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ABSTRACT 

Most existing grain flow sensors are designed for paddle-type elevators, with limited focus on applications in 

auger elevators. This paper addresses the yield monitoring needs during rice harvesting operations, 

specifically targeting auger-based outlets through experimental research. An array-type differential grain flow 

sensor was developed and an indoor test bench was constructed to evaluate its performance. The study 

compares the effectiveness of time-domain and frequency-domain differential processing, alongside various 

filtering methods, for pre-processing the sensor’s raw signals. Additionally, a grain flow regression model was 

built using the Random Forest algorithm. Experimental results demonstrated that the monitoring errors during 

field tests ranged from -6.42% to 8.23%, indicating that the sensor met the requirements for rice yield 

monitoring. This sensor provides valuable data for feed rate detection, speed regulation, and adjustments to 

the threshing and cleaning systems in combine harvesters, offering significant practical implications for the 

promotion and development of precision agriculture. 

 

摘要 

现有的籽粒流量传感器大多面向于刮板式升运器，鲜有针对搅龙式升运器工作场景的籽粒流量传感器。本文面

向搅龙式出粮口，针对水稻收获作业的产量监测需求进行试验研究，开发了阵列式指板差分结构的籽粒流量传

感器，研制了籽粒流量传感器室内试验台，对比了时域、频域差分处理以及不同滤波方法对所采集的传感器原

始信号的预处理效果，并基于随机森林算法构建了籽粒流量回归模型。试验结果表明田间试验监测误差为-

6.42%~8.23%，能够满足水稻收获的产量监测需求，可以为联合收获机喂入量检测、前进速度调控或者脱粒清

选装置的作业参数调节提供数据参考，对精准农业的推广和发展也具有重要的实际意义。 

 
INTRODUCTION 

The mapping of grain yield during harvesting operations is a crucial component of precision agriculture, 

and an accurate and reliable grain flow monitoring sensor is fundamental for generating yield distribution maps 

(Vinod Chandra et al., 2024; Kasera et al., 2024). With advancements in sensor and GPS technologies, yield 

monitoring systems have been widely adopted in Europe and the United States (Yin et al., 2024). In these 

regions, large wheeled harvesters are commonly used, which often incorporate scraper elevators that allow 

for high grain flow rates and concentrated impact areas, making signal acquisition relatively straightforward 

(Cheng et al., 2023). However, in the Huang-Huai-Hai region of China, a rotation system of rice and oilseed or 

rice and wheat is typically implemented. In this context, compact and highly adaptable tracked harvesters have 

become the mainstream model for rice harvesting in southern paddy fields (He et al., 2023). These machines 

generally employ auger-type elevators for grain transport, as illustrated in Fig. 1. 

According to the measurement principle, yield detection methods can be categorized into types such as 

mass measurement and volume measurement. Among these, the impulse-based grain flow sensor, which falls 

under mass measurement, has become one of the most widely used measurement methods due to its simple 

structure, ease of installation, and low cost (Bantchina et al., 2024). In the research on impulse-based grain 

flow sensors, Hu et al (2009) designed a dual-plate differential impulse grain flow sensor to address vibration 

interference, effectively mitigating the impact of vehicle vibrations on measurement accuracy.  
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Liu et al (2018) developed a dual-plate differential impulse grain flow sensor with a curved impact plate 

based on the scattering patterns of grain from scraper elevators. They conducted a spatiotemporal analysis of 

yield distribution data collected over two consecutive years in the same field. Li et al (2015) analyzed the 

impact patterns of grains, determined the optimal sampling frequency based on the sampling theorem, and 

compared two different signal processing methods: double-threshold filtering and arithmetic mean. Wei et al 

(2014) addressed the issue of vibration noise interference in impulse grain flow sensors by employing signal 

dual-plate differential techniques and wavelet transformation for filtering the raw signals. Shoji et al (2009) 

established a nonlinear grain flow model suitable for local combine harvesters in Japan, which, after validation 

through yield tests, demonstrated a relative root mean square error of 4.4% when the elevator speed was stable. 

     
(a) Crawler combine harvester                             (b) Auger conveyor 

Fig.1 - Grain conveying system of the crawler combine harvester 

 
In summary, existing impulse flow sensors rarely address applications in auger elevators. Therefore, 

this study focuses on the auger elevator of tracked combine harvesters, designing an array-type paddle impact 

grain flow sensor. The signal processing method was optimized to enhance vibration interference resistance 

through frequency-domain differential processing and filtering. A grain flow regression model was constructed 

based on the Random Forest algorithm. Finally, field tests were conducted during rice harvesting using the 

self-developed grain flow sensor, achieving online monitoring of yield information throughout the harvesting process. 

 
MATERIALS AND METHODS 
Design of the Grain Flow Sensor Structure 

Compared to scraper elevators, auger elevators convey a smaller grain flow and exhibit a less 

concentrated scattering of grains at the discharge outlet. To identify the optimal installation position for the 

sensor, the scattering distribution characteristics of grains at the discharge outlet was analyzed and EDM 

simulations of the grain transport process in auger elevators were conducted. The simplified auger model was 

imported into EDEM software (2021, Altair Engineering Inc., Troy, MI, USA), with the auger speed set at 860 

rpm. A particle factory was established at the base of the auger, and data was saved at a time step of 0.01 

seconds over a total simulation time of 5 seconds. The mechanical property parameters of the rice grains and 

the contact coefficients of the working components were set based on the literature (Zhao et al., 2023; Ma et 

al., 2023; Xing et al., 2024). The scattering distribution of rice grains under different flow rates is illustrated in 

Fig. 2. The simulation results indicate that the rice grains scatter in a fan-shaped distribution, flowing along the 

side walls of the auger and falling into the grain tank, while the middle area experiences wave-like scattering 

of grains influenced by the auger blades. It is clear that monitoring all grain impact signals at the outlet would 

require a sensor monitoring plate with a large surface area, which could interfere with the normal flow of grains 

into the tank and even block the auger outlet. 

 
(a) Grain flow rate at 0.5 kg/s      (b) Grain flow rate at 1.5 kg/s       (c) Grain flow rate at 2.5 kg/s     

Fig. 2 - Rice Grain Discharge Characteristics at Different Flow Rates 
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To address this challenge, a multi-point monitoring method using dual-plate differential sensors, leading 

to the development of a custom grain flow monitoring sensor, as illustrated in Fig. 3, is proposed. The sensor 

is organized into three monitoring units: left, center, and right. Each unit consists of an impact paddle sensor 

and a reference paddle sensor. These paddle sensors are designed with point pressure sensors and paddles, 

secured by a gantry installation bracket and universal vibration-damping steel wires. All paddles are 

constructed from stainless steel. The impact paddle sensor captures the force from the grain flow, while the 

reference paddle sensor monitors vibrations and zero-point drift in that location. The front and rear paddles 

are parallel and do not make contact, with their sides bent at a 90° angle to enhance their strength. The 

universal vibration-damping steel wires help mitigate interference from vibrations during harvesting operations. 

To ensure that the monitoring units on both sides receive normal impacts from the grain flow, the left 

and right sensors are installed perpendicular to the auger discharge outlet, while the center sensor is 

positioned parallel to it. The monitoring surfaces of the left and right units form an angle of 35.5° with the 

surface of the center unit, creating a symmetrical arrangement. Each paddle has an area of 135 × 40 mm, and 

the pressure sensors are single-point types (AT8501, AUTODA, China) with a maximum capacity of 300 grams, 

based on the design parameters derived from our earlier simulation analysis 

 
(a) Sensor Installation Position and Force Direction      (b) Components of the Sensor Monitoring Unit 

 

Fig. 3 - Differential Grain Flow Sensor with Array Structure 
1 - Gantry mounting bracket. 2 - Mounting plate. 3 - Universal damping steel wire. 4 - Small gantry bracket.  

5 - Pressure sensor. 6. Plate. 
 

Sensor signal conditioning circuit design 
The hardware circuit of the array-type paddle differential flow sensor primarily consists of a power supply 

circuit, measurement circuit, differential amplification circuit, and bandpass filtering circuit, as illustrated in Fig.4.  

 
Fig. 4 - Hardware Circuit Diagram 

 

The AT8501 pressure sensor generates only 10 mV of voltage under a 5 V excitation voltage with a 300 

g load, necessitating the use of an LM358 amplification chip to enhance the weak signal. Given that the 

amplified strain signals require bandpass filtering, the choice of cut-off frequencies significantly affects the 

measurement accuracy of the sensor. Therefore, an adjustable center frequency second-order multiple 

feedback bandpass filter is utilized to meet the dynamic flow monitoring requirements. To facilitate the 

recording and analysis of experimental data, the sensor can directly output real-time flow signals via RS-485 

or CAN communication after processing the signals within the microcontroller. 
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Development of the Grain Flow Indoor Test Bench 

To further shorten the development cycle, this study developed an indoor grain flow test bench to 

simulate the grain conveying conditions of a tracked combine harvester in the field. The dimensions of the 

auger blades and the inner diameter of the auger cylinder match those of the 4LZ-6.0 combine harvester and 

are capable of achieving the machine's rated auger speed. The test bench enables calibration of the 

relationship between grain flow rate and sensor electrical signals and allows for the acquisition of background 

vibration noise to explore optimal noise reduction methods. 

The physical setup of the grain flow test bench, shown in Fig. 5, consists primarily of the following 

components: an array-type differential flow sensor, a material receiving frame, a vertical auger, a measuring 

device, a grain hopper, a three-phase AC asynchronous motor, a frequency converter, and an opening 

adjustment flap. During the test, grains in the hopper are pushed by a horizontal auger to the bottom of the 

vertical auger, lifted to the auger outlet, and then discharged into a glass receiving frame. A funnel below the 

receiving frame, equipped with a load cell-based measuring device, records the cumulative change in grain 

mass, allowing for the calculation of key information such as the average flow rate. The grain flow rate is 

adjusted using a flap at the bottom of the hopper. 

 
Fig. 5 - Test bench for the flow sensor experiment 

1 - Flow sensor. 2 - Material receiving frame. 3 - Auger grain elevator. 4 - Measuring device. 5 - Grain hopper. 
6 - Three-phase AC asynchronous motor and frequency converter. 7 - Opening adjustment baffle. 

 

Sensor Signal Differentiation and Denoising 

To ensure that the vibration and impact amplitudes of all sensors are on the same scale, static calibration 

of each sensor was conducted using standard weights. As shown in Fig. 6(a), standard weights were applied 

at random positions on the monitoring paddles to obtain the static force characteristic curves for each sensor, 

illustrated in Fig. 6(b). The output signals from the six parallel beam pressure sensors demonstrated excellent 

linearity within their measurement range, meeting the required specifications for use. 

  
(a) Static calibration test                        (b) Static force characteristics 

Fig. 6 - Static calibration of the pressure sensors 
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Damping alone cannot completely eliminate the influence of vibrations; therefore, the raw vibration 

signals from the sensors mounted on the machine were collected and the vibration signals from each 

differential unit in both the time domain and frequency domain were processed to compare the denoising 

effects. The signals detected by the impact paddle sensor and the vibrations measured by the reference paddle 

sensor represent a pair of common-mode signals. To ensure the effectiveness of the signal differentiation, the 

original signal acquisition frequency for the pressure sensors was set to 500 Hz, in accordance with the Nyquist 

sampling theorem, during the collection of vibration signals under no-load conditions. The collected raw signals 

are depicted in Fig. 7, with time-domain and frequency-domain differential analyses performed on the original 

output signals from the three paddle groups, as shown in Figs. 8 and 9. 

 
(a) Left monitoring unit                 (b) Middle monitoring unit                 (c) Right monitoring unit 

Fig. 7 - The original vibration signal of each monitoring unit 
 

 
(a) Left monitoring unit                    (b) Middle monitoring unit                 (c) Right monitoring unit 

Fig. 8 - Time domain difference signal of each monitoring unit 
 

 
(a) Left monitoring unit                  (b) Middle monitoring unit               (c) Right side monitoring unit 

Fig. 9 - The frequency domain differential signal of each monitoring unit 
 

As shown in Fig. 7, it is evident that the vibration amplitudes of each paddle in the raw signal under no-

load conditions are similar, yet the signal concentration varies and exhibits significant oscillations. After 

performing time-domain differentiation, the amplitudes, means, and standard deviations of the signals from 

each monitoring unit decreased, resulting in improved signal concentration and demonstrating effective 

differentiation. However, the phase subtraction in the time domain does not completely eliminate sudden 

changes in acceleration, as some peaks still remain. In contrast, conducting signal differentiation in the 

frequency domain effectively reduces the frequency of peak occurrences, preventing peaks exceeding 6 g.  
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A further comparison of the mean and standard deviation between frequency-domain and time-domain 

differencing, as shown in Table 1, indicates that the mean and standard deviation of the signals from the left, 

middle, and right monitoring units all decreased. This suggests that frequency-domain differencing significantly 

improves the signal concentration during the impact phase, and the effect of background vibration noise reduction 

for each monitoring unit's sensor is relatively stable. 

Table 1 
Mean and variance of each sensor 

Monitoring unit Left monitoring unit Middle monitoring unit Right monitoring unit 

Sensor number 
Time 

Domain 
Frequency 

Domain 
Time 

Domain 
Frequency 

Domain 
Time 

Domain 
Frequency 

Domain 

Signal average /g 0.29 0.26 0.25 0.15 0.48 0.38 

Signal standard 
deviation /g 

0.72 0.71 1.02 0.66 0.79 0.74 

 

Sensor Signal Filtering and Noise Reduction 

The grain flow consists of discrete particle flows, which, when combined with background noise 

generated by machine vibrations, results in signals obtained through frequency-domain differentiation that are 

not entirely stable. To further enhance monitoring accuracy, additional filtering of the signals is required. 

Therefore, this study employs various filtering algorithms for secondary filtering based on the frequency-

domain differentiated signals, aiming to identify the optimal secondary filtering method. 

The data acquisition process during the bench tests is as follows: the motor speed is controlled, and 

each trial involves pre-weighing 40 kg of rice grains to be fed into the hopper. The opening of the adjustment 

baffle is fixed to regulate the flow rate to approximately 1.5 kg/s, with three repetitions of each trial. This study 

evaluates nine different filtering methods for secondary filtering, with their effects illustrated in Fig. 10. 

 
(a) Mean value filtering                 (b) First order filtering            (c) Median value filtering 

 
(d) Sliding average filtering       (e) Median mean filtering          (f) Sliding median mean filtering 

 
      (g) Mean + first order filtering     (h) Sliding average + first order filtering  (i) Median mean + First Order filtering 

Fig. 10 - Effects of different secondary filtering methods 
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The initial assessment of the above data indicates that the performance of first-order filtering, average 

filtering combined with first-order filtering, sliding average filtering combined with first-order filtering, and 

median average filtering combined with first-order filtering is relatively satisfactory. 

To further compare the filtering effects, the ratio of the sum of the monitoring values (Sum) from the 

secondary filtering to the mass of the input grains (m), referred to as the conversion coefficient (k) under flow 

conditions is evaluated. By comparing the standard deviation of the conversion coefficient (k), the effectiveness 

of the various filtering methods can be determined. 

As shown in Table 2, the standard deviation of the ratio Sum/𝑚 is smallest for median average filtering 

combined with first-order filtering among the various filtering methods. The grain flow impacts the impact plates 

in a non-simultaneous and discrete manner over time, which, when combined with machine vibrations, leads 

to high-frequency fluctuations in the original signal. Median average filtering dynamically removes extreme 

values from the collected data, mitigating sampling deviations caused by occasional impact disturbances, and 

effectively reduces measurement errors of the flow sensor. The subsequent application of first-order filtering 

after median average filtering leverages its advantage in high-frequency data acquisition and provides good 

suppression of periodic vibration interference from the combine harvester’s working components. 

 
Table 2 

Comparison of the different secondary filtering effects of three crops 

Secondary filtering method 
Standard deviation of k 

Left group Middle group Right group 

First order filtering 46.75 110.65 132.91 

Mean + First order filtering 79.936 41.19 56.52 

Sliding average filtering + First order filtering 68.35 148.87 62.74 

Median mean filtering + First order filtering 58.63 41.25 52.76 

 

 

In summary, the signal processing flow for the sensor is as shown in Fig. 11: the signals from each 

monitoring unit are differentiated in the frequency domain, transformed into three independent time-domain 

signals through inverse discrete Fourier transform, and then subjected to secondary filtering (median average 

filtering combined with first-order filtering) to achieve stable monitoring signals. 

 

 
 

Fig. 11 - The signal processing flow of the flow sensor 
 
 
 

RESULTS AND ANALYSIS  
Establishment of the grain flow measurement model 

To establish a mathematical metering model for grain flow, this study collected sensor signals from the 

grain flow test bench, capturing the output signals from three monitoring unit sensors along with the changes 

in accumulated mass of rice grains at various flow rates, as illustrated in Fig. 12. 
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(a) 0.64 kg/s (rice)                (b) 1.57 kg/s (rice)                    (c) 2.60 kg/s (rice) 

Fig. 12 - Changes in the rice accumulative quality and signal amplitude of each monitoring unit  
under different flow rates 

 

It can be observed that the signal amplitude of the monitoring units is correlated with the slope of the 

cumulative mass curve. The significant differences in signal amplitude among the left, middle, and right units 

are attributed to the orientation of the vertical grain auger. The auger blades are tilted leftward, with a counter 

clockwise rotation (viewed from above), causing the right fan blades to throw grains towards the left side, as 

shown in Fig. 13(a). As the flow rate increases, the fill level within the auger blades rises, resulting in more 

grains being dispersed towards the left and middle monitoring units, specifically in the ∠AOD region shown in 

Fig. 13(b). This indicates that the flow rate variations at the three monitoring positions are not synchronized, 

making it unreasonable to represent the overall grain flow rate based on a single monitoring location. 

 
        (a) Position distribution of the auger blades       (b) Schematic diagram of the monitoring areas 

Fig. 13 - Position distribution of the auger blades 

 
For the designed array-type paddle differential flow sensor, the differing amplitudes of signals from the 

left, center, and right monitoring units indicate that the gain varies under the same flow conditions. This 

suggests that the three monitoring units correspond to three distinct fan-shaped regions where the distribution 

of grain dispersion is uneven. Traditional linear or multivariate nonlinear regression methods do not yield 

satisfactory results for flow regression modelling. In contrast, the Random Forest algorithm offers advantages 

such as parallel processing, low computational overhead, fewer parameters to adjust, and ease of 

implementation compared to other common machine learning methods (Zhou et al., 2023; Ravishankar et al, 

2023). 

Therefore, this study employs the Random Forest algorithm to establish a regression model for grain 

flow. 

It is important to note that due to the poor fluidity of the grains, the descent speed of the rice grains in 

the feed hopper decreases with pressure, resulting in an overall declining trend in the amplitudes of the three 

monitoring units under the same opening. Consequently, using the long-time interval change in cumulative 

mass Δ𝑚 to represent the true flow is not reasonable. During the stable flow phase from 𝑡1 to 𝑡2 , the sum of 

the signal amplitudes 𝑆 from each monitoring unit over a unit time interval Δ𝑡 is positively correlated with the 

average flow rate 𝑄 over that time interval. The model is constructed as follows: 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3)                        (1) 

In the equation, 𝑦 represents the grain flow rate per unit time Δ𝑡, and 𝑥1, 𝑥2 and 𝑥3 are the values of 

𝑆/Δ𝑡 for the left, middle, and right monitoring units, respectively. The model for the average grain flow rate 𝑄 

within Δ𝑡 t is given by: 
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Δ𝑚

Δ𝑡
= 𝑓 (

𝑆1

Δ𝑡
,
𝑆2

Δ𝑡
,
𝑆3

Δ𝑡
)              (2) 

Due to the continuous variation in signals from the three monitoring units, the sum of the signal 

amplitudes 𝑆 per unit time also changes accordingly. This implies that time displacement in the time domain 

will result in changes to the "rectangular" area 𝑆 of each monitoring unit's signal, which, in turn, causes slight 

variations in Δ𝑚 due to deviations in the cumulative mass data. By selecting different unit time steps Δ𝑡, a 

more diverse set of samples can be created, as shown in Fig. 14. Additionally, there is a small amount of zero 

drift at the beginning and end of the experiment, with the drift amount within 0.5 g. Data from this time period 

can be used to construct zero drift samples, which are represented as follows: 
Δ𝑚

Δ𝑡
= 0 = 𝑓 (

𝑆1

Δ𝑡
,
𝑆2

Δ𝑡
,
𝑆3

Δ𝑡
)                                (3) 

 
(a) Method for changing Δ𝑡                       (b) Method for maintaining a fixed Δ𝑡 

Fig. 14 - Construction of the original dataset 
 

In field harvesting operations, the complexity of zero-drift caused by machine start-stop, turns, and other 

conditions makes it more challenging to filter zero-drift data from linear models compared to bench tests. 

However, this issue can be easily addressed in a random forest regression model. 

Therefore, the sample construction for the random forest regression model only needs to focus on the 

following time points: the point where the cumulative mass curve begins to change slope, indicating that grains 

have started to be discharged from the outlet but remain unstable. This point is denoted as 𝑡𝑅, any sensor 

signals before this point are considered as zero-drift data. The moment when the testing platform reaches its 

rated speed, at which point the grain discharge becomes relatively stable. This moment is noted as 𝑡1. 

The time when the screw conveyor begins to show a significant decrease in grain flow, with clear 

reductions in sensor data and the cumulative mass curve's slope gradually approaching zero. This moment is 

recorded as the end of stable flow, noted as 𝑡2. After 𝑡2, the slope of the cumulative mass curve remains at 

zero. The initial time when this occurs is denoted as 𝑡𝑆, continuing until the end of data collection at 𝑡𝑁. The 

period from 𝑡𝑆 to 𝑡𝑁 represents the zero-drift phase. The divisions of these time periods are illustrated in Fig.15. 

 
Fig. 15 - The division of the time periods of a single group of experimental data 
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After selecting specific time periods, an array [𝑥1, 𝑥2, 𝑥3,𝑦] is constructed using Formula 2, where 𝑦 

represents the grain flow within the time interval Δ𝑡, and 𝑥1, 𝑥2 and 𝑥3 correspond to the values of 𝑆/Δ𝑡 from 

the left, middle, and right monitoring units, respectively. 

Choosing a very small flow calculation period Δ𝑡 can increase computational load and lead to sample 

bias, especially under high flow conditions. Conversely, a very large Δ𝑡 may fail to capture flow variations 

adequately. To determine the optimal size of Δ�𝑡, this study selected 0.4 s, 0.8 s, and 1.2 s as candidate 

parameters. After obtaining the samples, the rice regression model is established. 80% of the dataset is used 

for training, while 20% is used for testing. The depth of the decision trees is set to 4. The test results for different 

time steps Δ𝑡 are shown in Table 3. 

Table 3 
Sample test of the traffic regression model based on the random forest algorithm 

Δt Sample size Training score Test score 

0.4 1103 0.56 0.68 

0.8 370 0.96 0.87 

1.2 213 0.99 0.36 

Note: The training score and test score are fitting evaluations between 0 and 1, where 0 is the worst and 1 is the best. 

 
From the above table and Fig. 16, a time step of Δ𝑡 = 0.8 seconds is selected as the average time 

interval for predicting flow, leading to the final grain flow model constructed as [t0, t0 + 0.8]. 

𝑄 = 𝑓(1.25𝑆1, 1.25𝑆2, 1.25𝑆3, )          (4) 

In the equation, the dynamic output method for flow is as follows: first, the discrete integral area [𝑆1, 𝑆2, 

𝑆3] for each monitoring unit over each second is calculated. Each discrete integral area is divided by the time 

step Δ𝑡 to obtain the input array [𝑥1, 𝑥2, 𝑥3]. Subsequently, based on the trained Random Forest flow regression 

model, the flow values after internal evaluation are output. 

 
Sensor performance test verification 

To further validate the monitoring accuracy of the grain flow sensor, a field harvesting verification 

experiment was conducted in November 2023 at Jiangsu University’s experimental field. The selected plot was 

relatively flat, with the rice variety being Changnong Jing 10, a bulk density of 639 g/L, and a grain moisture 

content of 21%. The test machine used was a 4LZ-6.0 multifunctional intelligent combine harvester, operating 

at a feed rate of 6 kg/s and a cutting width of 2.2 m. The experimental site is shown in Fig. 16(a), with the GPS 

positioning device mounted on the top of the cab, and the grain flow sensor installed as depicted in Fig. 16(b). 
 

  
(a) Testing machine                                    (b) Sensor installation diagram 

Fig .16 - Physical map of the sensor installation 
1. Left impact unit. 2. Left reference unit. 3. Middle impact unit. 4. Middle reference unit.  

5. Right impact unit. 6. Right reference unit. 

 
The rice yield measurement validation experiment consisted of five groups, with a uniform harvesting 

speed over a full cutting width of 30 meters. Cumulative yield data from the grain flow sensor were recorded 

alongside manual weighing data to compare and verify the sensor's field accuracy. The results are summarized 

in Table 4. The field trial indicated that the designed grain flow sensor achieved satisfactory monitoring 

performance, with monitoring errors ranging from -6.42% to 8.23% during stable harvesting conditions. 
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Table 4 
Validation test results 

Crop Actual Quality (kg) 
Random Forest Regression Model 

Predicted Quality (kg) Error (%) 

Rice 

122.49 132.57 8.23% 

105.13 99.43 -5.42% 

94.23 97.49 3.46% 

97.28 91.04 -6.42% 

119.39 125.19 4.85% 

 

Discussion 

This study addresses the uneven dispersal characteristics of grain ejection from auger outlets by 

designing an array-type grain flow sensor that utilizes a multi-point distribution and dual-board differential 

arrangement for monitoring grain flow. However, this study did not consider the impacts of machine tilt and 

varying grain moisture content. Future work will incorporate tilt sensors to capture the machine's inclination 

and moisture monitoring sensors to assess grain moisture variations. Additionally, the grain dispersal patterns 

under different operating conditions will be analyzed and the yield measurement model will be optimized to 

enhance the versatility of the grain flow sensor developed in this study. 

While this research primarily focused on rice crops, the monitoring principles indicate that the developed 

grain flow sensor is applicable to a variety of crops. Future experimental studies will be conducted on rice, 

wheat, rapeseed, and other crops to develop a universal grain flow sensor. Furthermore, by integrating 

positional information from the harvesting machine, it is aimed to generate visualized yield distribution maps 

to guide precision farming and management for the next crop season. 

 

CONCLUSIONS 

To monitor the flow variation of rice grains in real-time, a multi-point monitoring and dual-board 

differential scheme was proposed based on the dispersal characteristics of grains ejected from the auger outlet 

of a crawler-type combine harvester, leading to the design of an array-type differential grain flow sensor. 

The differential effects of the original signals from the flow sensor were compared in both the frequency 

and time domains, alongside various filtering and noise reduction methods. The optimal signal processing 

approach was identified as frequency-domain differentiation combined with "median filtering + first-order 

filtering," resulting in stable sensor signals. 

A grain flow measurement model for rice was constructed using the Random Forest algorithm, and field 

harvest experiments were conducted for validation. The results indicated that the measurement error during 

stable field operations ranged from -6.42% to 8.23%. 
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