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ABSTRACT  

To address the issues of low detection accuracy, slow speed, and large parameter size in detecting fresh table 

grapes in natural orchard environments, this study proposes an improved grape detection model based on 

YOLOv8n, termed YOLOGPnet. The model replaces the C2f module with a Squeeze-and-Excitation Network 

V2 (SENetV2) to enhance gradient flow through more branched cross-layer connections, thereby improving 

detection accuracy. Additionally, the Spatial Pyramid Pooling with Enhanced Local Attention Network 

(SPPELAN) substitutes the SPPF module, enhancing its ability to capture multi-scale information of the target 

fruits. The introduction of the Focaler-IoU loss function, along with different weight adjustment mechanisms, 

further improves the precision of bounding box regression in object detection. After comparing with multiple 

algorithms, the experimental results show that YOLOGPnet achieves an accuracy of 93.6% and mAP@0.5 of 

96.8%, which represents an improvement of 3.5 and 1.6 percentage points over the baseline model YOLOv8n, 

respectively. The model's computational load, parameter count, and weight file size are 6.8 Gflops, 2.1 M, and 

4.36 MB, respectively. The detection time per image is 12.5 ms, showing reductions of 21.84%, 33.13%, 

30.79%, and 25.60% compared to YOLOv8n. Additionally, comparisons with YOLOv5n and YOLOv7-tiny in 

the same parameters reveal accuracy improvements of 0.7% and 1.9%, respectively, with other parameters 

also showing varying degrees of enhancement. This study offers a solution for accurate and rapid detection of 

table grapes in natural orchard environments for intelligent grape harvesting equipment. 

 

摘要 

针对自然果园环境下鲜食葡萄的检测精度低、速度慢、参数量较大等问题，本研究提出了一种基于改进

YOLOv8n 的葡萄检测模型（YOLOGPnet）。该模型使用压缩与激励网络（Squeeze-and-Excitation Network 

V2，SENetV2）替换了 C2f 模块，通过更多的分支跨层连接使梯度流更加丰富，提高模型的检测精度；并将

SPPF 模块替换为增强局部注意力的空间金字塔池化网络（Spatial Pyramid Pooling with Enhanced Local 

Attention Network，SPPELAN），提升了网络捕捉目标果实的多尺度信息的能力；通过使用 Focaler-IoU 损失

函数，和引入不同的权重调整机制提高了目标检测中的边界框回归精度问题。试验结果表明，YOLOGPnet 的

精确度和 mAP@0.5 分别为 93.6%、96.8%，相较于 YOLOv8n，分别提高了 3.5 和 1.6 个百分点。该模型的计

算量、参数量和权重文件大小分别为 6.8 Gflops、2.1 M 和 4.36 MB，单幅图像检测耗时为 12.5 ms，相较于

YOLOv8n，分别降低了 21.84%、33.13%、30.79%和 25.60%。该研究为智能化葡萄采摘装备在自然果园环

境下准确且快速地检测鲜食葡萄提供了一种解决方案。 

 

INTRODUCTION 

According to the Food and Agriculture Organisation of the United Nations (in full English, FAO), the 

global production of grapes reached about 80.1 × 108 kg in 2022 (Khan N et al., 2021). Grape harvesting, as 

a labour-intensive operation, is challenged by global labour resource constraints, and harvesting robotics is 

becoming increasingly important in grape growing (Zhao et al., 2023). Traditional target detection in dense 

berry class mainly relies on colour, shape and texture features, and with the development of deep learning 

technology, a large number of deep learning-based target detection methods with high accuracy and 

robustness have emerged (Ying et al., 2023). 

Over the years, researchers worldwide have extensively studied machine vision technology for fruit and 

vegetable target recognition and picking point localization (Song et al., 2023). Lu et al. (2021) proposed the 

Swin-T-YOLOv5 model to detect grape clusters at different growth stages. Zhao et al. (2022) introduced an 

improved YOLOv4 method for predicting grape cluster picking points.  
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Wu et al. (2023) developed the Ghost-HRNet model, integrating object detection and key point 

localization to focus on grape peduncle positioning. Ning et al. (2021) innovatively used an improved Mask R-

CNN to select optimal picking points at the horizontal central positions near the critical centroid of the peduncle 

area. Zhang et al. (2023) employed YOLOv5 GAP to detect green grape clusters effectively in densely grown 

and shaded environments. Su et al. (2022) proposed a lightweight grape detection method by integrating 

feature maps of different resolutions. Wang et al. (2020) introduced the SwinGD model for visual recognition 

of grape clusters. Cha et al. (2021) replaced Faster R-CNN's backbone with VGG16 to achieve accurate 

detection of Red Globe grapes in natural environments. Zhu et al. (2021) improved the YOLOX-Tiny model to 

detect red and green grape clusters. Sun et al. (2023) proposed the MRWYOLOv5s model, achieving a mAP 

of 97.74%, an improvement of 2.32% over the original model. Li et al. (2021) developed the YOLO grape 

model for detecting grape clusters of various colors, achieving an F1-score of 90.93% for green grapes and 

an average F1-score of 91.42%. Zhao et al. (2022) designed a lightweight end-to-end YOLO-GP model with 

integrated picking point prediction. Cha et al. (2023) employed transfer learning for Red Globe grape detection 

in natural settings. Zhang et al. (2023) utilized YOLOv5 GAP for accurate detection of densely grown grape 

clusters. Liu et al. (2024) proposed the YOLOX-RA model for fast and precise detection of densely grown and 

occluded grape clusters. Lu et al. (2022) developed the Swin-Transformer-YOLOv5 model, achieving 97% 

detection accuracy under cloudy conditions. Guo et al. (2023) introduced the YOLO y4+ model, which 

enhanced robustness in unstructured environments using a parameter-free attention mechanism. Zhang et al. 

(2022) developed the Grape-Internet dataset, improving detection efficiency through lightweight processing. 

Qiu et al. (2022) enhanced detection speed with an improved SM-YOLOv4 algorithm, achieving a detection 

time of 10.82 ms. Yang et al. (2024) proposed the YOLOv8s-grape detection method, significantly improving 

mAP and detection efficiency. Jiang et al. (2024) introduced the YOLOv8n-GP model, effectively enhancing 

feature extraction for grape stems. 

In addition to its extensive application in grape harvesting, the YOLO series of algorithms has been 

widely used for target recognition and pest detection in other fruits and vegetables, providing valuable insights 

for improving recognition algorithms in this study. Wen et al. (2024) proposed a lightweight detection model 

based on an improved YOLOv8 network, incorporating partial convolution (Pconv) blocks to enhance apple 

detection under occlusion and varying lighting conditions. Chen et al. (2024) modified the YOLOv5 backbone 

by adding Transformer modules with attention mechanisms, replacing the original PAFPN Neck with a 

bidirectional weighted fusion BiFPN structure, and integrating a P2 shallow downsampling module in the Head 

structure. These modifications improved the accuracy of apple detection in natural environments by 3.7%. 

Zhao et al. (2022) conducted detection experiments on melon fruits using YOLOv3, YOLOv4, YOLOv5s, and 

an improved ResNet_YOLO model, finding YOLOv5 to perform best and demonstrating the feasibility of mixed 

detection for images of four Cucurbitaceae fruits. Ren et al. (2024) introduced MSCI-YOLOv8s, which 

enhanced the model's ability to capture multi-scale disease features in grape leaf images and achieved a real-

time detection efficiency of 37.2 ms. 

These studies have made significant progress in grape cluster target detection and picking point 

localisation, providing strong technical support to further improve fruit and vegetable recognition accuracy, but 

in the actual grape picking work it is necessary to ensure the recognition accuracy of fruit targets as well as to 

achieve the lightweight of the visual model, so this study improves and compares the existing models from 

these two aspects.  

 

MATERIALS AND METHODS 

Construction of grape image data set in orchard environment 

Image acquisition 

The grape fruit images in this dataset were captured between August 20th and 23rd, 2023, at the Caoxin 

Research Base in Yangling District, Xianyang City, Shaanxi Province. Due to the challenge of distinguishing 

green grapes (such as Shine Muscat, Bijou, and Zuijinxiang) from the similarly colored leaves, green grape 

varieties were selected as the experimental subjects. Based on varying shooting distances, the images were 

categorized into close-range (0.5m), mid-range (1.2m), and long-range (2m) shots, and were captured using 

a HUAWEI P60 smartphone. A total of 1,536 images were collected under different lighting conditions and in 

complex environments, of which 1,100 images were used for training, 200 for validation, and 236 for testing. 

The training set was used for model training and parameter tuning, the validation set for optimizing the network 

structure, and the test set for evaluating the model's generalization capability.  
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The images were uniformly cropped to a resolution of 1240×1240, and resized to 640×640 pixels during 

training to ensure efficient inference and accuracy. The dataset includes grape clusters of various forms, with 

up to 20 clusters appearing in long-range images, and close-range images presenting cases of overlapping 

and occlusion. 

 

   
(1) Long-range (2) Close-range (3) Single target 

   

(4) Overlapping conditions (5) Occlusion conditions (6) Negative samples 

Fig. 1 - Grape fruit collection image example 

 

The sample images were manually annotated using the LabelImg software, where the grape cluster 

regions were labeled with minimum enclosing bounding boxes. This process generated XML files in VOC 

format, extracting information such as the coordinates of the center point, bounding box width, and height, 

which were then saved as TXT label files. The entire image dataset was divided into training, validation, and 

test sets. A diverse dataset enhances the model's generalization ability and robustness, while also improving 

the model's adaptability to different scales. On the self-constructed dataset, YOLOv8 employed various data 

augmentation techniques, including mosaic augmentation, mixup augmentation, random perturbation, and 

color distortion, effectively expanding the dataset size. 

 

Detection model based on improved YOLOv8 

YOLOGpnet 

YOLOv8 is categorized into five models—n, s, m, l, and x—designed for different application scenarios. 

As the model depth increases, detection accuracy improves. YOLOv8n, with the smallest number of 

parameters, offers the fastest detection speed. To ensure real-time performance, this study focuses on 

enhancing the YOLOv8n model. The architecture consists of four components: the Input, Backbone, Neck, 

and Head. 

As shown in Figure 2, YOLOGPnet replaces the C2f structure of the baseline model with SENetV2 in 

the Backbone. C2f is an improved version of the C3 structure in YOLOv5, whereas SENetV2 enriches the 

gradient flow through more branched cross-layer connections, enhancing feature representation capabilities. 

It aims to improve recognition accuracy by optimizing spatial feature extraction and channel-level 

representation. Additionally, the SPPF module is replaced by the SPPELAN module, allowing the network to 

better adapt to input images of varying sizes, capture multi-scale information, and improve feature map 

expression and object detection performance. In the Neck network, a Path Aggregation Network (PAN) is 

employed to enhance feature fusion for objects at different scales. The Head network decouples the 

classification and detection processes and is mainly responsible for loss calculation and bounding box 

selection. Loss computation includes positive and negative sample assignment strategies and the calculation 

of the loss function, with the regression branch incorporating Distribution Focal Loss (DFLoss) and Complete 

Intersection over Union Loss (CIOULoss). YOLOGPnet replaces CIOULoss with the Focaler-IoU loss function, 

improving the accuracy of bounding box prediction by optimizing class imbalance and bounding box regression 

through a weight adjustment mechanism. 
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Fig. 2 - YOLOGpnet model structure 

 

SENetV2 module 

The multi-layer structure of deep neural networks makes it difficult to effectively propagate learned 

features, which can lead to performance degradation. This issue can be mitigated by enhancing feature 

propagation through shortcut connections in residual modules. The Squeeze-and-Excitation Network V2 

(SENetV2) is an image classification model based on convolutional neural networks (CNNs), which improves 

recognition accuracy by extracting spatial features and optimizing channel representations. Figure 3 compares 

three network modules: ResNeXt merges features through a multi-branch CNN structure; SENet applies global 

average pooling, fully connected layers, and Sigmoid activation after standard convolution to obtain channel 

weights and scale the features; SENetV2 combines the characteristics of both, employing a multi-branch fully 

connected layer to squeeze and excite the features before scaling them. 

  
（a) ResNeXt；           （b)SENet；                    （c)SENetV2 

Note: Concatenate refers to the merging operation, Scale refers to the scaling operation, 
and 1×1×C denotes a fully connected layer with a size of 1×1 and C channels. 

Fig. 3 - Comparison of neural network modules 
 

Fig. 4 - Compression and 
excitation module structure 

diagram 
 

The design of SENetV2 enhances feature representation granularity and the ability to integrate global 

information through a multi-branch structure. The proposed SaE module (as shown in Figure 4) dynamically 

adjusts channel weights through the squeeze-and-excitation process, either enhancing or suppressing specific 

channel features. The output of the squeeze operation is passed through a multi-branch fully connected layer 

for excitation and then restored to its original shape. By incorporating multi-branch dense layer design, 

SENetV2 significantly improves prediction accuracy while maintaining nearly the same number of parameters. 

It enhances the network's ability to capture both intra-channel and inter-channel patterns, effectively 

accounting for dependencies between channels.  
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The training process is illustrated in Fig.5. Extensive experiments demonstrate that SENetV2 surpasses 

existing architectures in terms of accuracy. 

   
Fig. 5 - Compression and excitation module 

 

SPPELAN module 

The Spatial Pyramid Pooling with Enhanced Local Attention Network (SPPELAN) module is designed 

to improve model performance. It consists of two key components: Spatial Pyramid Pooling (SPP) and the 

Enhanced Local Attention Network (ELAN). Figure 6 compares the processing flows of SPPF and SPPELAN. 

SPP generates fixed-size features through multi-scale pooling, enhancing the network's ability to capture multi-

scale information and improving its adaptability to input images of varying sizes and object detection 

performance. ELAN, utilizing a local attention mechanism, dynamically adjusts feature weights, allowing the 

network to focus more on critical regions. This makes it particularly effective in complex backgrounds and for 

detecting small objects, which is especially useful in fruit recognition tasks within orchard environments. The 

feature maps processed by SPP and ELAN are then fused, further enhancing the model’s representational 

capacity. 

 
 Maxpool2d refers to the application of 2D max pooling on an input signal composed of multiple input planes. 

 
Fig. 6 - (a)SPPF Module (b)SPPELAN Module 

 
Focaler-IoU loss function 

The loss function is a critical tool for measuring the difference between model predictions and actual 

results. In the regression branch of YOLOv8's head network, Distribution Focal Loss (DFLoss) and Complete 

Intersection over Union Loss (CIOULoss) are combined. YOLOGPnet replaces CIOULoss with Focaler-IoU. 

The CIOU loss function (Formula 1) primarily considers the overlap degree and size differences between 

bounding boxes, making it susceptible to scale variations and reducing detection accuracy. 𝐼𝑜𝑈 represents the 

intersection over union between the predicted and ground truth boxes, 𝛼 is a weighting coefficient, 𝜈 reflects 

the aspect ratio difference between the predicted and ground truth boxes, 𝜌2(𝑏𝑔𝑡 , 𝑏) denotes the Euclidean 
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distance between their center points, and 𝑐 is the diagonal length of the smallest enclosing box of the two. To 

improve the accuracy of grape picking point recognition, optimizing the choice of loss functions is crucial. 

To improve the accuracy of grape picking point identification, optimizing the choice of the loss function 

is especially important. 

𝐶𝐼𝑜𝑈−𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 + 𝛼𝜈 +
𝜌2(𝑏𝑔𝑡,𝑏)

𝑐2                                                    (1) 

The Focaler-IoU loss function combines Focal Loss and IoU Loss to address issues of class imbalance 

and bounding box regression accuracy in object detection. Focal Loss, as defined in Equation (2), balances 

the weights of positive and negative samples through the parameter α and adjusts the importance of hard and 

easy samples using the parameter𝛾; �̂� represents the predicted probability of the model. IoU evaluates the 

overlap between the predicted and ground truth bounding boxes, with Equation (3) representing the ratio of 

the intersection area to the union area of the predicted and true boxes. IoU Loss, as defined in Equation (4), 

optimizes the position of the predicted box by maximizing its IoU with the ground truth box, thereby improving 

regression accuracy, where 𝐵𝑝 is the predicted bounding box and 𝐵𝑡 is the ground truth bounding box. 

Focaler-IoU focuses on different regression samples and reconstructs the IoU loss using linear mapping, 

emphasizing the impact of hard and easy samples in bounding box regression. Equation (5) defines the 

mechanism by which the loss is adjusted according to the IoU value: when IoU is below the lower threshold d, 

the loss is set to 0; when IoU exceeds the upper threshold u, the loss is set to 1; and when IoU falls between 

d and u, the loss increases linearly with the IoU value. This design focuses on samples with moderate overlap, 

enhancing the model's feature extraction capability. 

 

Focal Loss=-α(1-�̂�)𝛾𝑙𝑜𝑔 (�̂�)                                                                                    (2) 

𝐼𝑜𝑈 =
Area of Overlap

Area of Union
=

|𝐵𝑝∩𝐵𝑡|

|𝐵𝑝∪𝐵𝑡|
                                                                                            (3) 

IoU Loss=1-IoU(𝐵𝑝, 𝐵𝑡)                                                                                          (4) 

𝐼𝑜𝑈𝑓𝑜𝑐𝑎𝑙𝑒𝑟_𝐿𝑜𝑠𝑠 = {

0,     𝐼𝑜𝑈 < 𝑑
𝐼𝑜𝑈−𝑑

𝑢−𝑑
,     𝑑 ≪ 𝐼𝑜𝑈 ≪ 𝑢

1,     𝐼𝑜𝑈 > 𝑢

                                                             (5) 

RESULTS 

EXPERIMENTAL DESIGN AND ANSLYSIS  
Evaluation indicators 

To validate the detection capability of the YOLOGPnet algorithm, the specific calculation formulas for 

accuracy and mean Average Precision (mAP) used in this study are provided in Equations (6) and (7) as 

evaluation metrics for detection performance, 𝑇𝑃  refers to the number of samples correctly predicted as 

positive by the model, while 𝐹𝑃 represents the number of samples incorrectly predicted as positive. 𝑁 denotes 

the total number of target categories to be detected or classified by the model, and 𝐴𝑃𝑖 is the average precision 

of the 𝑖 category. The model’s performance is assessed using mAP@0.5%, parameter count, and GFLOPs. 

Additionally, for evaluating the real-time performance of the grape orchard detection and harvesting task, the 

model's inference speed is measured using the frames per second (FPS) for single-image inference. 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 （6） 

 

𝑚𝐴𝑃 =
1

𝑁
∑  

𝑛

𝑖=1

𝐴𝑃𝑖 （7） 

Performance Validation of the Loss Function 

The optimization of the loss function allows the predicted results to better approximate the true values. 

Figure 7 compares the CIoU loss function used in the original YOLOv8n model with the Focaler-IoU loss 

function introduced in this study. Their convergence speed and loss values are similar; however, when using 

the CIoU loss function for the bounding box, the regression is slower, and the final loss value after convergence 

is higher. The Focaler-IoU loss function introduced in this study demonstrates a faster and more stable 

convergence, gradually converging after 280 epochs with the lowest final loss value. This not only accelerates 

the convergence speed of the model but also improves its accuracy.  
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As shown in Figure 8, the blue bounding boxes represent the detection results using Focaler-IoU Loss, 

while the green bounding boxes correspond to the results using CIoU Loss. Focaler-IoU Loss enables the 

bounding boxes to more closely approximate the minimum enclosing rectangles of the target grapes, resulting 

in superior detection performance. 

 

  

 CIoU indicates that the model uses CIoU Loss as the bounding box loss 
function;Focaler-IoU indicates that the model uses Focaler-IoU Loss as 

the bounding box loss function. 

Fig. 7 - Comparison of Bounding Box Loss Convergence 
with Improved Methods 

Fig. 8 - Comparison of Detection Performance 

between CIoU Loss and Focaler-IoU Loss 

 

Comparison of Detection Results from Different Models 

To evaluate the detection performance of different models on the grape cluster dataset, this study 

selected YOLOv5s, YOLOv7-tiny, YOLOv8n, and the improved model YOLOGPnet for experiments on the 

same test set. The detection results of each model were compared and analyzed using metrics such as 

accuracy. Two-stage object detection algorithms were excluded from the comparison due to their large 

computational load and weight file size, which do not meet the requirements for lightweight real-time detection 

and are unsuitable for use in orchard environments. The YOLO series is more appropriate for the lightweight 

real-time detection demands of this dataset. The experimental results of different models are presented in 

Table 2. 

  Table 2 
Comparative Experimental Results of Different Models on the Test Set 

Model 
Precision 

(%) 

mAP 
@0.5 
(%) 

Gflops Parameter（M） 
Weight File 
（MB） 

Inference Time 
per Image 
（ms） 

YOLOv5s 92.9 95.7 10.3 3.8 7.4 15.9 

YOLOV7-tiny 91.7 94.6 7.8 2.8 4.5 12.1 

YOLOV8n 90.1 95.2 8.7 3.2 6.3 16.8 

Improved Model 
YOLOGpnet 

93.6 96.8 6.8 2.14 4.36 12.5 

 

 

The comparative results show that the proposed YOLOGPnet model outperforms YOLOv5n, and 

YOLOv7-tiny across all evaluation metrics. Compared to YOLOv5s, the proposed model improves accuracy 

and mAP@0.5 by 0.7 and 1.1 percentage points, respectively, while reducing computational load, parameter 

count, and weight file size by 33.98%, 43.68%, and 41.08%, respectively, with an increase in detection speed 

of 3.4 ms. The model significantly reduces computational resource consumption while maintaining high 

accuracy, making it suitable for deployment on mobile devices due to its smaller memory footprint and weight 

file size. 

As shown in Table 3, the improved model achieves an accuracy of 93.6% and an mAP@0.5 of 96.8%, 

representing increases of 3.5 and 1.6 percentage points, respectively, compared to the original YOLOv8n 

model. Additionally, all other metrics show improvements across different models. The model's weight file size 

is reduced by 30.79%, while parameter count and detection time are reduced by 33.13% and 4.3 ms, 

respectively. Overall, the model demonstrates outstanding performance in grape cluster detection, with 

significantly enhanced recognition accuracy. 
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Ablation Study 

To verify the effectiveness of the proposed improvements, ablation experiments were conducted under 

the same experimental conditions using the original YOLOv8n as the baseline. By testing different 

combinations of the SENetV2, SPPELAN module, and Focaler-IoU loss function, the accuracy, mAP@0.5, 

computational load, weight file size, and single-image detection time were evaluated on the same grape 

dataset. The results are shown in Table 3. In these experiments, A represents replacing the C2f module in 

YOLOv8n's backbone network with SENetV2, B represents replacing the SPPF module with SPPELAN, and 

C represents replacing the CIoU loss function with Focaler-IoU. The symbol “×” indicates that the improvement 

strategy was not applied, while “√” indicates that the improvement strategy was applied. 

Table 3  
Ablation Study of Different Improvement Methods 

A B C 
Precision 

(%) 

mAP 
@0.5 
(%) 

Gflops 
Parameter（

M） 

Weight File 
（MB） 

Inference 
Time per 

Image 
（ms） 

— — — 90.1 95.2 8.7 3.2 6.3 16.8 

√ — — 93.2 96.4 7.3 2.7 4.3 12.0 

— √ — 91.9 95.3 7.6 2.6 4.7 14.1 

— — √ 90.9 95.1 8.2 3.1 6.1 12.6 

√ √ — 93.4 96.6 6.7 2.1 4.2 11.8 

√ — √ 92.7 96.1 7.2 2.3 4.9 12.9 

√ √ √ 93.6 96.8 6.8 2.14 4.36 12.5 

 

Compared to the baseline YOLOv8n model, the YOLOv8n+A model improved detection accuracy and 

mAP@0.5 by 3.1 and 1.2 percentage points, respectively, while reducing the computational load, parameter 

count, weight file size, and single-image detection time by 16.09%, 37.5%, 31.75%, and 28.57%, respectively. 

This improvement is attributed to the introduction of SENetV2, which enhances feature extraction capabilities 

through the squeeze-and-excitation operations while reducing model parameters, thus validating its 

effectiveness in both lightweight design and performance enhancement. The YOLOv8n+B model improved 

detection accuracy and mAP@0.5 by 1.8 and 0.1 percentage points, respectively, while reducing the 

computational load, parameter count, weight file size, and detection time by 12.64%, 18.75%, 25.4%, and 

16.07%, respectively. The SPPELAN module reduced feature redundancy and enhanced the extraction of 

detailed features, further improving model performance. The YOLOv8n+C model increased detection accuracy 

by 0.8 percentage points, although mAP@0.5 decreased slightly by 0.1 percentage points. However, single-

image detection time decreased by 4.2 ms, with parameter count and weight file size remaining almost 

unchanged. 

Compared to YOLOv8n, the YOLOv8n+A+B+C model improved accuracy and mAP@0.5 by 3.5 and 

1.6 percentage points, respectively, while reducing computational load, parameter count, weight file size, and 

detection time by 21.84%, 34.38%, 30.79%, and 25.60%, respectively. When compared to the YOLOv8n+A+B 

model, accuracy and mAP@0.5 improved by 0.2 percentage points, with computational load remaining nearly 

the same. Compared to the YOLOv8n+A+C model, the YOLOv8n+A+B+C model reduced detection time by 

0.4 ms, while increasing accuracy and mAP@0.5 by 0.9 and 0.7 percentage points, respectively. Additionally, 

the computational load, parameter count, and model size decreased by 5.56%, 8.70%, and 11.02%, 

respectively, demonstrating significantly superior overall performance compared to the YOLOv8n+A+C model. 

 

Heatmap Visualization 

To intuitively evaluate the detection performance of the YOLOGPnet model, this study utilizes Grad-

CAM to generate heatmaps for visualizing the target detection process. In the heatmaps, red and yellow 

regions represent areas that have a greater influence on the model's decision-making. Figure 9 displays the 

detection results for several grape images, indicating a high level of consistency between the YOLOGPnet 

model and the original images. Compared to the original model, YOLOGPnet more accurately identifies 

overlapping fruits and shows improved feature capture along the edges of the fruits. This demonstrates its 

enhanced ability to extract and focus on features in complex backgrounds and for weak semantic targets. 
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（a）YOLOv8n （b）YOLOGPnet 

Fig. 9 - Heatmap of Grape Image Detection 

 

Comparison of Detection Performance Across Models Under Different Conditions 

To validate the performance and generalization ability of the improved model in real grape orchard 

environments, this study randomly selected 30 images under different shooting conditions, including close-

range, long-range, cloudy, and sunny scenes. The images contain complex situations such as fruit overlap 

and leaf occlusion, without applying image augmentation, to simulate a realistic orchard environment. 

Comparative experiments were conducted using the YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOGPnet 

models. Figures 10 and 11 display the prediction results of each model, with purple, green, red, and blue 

bounding boxes representing the predictions of YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOGPnet, 

respectively. Missed and misdetections are marked with light blue and yellow circles. 

Close-range grape images help analyze model detection performance in complex situations such as 

overlap and occlusion. Figure 10 shows that detecting green grapes is challenging due to their similar color to 

the orchard background. Under sufficient lighting, the distinction between grapes and the background is clearer, 

and all four models perform relatively well. However, YOLOv8n performs poorly in cases of severe occlusion, 

while YOLOv7-tiny tends to identify overlapping grapes as a single target. Additionally, both models mistakenly 

detect branches as grapes. In contrast, YOLOGPnet demonstrates excellent detection accuracy in complex 

scenes, with its predicted bounding boxes more closely approximating the minimum enclosing rectangles of 

the targets, reducing gaps and over-wrapping, and improving the accuracy of picking point prediction. 

YOLOGPnet only exhibited one instance of an inaccurate bounding box, whereas the other models showed 

more misdetections, and YOLOv8n even missed the target entirely. 

Long-range grape images better reflect the performance of each model in multi-object detection, 

particularly under poor lighting conditions, which further test the models' generalization capabilities. On cloudy 

days, the brightness of the grapes and leaves decreases, making the boundaries less distinct and the detection 

of overlapping and occluded grapes more difficult. Figure 11 shows that YOLOv5s and YOLOv8n performed 

poorly in long-range detection under all weather conditions, with many missed and misdetections. YOLOv7-

tiny performed better on sunny days compared to cloudy conditions. Meanwhile, YOLOGPnet had only two 

misdetections under all conditions, and the bounding box convergence remained excellent in long-range 

images, indicating good adaptability to lighting variations. 
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Fig.10 - Comparative Detection Results of Multiple Models under Different Conditions (Close-range) 
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Fig.11 - Comparative Detection Results of Multiple Models under Different Weather Conditions (Long-range) 

 

CONCLUSIONS 

This study proposes the YOLOGPnet model, which demonstrates significant performance 

improvements. By incorporating SENetV2 and SPPELAN modules, the model effectively addresses the 

limitations in multi-scale feature extraction, while the Focaler-IoU loss function further enhances regression 

accuracy and predictive performance. Comparative experiments under varying lighting conditions validate the 

practicality and robustness of YOLOGPnet, showing fewer false positives and missed detections compared to 

other models, with predicted bounding boxes more closely aligning with target fruits. The improvements in 

evaluation metrics and detection performance indicate that YOLOGPnet maintains high accuracy and stability 

in complex environments, making it particularly suitable for resource-constrained applications. 
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