

accuracy and recall rate remained almost unchanged. Finally, after replacing CIOU with SIOU in model 6, the 

accuracy and recall rate increased by 0.3% and 1.0%, respectively. In summary, these four improved 

strategies effectively enhanced the performance of the model while maintaining high detection accuracy. 

 

 
a)                                     b)                                     c)                                        d) 

 
  e)                                       f)                                      h)                                        i) 

Fig. 8 – Ablation experiment detection effect diagram 

 
Table 1 

Performance comparison of ablation experiments 

 

Network 

model 

HGNetv2 
ContextGuide 

FusionModule 

Efficient 

Head  
SIOU P/% R/% mAP@0.5% FLOPs/G 

Parameter 
size / MB 

Model 1 — — — — 80.2 78.6 85.4 8.1 3.01 

Model 2 √ — — — 82.0 81.6 88.4 6.9 2.35 

Model 3 — √ — — 82.0 81.7 88.1 8.3 3.16 

Model 4 — — √ — 80.5 80.8 86.9 4.8 1.60 

Model 5 √ √ — — 83.1 82.3 88.8 7.0  2.51 

Model 6 √ √ √ — 83.7 82.5 88.7 4.6 1.93 

Model 7 √ √ √ √ 84.0 83.5 88.6 4.6 1.93 

A is the original image, b is the detection result of the YOLOv8n model, and c ~ j is the detection result of models 3 ~ 7. 

 

Comparative experiments of different lightweight backbone networks 

 In the previous section, several improvements were implemented to YOLOv8n and verified their 

effectiveness. To further prove the effectiveness of the introduced lightweight HGNetv2 backbone network, 

comparative experiments were conducted with other lightweight backbone networks. 

 The GhostHGNetv2, RepHGNetV2, and EfficientViT networks were used in this experiment. These 

networks served as replacements for the backbone network of the benchmark model and were compared with 

the HGNetv2 proposed in this paper. Table 2 listed the comparative experimental results of different lightweight 

backbone networks. It could be seen from the experimental results in Table 2 that both GhostHGNetv2 and 

RepHGNetv2 showed improvements in accuracy, but the recall rate and average accuracy hardly changed. In 

contrast, StarNet's recall rate and average accuracy improved, but its accuracy declined.  
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The HGNetv2 proposed in this paper not only successfully reduced the floating-point operations by 

14.8% and the number of parameters by 21.9%, but also achieved significant improvements in accuracy, recall, 

and average accuracy. This result demonstrated that HGNetv2 could effectively improve the overall 

performance of the model while maintaining high efficiency. 

Table 2 
Comparative experiments of different lightweight trunks 

Network model P/% R/% mAP@0.5% FLOPs/G Parameter size / MB 

YOLOv8n（Baseline） 80.2 78.6 85.4 8.1 3.01 

GhostHGNetv2 83.8 78.5 85.8 6.8 2.31 

RepHGNetV2 82.3 78.8 85.9 6.9 2.37 

StarNet 79.5 81.1 86.2 7.1 2.40 

HGNetv2 82.0 81.6 88.4 6.9 2.35 

YOLOv8n（Baseline） 80.2 78.6 85.4 8.1 3.01 

GhostHGNetv2 83.8 78.5 85.8 6.8 2.31 

 

Model performance 

 To verify the performance of HCES-YOLO in the training process, the training effect was evaluated by 

observing the change trend of the SIOU loss function value compared to the original loss function. The model 

comparison curve was shown in Fig. 9. In Fig. 9 (a), as training deepened, the loss value of the bounding box 

gradually decreased, indicating that the model continued to improve the positioning accuracy of the bounding 

box. In Fig. 9 (b), the decreasing trend of classification loss showed that the model was gradually enhanced in 

its ability for category discrimination. Fig. 9 (c) illustrated that the model also had high recognition ability for a 

few categories of samples. The stationary state curve in Fig. 9 indicated that there was no overfitting or 

underfitting phenomenon during the model training process. Throughout the training process, the model 

learned effective feature representation, demonstrating that it had good stability and generalization ability when 

completing the recognition task. From the above, it could be concluded that the loss value of the improved 

HCES-YOLO model converged faster compared to the original YOLOv8n loss function, and the loss value was 

smaller than that of YOLOv8n. This indicated that the improved method in this paper effectively enhanced the 

convergence ability of the model. 

 
a）                                                    b）                                                         c） 

Fig. 9 - Loss function comparison curve 
a）Box Loss; b）CLS Loss; c）DFL Loss 

 

Comparative experiment of different models 

 In this paper, a series of improvements were made to the YOLOv8n model to enhance the accuracy 

and efficiency of target detection, and the performance was compared with other mainstream models through 

experiments. Following the principle of control variables, the data training and evaluation in Table 3 were 

carried out in a unified hardware and software environment. The experimental results showed that Faster R-

CNN, as a two-stage object detection algorithm, generated a large number of redundant boxes due to the need 

to produce candidate boxes, which increased the computational burden, and the recall rate was not 

satisfactory. The recall rate and average accuracy of the SSD algorithm on the egg quality dataset were 70.4% 

and 71.4%, respectively. Although multi-scale feature fusion was used, the response was insufficient when 

dealing with small targets, which affected accuracy, leaving a gap compared to other algorithms. 

 Single-stage object detection algorithms such as Tood and YOLOv7 had similar accuracy, recall, and 

average accuracy to YOLOv8n, but their floating-point operations and parameter scale were much larger than 

those of YOLOv8n. Although the floating-point operations and parameter scale of YOLOv5n were lower than 
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those of YOLOv8n, its performance index was not as good as that of YOLOv8n. In summary, YOLOv8n 

significantly reduced computing resources and memory usage while achieving better detection results, thereby 

improving the interpretability of the model. Therefore, this paper chose YOLOv8n as the original model. 

Compared with YOLOv8n, HCES-YOLOv8 improved accuracy by 3.8%, recall rate by 4.9%, and average 

accuracy by 3.2% on key indicators, respectively. At the same time, the floating-point operations and 

parameter scale were greatly reduced, making the model lighter and especially suitable for resource-

constrained devices. The comparative experimental results clearly showed that the HCES-YOLOv8 algorithm 

exhibited superior performance in the field of egg quality target detection. 

Table 3 
Performance comparison of different models 

Network model P/% R/% mAP@0.5% FLOPs/G Parameter size / MB 

Faster R-CNN — 76.6 79.2 182.3 41.37 

SSD — 70.4 71.4 33.6 25.6 

Tood — 80.1 86.6 172 32.03 

YOLOv5n 75.4 84.4 83.3 7.2 2.51 

YOLOv7 77.7 80.1 86.6 103.2 34.79 

YOLOv8n 80.2 78.6 85.4 8.1 3.01 

PSCW-YOLOv8n 84.0 83.5 88.6 4.6 1.93 

 

Test result  

 To verify the practicality of the improved model, real-time detection of egg quality in the egg image 

acquisition system was carried out. According to the research, the egg-feeding capacity of a single processing 

line was 10,000 to 20,000 eggs per hour, and the required egg-feeding speed was 3 to 5 meters per minute. 

Therefore, it was planned to conduct experiments on the laboratory test platform to evaluate the performance 

of the improved YOLOv8n model in practical applications. 300 eggs were obtained from the farm and all 

categories of samples were uniformly mixed. Before the start of the experiment, all the sample eggs were 

manually placed on the tray on the conveyor belt, with the surface eggs in the area with obvious features facing 

upward, and there was no obstruction between the eggs. 

 
a)                                    b)                                     c)                                        d) 

Fig. 10 - Model real-time detection effect diagram 
 

 After starting the drive motor, all the eggs were transported at a set speed. The egg image was 

collected by the camera, and the trained improved YOLOv8n model was introduced to detect the egg quality, 

with the detection result being output at the end. The eggs detected each time were counted and their accuracy 

was assessed. The accuracy of egg quality was 88.4%. Fig. 10 showed a random screenshot from the 

detection process. It could be seen from Fig. 10 that the detection model proposed accurately detected the 

quality of the eggs appearing in the visual window and met the real-time detection requirements of the egg 

assembly line collection work on the farm. 

 

CONCLUSIONS 

 In this study, an egg quality detection model was established based on an improved YOLOv8n 

network, which can effectively recognize small targets. The test results on the same dataset show that the 

improved model achieves an accuracy of 84.0%, a recall of 83.5%, and an average accuracy of 88.6% in egg 

quality detection, outperforming the original YOLOv8n network and other detection models. Its computational 

cost was also reduced and its accuracy in identifying minor damages and pollution was improved. On-site 

experiments were conducted on the testing platform built in the laboratory, and the improved YOLOv8n model 

can effectively detect leaking eggs during movement at a conveying speed range of 3 to 5 m/min. The 

comprehensive detection performance reached 88.4%, providing a new solution for rapid non-destructive 

testing of eggs. 
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